Abstract and Applied Analysis

Optimal Harvesting for an Age-Spatial-Structured Population Dynamic Model with External Mortality

Yong Han Kang, Mi Jin Lee, and Il Hyo Jung

Full-text: Open access

Abstract

We study an optimal harvesting for a nonlinear age-spatial-structured population dynamic model, where the dynamic system contains an external mortality rate depending on the total population size. The total mortality consists of two types: the natural, and external mortality and the external mortality reflects the effects of external environmental causes. We prove the existence and uniqueness of solutions for the population dynamic model. We also derive a sufficient condition for optimal harvesting and some necessary conditions for optimality in an optimal control problem relating to the population dynamic model. The results may be applied to an optimal harvesting for some realistic biological models.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 184815, 14 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365174007

Digital Object Identifier
doi:10.1155/2012/184815

Mathematical Reviews number (MathSciNet)
MR3004911

Zentralblatt MATH identifier
1256.92040

Citation

Kang, Yong Han; Lee, Mi Jin; Jung, Il Hyo. Optimal Harvesting for an Age-Spatial-Structured Population Dynamic Model with External Mortality. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 184815, 14 pages. doi:10.1155/2012/184815. https://projecteuclid.org/euclid.aaa/1365174007


Export citation

References

  • B. Ainseba, S. Anita, and M. Langlais, “Optimal control for a nonlinear age-structured populationdynamics model,” Electronic Journal of Differential Equations, vol. 2002, no. 28, pp. 1–9, 2002.
  • S. Aniţa, “Optimal harvesting for a nonlinear age-dependent population dynamics,” Journal of Mathematical Analysis and Applications, vol. 226, no. 1, pp. 6–22, 1998.
  • V. Barbu and M. Lannelli, “Optimal contorl of population dynamics,” Journal of OptimizationTheory and Applications, vol. 102, no. 1, pp. 1–14, 1999.
  • F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, vol. 40, Springer, New York, NY, USA, 2001.
  • G. Feichtinger, G. Tragler, and V. M. Veliov, “Optimal conditions for age-structed controlsystems,” Journal of Mathematical Analysis and Applications, vol. 95, pp. 25–42, 1996.
  • K. R. Fister and S. Lenhart, “Optimal control of a competitive system with age-structure,” Journal of Mathematical Analysis and Applications, vol. 291, no. 2, pp. 526–537, 2004.
  • K. R. Fister and S. Lenhart, “Optimal harvesting in an age-structured predator-prey model,” Applied Mathematics and Optimization, vol. 54, no. 1, pp. 1–15, 2006.
  • N. Kato, “Optimal harvesting for nonlinear size-structured population dynamics,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1388–1398, 2008.
  • M. G. Garroni and M. Langlais, “Age-dependent population diffusion with external constraint,” Journal of Mathematical Biology, vol. 14, no. 1, pp. 77–94, 1982.
  • Y. Kim, M. J. Lee, and I. H. Jung, “Duality in an optimal harvesting problem by a nonlinear age-spatial structured population dynamic system,” Kyungpook Mathematical Journal, vol. 51, no. 4, pp. 353–364, 2011.