Abstract and Applied Analysis

An Approximation of Ultra-Parabolic Equations

Allaberen Ashyralyev and Serhat Yılmaz

Full-text: Open access

Abstract

The first and second order of accuracy difference schemes for the approximate solution of the initial boundary value problem for ultra-parabolic equations are presented. Stability of these difference schemes is established. Theoretical results are supported by the result of numerical examples.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 840621, 14 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365174047

Digital Object Identifier
doi:10.1155/2012/840621

Mathematical Reviews number (MathSciNet)
MR2926912

Zentralblatt MATH identifier
1246.65147

Citation

Ashyralyev, Allaberen; Yılmaz, Serhat. An Approximation of Ultra-Parabolic Equations. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 840621, 14 pages. doi:10.1155/2012/840621. https://projecteuclid.org/euclid.aaa/1365174047


Export citation

References

  • J. Dyson, E. Sanchez, R. Villella-Bressan, and G. F. Webb, “An age and spatially structured model of tumor invasion with haptotaxis,” Discrete and Continuous Dynamical Systems B, vol. 8, no. 1, pp. 45–60, 2007.
  • K. Kunisch, W. Schappacher, and G. F. Webb, “Nonlinear age-dependent population dynamics with random diffusion,” Computers & Mathematics with Applications, vol. 11, no. 1–3, pp. 155–173, 1985, Hyperbolic partial differential equations, II.
  • A. N. Kolmogorov, “Zur Theorie der stetigen zufälligen Prozesse,” Mathematische Annalen, vol. 108, pp. 149–160, 1933.
  • A. N. Kolmogorov, “Zufällige Bewegungen,” Annals of Mathematics, vol. 35, pp. 116–117, 1934.
  • T. G. Genčev, “On ultraparabolic equations,” Doklady Akademii Nauk SSSR, vol. 151, pp. 265–268, 1963.
  • Q. Deng and T. G. Hallam, “An age structured population model in a spatially heterogeneous environment: existence and uniqueness theory,” Nonlinear Analysis, vol. 65, no. 2, pp. 379–394, 2006.
  • G. di Blasio and L. Lamberti, “An initial-boundary value problem for age-dependent population diffusion,” SIAM Journal on Applied Mathematics, vol. 35, no. 3, pp. 593–615, 1978.
  • G. di Blasio, “Nonlinear age-dependent population diffusion,” Journal of Mathematical Biology, vol. 8, no. 3, pp. 265–284, 1979.
  • S. A. Tersenov, “Boundary value problems for a class of ultraparabolic equations and their applications,” Matematicheskiĭ Sbornik, vol. 133(175), no. 4, pp. 529–544, 1987.
  • G. Akrivis, M. Crouzeix, and V. Thomée, “Numerical methods for ultraparabolic equations,” Calcolo, vol. 31, no. 3-4, pp. 179–190, 1994.
  • A. Ashyralyev and S. Y\ilmaz, “On the approximate solution of ultra parabolic equations,” in Proceedings of the 2nd International Symposium on Computing in Science & Engineering, M. Güneş, A. K. Ç\inar, and I. Gürler, Eds., pp. 533–535, Gediz University, Izmir, Turkey, 2011.
  • A. Ashyralyev and S. Y\ilmaz, “Second order of accuracy difference schemes for ultra parabolic equations,” AIP Conference Proceedings, vol. 1389, pp. 601–604, 2011.
  • A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations Operator Theory Advance and Applications, vol. 69, Birkh äuser, Basel, Switzerland, 1994.
  • P. E. Sobolevskii, “On the Crank-Nicolson difference scheme for parabolic equations,” Nonlinear Oscillations and Control Theory, pp. 98–106, 1978.
  • A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations. Vol. 2: Iterative Methods, Birkhäuser, Basel, Switzerland, 1989.