Abstract and Applied Analysis

Existence and Nonexistence of Positive Solutions for Quasilinear Elliptic Problem

K. Saoudi

Full-text: Open access


Using variational arguments we prove some existence and nonexistence results for positive solutions of a class of elliptic boundary-value problems involving the p -Laplacian.

Article information

Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 275748, 9 pages.

First available in Project Euclid: 5 April 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Saoudi, K. Existence and Nonexistence of Positive Solutions for Quasilinear Elliptic Problem. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 275748, 9 pages. doi:10.1155/2012/275748. https://projecteuclid.org/euclid.aaa/1365174063

Export citation


  • V. Rădulescu and D. Repovš, “Combined effects in nonlinear problems arising in the study of anisotropic continuous media,” Nonlinear Analysis, vol. 75, no. 3, pp. 1524–1530, 2012.
  • C. A. Santos, “Non-existence and existence of entire solutions for a quasi-linear problem with singular and super-linear terms,” Nonlinear Analysis, vol. 72, no. 9-10, pp. 3813–3819, 2010.
  • M. Cuesta and P. Takáč, “A strong comparison principle for positive solutions of degenerate elliptic equations,” Differential and Integral Equations, vol. 13, no. 4–6, pp. 721–746, 2000.
  • P. Lindqvist, “On the equation ${\text{div}(\vert \nabla u\vert }^{p-2}{\nabla u)+\lambda \vert u\vert }^{p-2}u=0$,” Proceedings of the American Mathematical Society, vol. 109, no. 1, pp. 157–164, 1990.
  • A. Anane, “Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids,” Comptes Rendus des Séances de l'Académie des Sciences I, vol. 305, no. 16, pp. 725–728, 1987.
  • R. Filippucci, P. Pucci, and V. Rădulescu, “Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions,” Communications in Partial Differential Equations, vol. 33, no. 4–6, pp. 706–717, 2008.
  • P. Pucci and R. Servadei, “Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations,” Indiana University Mathematics Journal, vol. 57, no. 7, pp. 3329–3363, 2008.
  • E. DiBenedetto, “${C}^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations,” Nonlinear Analysis, vol. 7, no. 8, pp. 827–850, 1983.
  • P. Pucci and J. Serrin, “Maximum principles for elliptic partial differential equations,” in Handbook of Differential Equations: Stationary Partial Differential Equations, M. Chipot, Ed., vol. 4, pp. 355–483, Elsevier, 2007.