## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2012, Special Issue (2012), Article ID 973102, 16 pages.

### Initial-Boundary Value Problem for Fractional Partial Differential Equations of Higher Order

Djumaklych Amanov and Allaberen Ashyralyev

**Full-text: Open access**

#### Abstract

The initial-boundary value problem for partial differential equations of higher-order involving the Caputo fractional derivative is studied. Theorems on existence and uniqueness of a solution and its continuous dependence on the initial data and on the right-hand side of the equation are established.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 973102, 16 pages.

**Dates**

First available in Project Euclid: 5 April 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1365174056

**Digital Object Identifier**

doi:10.1155/2012/973102

**Mathematical Reviews number (MathSciNet)**

MR2947751

**Zentralblatt MATH identifier**

1246.35201

#### Citation

Amanov, Djumaklych; Ashyralyev, Allaberen. Initial-Boundary Value Problem for Fractional Partial Differential Equations of Higher Order. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 973102, 16 pages. doi:10.1155/2012/973102. https://projecteuclid.org/euclid.aaa/1365174056

#### References

- R. L. Bagley and P. J. Torvik, “A theoretical basis for the application of fractional calculus to viscoelasticity,”
*Journal of Rheology*, vol. 27, no. 3, pp. 201–210, 1983.\setlength*emsep*1.5ptZentralblatt MATH: 0515.76012 - G. Sorrentinos, “Fractional derivative linear models for describing the viscoelastic dynamic behavior of polymeric beams,” in
*Proceedings of IMAS*, Saint Louis, Mo, USA, 2006. - G. Sorrentinos, “Analytic modeling and experimental identi?cation of viscoelastic mechanical systems,” in
*Advances in Fractional Calculus*, J. Sabatier, O. P. Agrawal, and J. A Tenreiro Machado, Eds.,pp. 403–416, Springer, 2007. -
*Fractals and Fractional Calculus in Continuum Mechanics*, vol. 378 of*CISM Courses and Lectures*, Springer, New York, NY, USA, 1997.Mathematical Reviews (MathSciNet): MR1611582 - R. L. Magin, “Fractional calculus in bioengineering,”
*Critical Reviews in Biomedical Engineering*, vol. 32, no. 1, pp. 1–104, 2004. - M. D. Ortigueira and J. A. Tenreiro Machado, “Special issue on Fractional signal processing and applications,”
*Signal Processing*, vol. 83, no. 11, pp. 2285–2286, 2003. - B. M. Vinagre, I. Podlubny, A. Hernández, and V. Feliu, “Some approximations of fractional order operators used in control theory and applications,”
*Fractional Calculus & Applied Analysis*, vol. 3, no. 3, pp. 231–248, 2000. - K. B. Oldham, “Fractional differential equations in electrochemistry,”
*Advances in Engineering Software*, vol. 41, no. 1, pp. 9–12, 2010.Zentralblatt MATH: 1177.78041 - R. Metzler and J. Klafter, “Boundary value problems for fractional diffusion equations,”
*Physica A*, vol. 278, no. 1-2, pp. 107–125, 2000.Mathematical Reviews (MathSciNet): MR1763650

Digital Object Identifier: doi:10.1016/S0378-4371(99)00503-8 - M. De la Sen, “Positivity and stability of the solutions of Caputo fractional linear time-invariant systems of any order with internal point delays,”
*Abstract and Applied Analysis*, vol. 2011, Article ID 161246, 25 pages, 2011.\setlength*emsep*1.55ptZentralblatt MATH: 1217.34124

Mathematical Reviews (MathSciNet): MR2776755

Digital Object Identifier: doi:10.1155/2011/161246 - I. Podlubny,
*Fractional Differential Equations*, vol. 198 of*Mathematics in Science and Engineering*, Academic Press, New York, NY, USA, 1999.Mathematical Reviews (MathSciNet): MR1658022 - S. G. Samko, A. A. Kilbas, and O. I. Marichev,
*Fractional Integrals and Derivatives*, Gordon and Breach Science Publishers, London, UK, 1993.Mathematical Reviews (MathSciNet): MR1347689 - A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,
*Theory and Applications of Fractional Differential Equations*, vol. 204 of*North-Holland Mathematics Studies*, Elsevier Science B.V., Amsterdam, The Nrtherlands, 2006. - J.-L. Lavoie, T. J. Osler, and R. Tremblay, “Fractional derivatives and special functions,”
*SIAM Review*, vol. 18, no. 2, pp. 240–268, 1976.Zentralblatt MATH: 0324.44002

Mathematical Reviews (MathSciNet): MR409914

Digital Object Identifier: doi:10.1137/1018042 - A. Ashyralyev, “A note on fractional derivatives and fractional powers of operators,”
*Journal of Mathematical Analysis and Applications*, vol. 357, no. 1, pp. 232–236, 2009.Zentralblatt MATH: 1175.26004

Mathematical Reviews (MathSciNet): MR2526823

Digital Object Identifier: doi:10.1016/j.jmaa.2009.04.012 - C. Yuan, “Two positive solutions for $(n-1,1)$-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 17, no. 2, pp. 930–942, 2012.Mathematical Reviews (MathSciNet): MR2834462

Zentralblatt MATH: 1248.35225

Digital Object Identifier: doi:10.1016/j.cnsns.2011.06.008 - M. De la Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada, “On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination,”
*Advances in Difference Equations*, vol. 2011, Article ID 748608, 32 pages, 2011.Zentralblatt MATH: 1219.34066

Mathematical Reviews (MathSciNet): MR2780672

Digital Object Identifier: doi:10.1155/2011/748608 - O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,”
*Journal of Mathematical Analysis and Applications*, vol. 272, no. 1, pp. 368–379, 2002.Zentralblatt MATH: 1070.49013

Mathematical Reviews (MathSciNet): MR1930721

Digital Object Identifier: doi:10.1016/S0022-247X(02)00180-4 - R. W. Ibrahim and S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations,”
*Journal of Mathematical Analysis and Applications*, vol. 334, no. 1, pp. 1–10, 2007.Zentralblatt MATH: 1123.34302

Mathematical Reviews (MathSciNet): MR2332533

Digital Object Identifier: doi:10.1016/j.jmaa.2006.12.036 - V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,”
*Nonlinear Analysis*, vol. 69, no. 8, pp. 2677–2682, 2008. - R. P. Agarwal, M. Benchohra, and S. Hamani, “Boundary value problems for fractional differential equations,”
*Georgian Mathematical Journal*, vol. 16, no. 3, pp. 401–411, 2009. - A. Ashyralyev and B. Hicdurmaz, “A note on the fractional Schrödinger differential equations,”
*Kybernetes*, vol. 40, no. 5-6, pp. 736–750, 2011.Mathematical Reviews (MathSciNet): MR2856606

Digital Object Identifier: doi:10.1108/03684921111142287 - A. Ashyralyev, F. Dal, and Z. P\inar, “A note on the fractional hyperbolic differential and difference equations,”
*Applied Mathematics and Computation*, vol. 217, no. 9, pp. 4654–4664, 2011.Zentralblatt MATH: 1221.65212

Mathematical Reviews (MathSciNet): MR2745145

Digital Object Identifier: doi:10.1016/j.amc.2010.11.017 - A. Ashyralyev and Z. Cakir, “On the numerical solution of fractional parabolic partial differential equations,”
*AIP Conference Proceeding*, vol. 1389, pp. 617–620, 2011. - A. Ashyralyev, “Well-posedness of the Basset problem in spaces of smooth functions,”
*Applied Mathematics Letters*, vol. 24, no. 7, pp. 1176–1180, 2011.Zentralblatt MATH: 1217.34006

Mathematical Reviews (MathSciNet): MR2784178

Digital Object Identifier: doi:10.1016/j.aml.2011.02.002 - A. A. Kilbas and O. A. Repin, “Analogue of Tricomi's problem for partial differential equations containing diffussion equation of fractional order,” in
*Proceedings of the International Russian-Bulgarian Symposium Mixed type equations and related problems of analysis and informatics*, pp. 123–127, Nalchik-Haber, 2010. - A. A. Nahushev,
*Elements of Fractional Calculus and Their Applications*, Nalchik, Russia, 2010. - A. V. Pshu,
*Boundary Value Problems for Partial Differential Equations of Fractional and Continual Order*, Nalchik, Russia, 2005. - N. A. Virchenko and V. Y. Ribak,
*Foundations of Fractional Integro-Differentiations*, Kiev, Ukraine, 2007. - M. M. Džrbašjan and A. B. Nersesjan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order,”
*Izvestija Akademii Nauk Armjanskoĭ SSR*, vol. 3, no. 1, pp. 3–28, 1968.Mathematical Reviews (MathSciNet): MR224984 - R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,”
*Acta Applicandae Mathematicae*, vol. 109, no. 3, pp. 973–1033, 2010.Zentralblatt MATH: 1198.26004

Mathematical Reviews (MathSciNet): MR2596185

Digital Object Identifier: doi:10.1007/s10440-008-9356-6 - R. P. Agarwal, M. Belmekki, and M. Benchohra, “A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative,”
*Advances in Difference Equations*, vol. 2009, Article ID 981728, 47 pages, 2009. - R. P. Agarwal, B. de Andrade, and C. Cuevas, “On type of periodicity and ergodicity to a class of fractional order differential equations,”
*Advances in Difference Equations*, vol. 2010, Article ID 179750, 25 pages, 2010. - R. P. Agarwal, B. de Andrade, and C. Cuevas, “Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations,”
*Nonlinear Analysis*, vol. 11, no. 5, pp. 3532–3554, 2010.Mathematical Reviews (MathSciNet): MR2683811

Digital Object Identifier: doi:10.1016/j.nonrwa.2010.01.002 - D. Araya and C. Lizama, “Almost automorphic mild solutions to fractional differential equations,”
*Nonlinear Analysis*, vol. 69, no. 11, pp. 3692–3705, 2008. - G. M. N'Guérékata, “A Cauchy problem for some fractional abstract differential equation with non local conditions,”
*Nonlinear Analysis*, vol. 70, no. 5, pp. 1873–1876, 2009. - G. M. Mophou and G. M. N'Guérékata, “Mild solutions for semilinear fractional differential equations,”
*Electronic Journal of Differential Equations*, vol. 2009, no. 21, 9 pages, 2009. - G. M. Mophou and G. M. N'Guérékata, “Existence of the mild solution for some fractional differential equations with nonlocal conditions,”
*Semigroup Forum*, vol. 79, no. 2, pp. 315–322, 2009.Zentralblatt MATH: 1180.34006

Mathematical Reviews (MathSciNet): MR2538728

Digital Object Identifier: doi:10.1007/s00233-008-9117-x - V. Lakshmikantham, “Theory of fractional functional differential equations,”
*Nonlinear Analysis*, vol. 69, no. 10, pp. 3337–3343, 2008. - V. Lakshmikantham and J. V. Devi, “Theory of fractional differential equations in a Banach space,”
*European Journal of Pure and Applied Mathematics*, vol. 1, no. 1, pp. 38–45, 2008. - V. Lakshmikantham and A. S. Vatsala, “Theory of fractional differential inequalities and applications,”
*Communications in Applied Analysis*, vol. 11, no. 3-4, pp. 395–402, 2007. - A. S. Berdyshev, A. Cabada, and E. T. Karimov, “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator,”
*Nonlinear Analysis*, vol. 75, no. 6, pp. 3268–3273, 2011.Mathematical Reviews (MathSciNet): MR2890988 - R. Gorenflo, Y. F. Luchko, and S. R. Umarov, “On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order,”
*Fractional Calculus & Applied Analysis*, vol. 3, no. 3, pp. 249–275, 2000. - B. Kadirkulov and K. H. Turmetov, “About one generalization of heat conductivity equation,”
*Uzbek Mathematical Journal*, no. 3, pp. 40–45, 2006 (Russian). - D. Amanov, “Solvability of boundary value problems for equation of higher order with fractional derivatives,” in
*Boundary Value Problems for Differential Equations*, The Collection of Proceedings no. 17, pp. 204–209, Chernovtsi, Russia, 2008. - D. Amanov, “Solvability of boundary value problems for higher order differential equation with fractional derivatives,” in
*Problems of Camputations and Applied Mathemaitics*, no. 121, pp. 55–62, Tashkent, Uzbekistan, 2009. - M. M. Djrbashyan,
*Integral Transformations and Representatation of Functions in Complex Domain*, Moscow, Russia, 1966.

### More like this

- Nonlinear boundary value problems for differential
inclusions with Caputo fractional derivative

Benchohra, Mouffak and Hamani, Samira, Topological Methods in Nonlinear Analysis, 2008 - Existence and Uniqueness of Solutions for the System of Nonlinear Fractional Differential Equations with Nonlocal and Integral Boundary Conditions

Ashyralyev, Allaberen and Sharifov, Yagub A., Abstract and Applied Analysis, 2012 - Existence of entropy solutions to a doubly nonlinear integro-differential equation

Scholtes, Martin and Wittbold, Petra, Differential and Integral Equations, 2018

- Nonlinear boundary value problems for differential
inclusions with Caputo fractional derivative

Benchohra, Mouffak and Hamani, Samira, Topological Methods in Nonlinear Analysis, 2008 - Existence and Uniqueness of Solutions for the System of Nonlinear Fractional Differential Equations with Nonlocal and Integral Boundary Conditions

Ashyralyev, Allaberen and Sharifov, Yagub A., Abstract and Applied Analysis, 2012 - Existence of entropy solutions to a doubly nonlinear integro-differential equation

Scholtes, Martin and Wittbold, Petra, Differential and Integral Equations, 2018 - Nonlinear impulsive fractional differential equations
in Banach spaces

Guo, Tian Liang, Topological Methods in Nonlinear Analysis, 2013 - Positive Solutions of Nonlinear Fractional Differential Equations with Integral Boundary Value Conditions

Caballero, J., Cabrera, I., and Sadarangani, K., Abstract and Applied Analysis, 2012 - About a Problem for Loaded Parabolic-Hyperbolic Type Equation with Fractional Derivatives

Sadarangani, Kishin B. and Abdullaev, Obidjon Kh., International Journal of Differential Equations, 2016 - Monotone and Concave Positive Solutions to Three-Point Boundary Value Problems of Higher-Order Fractional Differential Equations

Zhong, Wenyong and Wang, Lanfang, Abstract and Applied Analysis, 2014 - Existence Results for Fractional Differential Inclusions with
Multivalued Term Depending on Lower-Order Derivative

Liu, Xiaoyou and Liu, Zhenhai, Abstract and Applied Analysis, 2012 - Semilinear hyperbolic functional differential problem on a
cylindrical domain

Czernous, W., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2012 - Multiplicity Result of Positive Solutions for Nonlinear Differential Equation of Fractional Order

Liu, Yang and Weiguo, Zhang, Abstract and Applied Analysis, 2012