## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2012, Special Issue (2012), Article ID 439089, 13 pages.

### Shannon Information and Power Law Analysis of the Chromosome Code

**Full-text: Open access**

#### Abstract

This paper studies the information content of the chromosomes of twenty-three species. Several statistics considering different number of bases for alphabet character encoding are derived. Based on the resulting histograms, word delimiters and character relative frequencies are identified. The knowledge of this data allows moving along each chromosome while evaluating the flow of characters and words. The resulting flux of information is captured by means of Shannon entropy. The results are explored in the perspective of power law relationships allowing a quantitative evaluation of the DNA of the species.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 439089, 13 pages.

**Dates**

First available in Project Euclid: 5 April 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1365168345

**Digital Object Identifier**

doi:10.1155/2012/439089

**Mathematical Reviews number (MathSciNet)**

MR2975354

**Zentralblatt MATH identifier**

1253.94035

#### Citation

Tenreiro Machado, J. A. Shannon Information and Power Law Analysis of the Chromosome Code. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 439089, 13 pages. doi:10.1155/2012/439089. https://projecteuclid.org/euclid.aaa/1365168345

#### References

- R. T. Schuh and A. V. Z. Brower,
*Biological Systematics: Principles and Applications*, Cornell University Press, 2nd edition, 2009. - H. Seitz,
*Analytics of Protein-DNA Interactions*, Advances in Biochemical Engineering Biotechnology, Springer, 2007. - H. Pearson, “What is a gene?”
*Nature*, vol. 441, no. 7092, pp. 398–401, 2006. - UCSC Genome Bioinformatics, http://hgdownload.cse.ucsc.edu/downloads.html.URL: Link to item
- G. E. Sims, S. R. Jun, G. A. Wu, and S. H. Kim, “Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions,”
*Proceedings of the National Academy of Sciences of the United States of America*, vol. 106, no. 8, pp. 2677–2682, 2009. - W. J. Murphy, T. H. Pringle, T. A. Crider, M. S. Springer, and W. Miller, “Using genomic data to unravel the root of the placental mammal phylogeny,”
*Genome Research*, vol. 17, no. 4, pp. 413–421, 2007. - H. Zhao and G. Bourque, “Recovering genome rearrangements in the mammalian phylogeny,”
*Genome Research*, vol. 19, no. 5, pp. 934–942, 2009. - A. B. Prasad, M. W. Allard, and E. D. Green, “Confirming the phylogeny of mammals by use of large comparative sequence data sets,”
*Molecular Biology and Evolution*, vol. 25, no. 9, pp. 1795–1808, 2008. - I. Ebersberger, P. Galgoczy, S. Taudien, S. Taenzer, M. Platzer, and A. Von Haeseler, “Mapping human genetic ancestry,”
*Molecular Biology and Evolution*, vol. 24, no. 10, pp. 2266–2276, 2007. - C. W. Dunn, A. Hejnol, D. Q. Matus et al., “Broad phylogenomic sampling improves resolution of the animal tree of life,”
*Nature*, vol. 452, no. 7188, pp. 745–749, 2008. - J. A. T. Machado, A. C. Costa, and M. D. Quelhas, “Fractional dynamics in DNA,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 16, no. 8, pp. 2963–2969, 2011.Zentralblatt MATH: 1218.92038 - A. M. Costa, J. T. Machado, and M. D. Quelhas, “Histogram-based DNA analysis for the visualization of chromosome, genome and species information,”
*Bioinformatics*, vol. 27, no. 9, pp. 1207–1214, 2011. - J. A. T. Machado, A. C. Costa, and M. D. Quelhas, “Entropy analysis of the DNA code dynamics in human chromosomes,”
*Computers & Mathematics with Applications*, vol. 62, no. 3, pp. 1612–1617, 2011. - J. A. T. Machado, A. C. Costa, and M. D. Quelhas, “Analysis and visualization of chromosome infor-mation,”
*Gene*, vol. 491, no. 1, pp. 81–87, 2012. - M. Kimura,
*The Neutral Theory of Molecular Evolution*, Cambridge University Press, Cambridge, Mass, USA, 1983. - P. J. Deschavanne, A. Giron, J. Vilain, G. Fagot, and B. Fertit, “Genomic signature: characterization and classification of species assessed by chaos game representation of sequences,”
*Molecular Biology and Evolution*, vol. 16, no. 10, pp. 1391–1399, 1999. - M. Lynch, “The frailty of adaptive hypotheses for the origins of organismal complexity,”
*Proceedings of the National Academy of Sciences of the United States of America*, vol. 104, no. 1, pp. 8597–8604, 2007. - G. Albrecht-Buehler, “Asymptotically increasing compliance of genomes with Chargaff's second parity rules through inversions and inverted transpositions,”
*Proceedings of the National Academy of Sci-ences of the United States of America*, vol. 103, no. 47, pp. 17828–17833, 2006. - D. Mitchell and R. Bridge, “A test of Chargaff's second rule,”
*Biochemical and Biophysical Research Communications*, vol. 340, no. 1, pp. 90–94, 2006. - B. R. Powdel, S. S. Satapathy, A. Kumar et al., “A study in entire chromosomes of violations of the intra-strand parity of complementary nucleotides (Chargaff's Second Parity Rule),”
*DNA Research*, vol. 16, no. 6, pp. 325–343, 2009. - C. T. Zhang, R. Zhang, and H. Y. Ou, “The Z curve database: a graphic representation of genome sequences,”
*Bioinformatics*, vol. 19, no. 5, pp. 593–599, 2003. - P. Bak, K. Chen, and C. Tang, “A forest-fire model and some thoughts on turbulence,”
*Physics Letters A*, vol. 147, no. 5-6, pp. 297–300, 1990. - N. E. Israeloff, M. Kagalenko, and K. Chan, “Can Zipf distinguish language from noise in noncoding DNA?”
*Physical Review Letters*, vol. 76, pp. 1976–1979, 1995. - R. N. Mantegna and H. E. Stanley, “Scaling behaviour in the dynamics of an economic index,”
*Nature*, vol. 376, no. 6535, pp. 46–49, 1995. - L. A. Adamic and B. A. Huberman, “Zipfs law and the Internet,”
*Glottometrics*, vol. 3, pp. 143–150, 2002. - H. Aoyama, Y. Fujiwara, and W. Souma, “Kinematics and dynamics of pareto-zipf's law and gibrat's law,”
*Physica A*, vol. 344, no. 1-2, pp. 117–121, 2004.Mathematical Reviews (MathSciNet): MR2103570

Digital Object Identifier: doi:10.1016/j.physa.2004.06.090 - C. Andersson, A. Hellervik, and K. Lindgren, “A spatial network explanation for a hierarchy of urban power laws,”
*Physica A*, vol. 345, no. 1-2, pp. 227–244, 2005. - A. L. Barabási, “The origin of bursts and heavy tails in human dynamics,”
*Nature*, vol. 435, no. 7039, pp. 207–211, 2005. - W. Dahui, L. Menghui, and D. Zengru, “True reason for Zipf's law in language,”
*Physica A*, vol. 358, no. 2–4, pp. 545–550, 2005. - J. M. Sarabia and F. Prieto, “The Pareto-positive stable distribution: a new descriptive model for city size data,”
*Physica A*, vol. 388, no. 19, pp. 4179–4191, 2009. - T. Fenner, M. Levene, and G. Loizou, “Predicting the long tail of book sales: unearthing the power-law exponent,”
*Physica A*, vol. 389, no. 12, pp. 2416–2421, 2010. - J. A. T. Machado, A. C. Costa, and M. D. Quelhas, “Shannon, Rényie and Tsallis entropy analysis of DNA using phase plane,”
*Nonlinear Analysis: Real World Applications*, vol. 12, no. 6, pp. 3135–3144, 2011.Zentralblatt MATH: 1231.92034

Mathematical Reviews (MathSciNet): MR2832954

Digital Object Identifier: doi:10.1016/j.nonrwa.2011.05.013 - J. A. T. Machado and S. Entropy, “Analysis of the Genome Code,”
*Mathematical Problems in Engineer-ing*, vol. 2012, Article ID 132625, 12 pages, 2012. - J. T. Machado, “Accessing complexity from genome information,”
*Communications in Nonlinear Science and Numerical Simulations*, vol. 17, no. 6, pp. 2237–2243, 2012. - R. Hilfer,
*Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.Mathematical Reviews (MathSciNet): MR1890104 - D. Baleanu and S. I. Vacaru, “Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics,”
*Journal of Mathematical Physics*, vol. 52, no. 5, Article ID 053514, 15 pages, 2011. - D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo,
*Fractional Calculus Models and Numerical Methods*, vol. 3 of*Complexity, Nonlinearity and Chaos*, World Scientific Publishing, 2012.Mathematical Reviews (MathSciNet): MR2894576 - C. E. Shannon, “A mathematical theory of communication,”
*The Bell System Technical Journal*, vol. 27, pp. 379–423, 1948. - E. T. Jaynes, “Information Theory and Statistical Mechanics,” vol. 106, pp. 620–630, 1957.Zentralblatt MATH: 0084.43701

Mathematical Reviews (MathSciNet): MR87305

Digital Object Identifier: doi:10.1103/PhysRev.106.620 - A. I. Khinchin,
*Mathematical foundations of information theory*, Dover Publications, New York, NY, USA, 1957. - A. Plastino and A. R. Plastino, “Tsallis Entropy and Jaynes' information theory formalism,”
*Brazilian Journal of Physics*, vol. 29, no. 1, pp. 50–60, 1999. - H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Boltzmann-Gibbs entropy versus Tsallis entropy: recent contributions to resolving the argument of Einstein concerning “neither Herr Boltzmann nor Herr Planck has given a definition of W”? Essay review,”
*Astrophysics and Space Science*, vol. 290, no. 3-4, pp. 241–245, 2004.Zentralblatt MATH: 1115.82300 - A. M. Mathai and H. J. Haubold, “Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy,”
*Physica A*, vol. 375, no. 1, pp. 110–122, 2007.Mathematical Reviews (MathSciNet): MR2295486

Digital Object Identifier: doi:10.1016/j.physa.2006.09.002 - T. Carter,
*An Introduction to Information Theory and Entropy*, Complex Systems Summer School, Santa Fe, Mexico, 2007. - P. N. Rathie and S. Da Silva, “Shannon, Lévy, and Tsallis: a note,”
*Applied Mathematical Sciences*, vol. 2, no. 25–28, pp. 1359–1363, 2008. - C. Beck, “Generalised information and entropy measures in physics,”
*Contemporary Physics*, vol. 50, no. 4, pp. 495–510, 2009. - I. J. Taneja, “On measures of information and inaccuracy,”
*Journal of Statistical Physics*, vol. 14, no. 3, pp. 263–270, 1976. - B. D. Sharma and I. J. Taneja, “Three generalized-additive measures of entropy,”
*Elektronische Informa-tionsverarbeitung und Kybernetik*, vol. 13, no. 7-8, pp. 419–433, 1977. - A. Wehrl, “General properties of entropy,”
*Reviews of Modern Physics*, vol. 50, no. 2, pp. 221–260, 1978.Mathematical Reviews (MathSciNet): MR496300

Digital Object Identifier: doi:10.1103/RevModPhys.50.221 - H. D. Chen, C. H. Chang, L. C. Hsieh, and H. C. Lee, “Divergence and Shannon information in geno-mes,”
*Physical Review Letters*, vol. 94, no. 17, Article ID 178103, 2005. - R. M. Gray,
*Entropy and Information Theory*, Springer, New York, NY, USA, 1990.Mathematical Reviews (MathSciNet): MR1070359 - M. R. Ubriaco, “Entropies based on fractional calculus,”
*Physics Letters A*, vol. 373, no. 30, pp. 2516–2519, 2009.Zentralblatt MATH: 1231.82024

Mathematical Reviews (MathSciNet): MR2542685

Digital Object Identifier: doi:10.1016/j.physleta.2009.05.026

### More like this

- Information and the clone mapping of chromosomes

Yu, Bin and Speed, T. P., The Annals of Statistics, 1997 - First occurrence of a word among the elements of a finite dictionary in random sequences of letters

De Santis, Emilio and Spizzichino, Fabio, Electronic Journal of Probability, 2012 - The Shannon information of filtrations and the additional logarithmic utility of insiders

Ankirchner, Stefan, Dereich, Steffen, and Imkeller, Peter, The Annals of Probability, 2006

- Information and the clone mapping of chromosomes

Yu, Bin and Speed, T. P., The Annals of Statistics, 1997 - First occurrence of a word among the elements of a finite dictionary in random sequences of letters

De Santis, Emilio and Spizzichino, Fabio, Electronic Journal of Probability, 2012 - The Shannon information of filtrations and the additional logarithmic utility of insiders

Ankirchner, Stefan, Dereich, Steffen, and Imkeller, Peter, The Annals of Probability, 2006 - Analysis of Similarity/Dissimilarity of DNA Sequences Based on Chaos Game Representation

Deng, Wei and Luan, Yihui, Abstract and Applied Analysis, 2013 - A Generalization of Ornstein's $\bar d$ Distance with Applications to Information Theory

Gray, Robert M., Neuhoff, David L., and Shields, Paul C., The Annals of Probability, 1975 - Entropy for semi-Markov processes with Borel state spaces: asymptotic equirepartition properties and invariance principles

Girardin, Valerie and Limnios, Nikolaos, Bernoulli, 2006 - Multiband CCD Image Compression for Space Camera with Large Field of View

Li, Jin, Xing, Fei, Sun, Ting, and You, Zheng, Journal of Applied Mathematics, 2014 - On the Optimum Rate of Transmitting Information

Kemperman, J. H. B., The Annals of Mathematical Statistics, 1969 - Nonblock Source Coding with a Fidelity Criterion

Gray, Robert M., Neuhoff, David L., and Ornstein, Donald S., The Annals of Probability, 1975 - Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method

Amorim, Paulo, Ben-Artzi, Matania, and LeFloch, Philippe G., Methods and Applications of Analysis, 2005