Abstract and Applied Analysis

On Spectral Homotopy Analysis Method for Solving Linear Volterra and Fredholm Integrodifferential Equations

Z. Pashazadeh Atabakan, A. Kılıçman, and A. Kazemi Nasab

Full-text: Open access

Abstract

A modification of homotopy analysis method (HAM) known as spectral homotopy analysis method (SHAM) is proposed to solve linear Volterra integrodifferential equations. Some examples are given in order to test the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to SHAM results and exact solutions.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 960289, 16 pages.

Dates
First available in Project Euclid: 4 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365099929

Digital Object Identifier
doi:10.1155/2012/960289

Mathematical Reviews number (MathSciNet)
MR2994925

Zentralblatt MATH identifier
1259.65217

Citation

Pashazadeh Atabakan, Z.; Kılıçman, A.; Kazemi Nasab, A. On Spectral Homotopy Analysis Method for Solving Linear Volterra and Fredholm Integrodifferential Equations. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 960289, 16 pages. doi:10.1155/2012/960289. https://projecteuclid.org/euclid.aaa/1365099929


Export citation

References

  • L. K. Forbes, S. Crozier, and D. M. Doddrell, “Calculating current densities and fields produced by shielded magnetic resonance imaging probes,” SIAM Journal on Applied Mathematics, vol. 57, no. 2, pp. 401–425, 1997.
  • K. Parand, S. Abbasbandy, S. Kazem, and J. A. Rad, “A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4250–4258, 2011.
  • P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 657–668, 2007.
  • A. Karamete and M. Sezer, “A Taylor collocation method for the solution of linear integro-differential equations,” International Journal of Computer Mathematics, vol. 79, no. 9, pp. 987–1000, 2002.
  • S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems [Ph.D. thesis], Shanghai Jiao Tong University, 1992.
  • A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, London, UK, 1992.
  • G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Mathematical and Computer Modelling, vol. 13, no. 7, pp. 17–43, 1990.
  • G. Adomian and R. Rach, “Noise terms in decomposition solution series,” Computers & Mathematics with Applications, vol. 24, no. 11, pp. 61–64, 1992.
  • G. Adomian and R. Rach, “Analytic solution of nonlinear boundary value problems in several dimensions by decomposition,” Journal of Mathematical Analysis and Applications, vol. 174, no. 1, pp. 118–137, 1993.
  • G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60, Kluwer Academic, Boston, Mass, USA, 1994.
  • P. K. Bera and J. Datta, “Linear delta expansion technique for the solution of anharmonic oscillations,” Pramana Journal of Physics, vol. 68, no. 1, pp. 117–122, 2007.
  • S. Liao, “On the homotopy analysis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 499–513, 2004.
  • J. H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004.
  • G. Domairry, A. Mohsenzadeh, and M. Famouri, “The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 85–95, 2009.
  • Z. Ziabakhsh and G. Domairry, “Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1284–1294, 2009.
  • J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999.
  • T. Hayat, S. Noreen, and M. Sajid, “Heat transfer analysis of the steady flow of a fourth grade fluid,” International Journal of Thermal Sciences, vol. 47, no. 5, pp. 591–599, 2008.
  • M. Jalaal, D. D. Ganji, and G. Ahmadi, “Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media,” Advanced Powder Technology, vol. 21, no. 3, pp. 298–304, 2010.
  • D. D. Ganji, G. A. Afrouzi, and R. A. Talarposhti, “Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations,” Physics Letters, Section A, vol. 368, no. 6, pp. 450–457, 2007.
  • S. Abbasbandy, “Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 431–438, 2006.
  • S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293–2302, 2010.
  • S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219–1225, 2010.
  • S. S. Motsa and P. Sibanda, “A new algorithm for solving singular IVPs of Lane-Emden type,” in Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM '10), pp. 176–180, Corfu Island, Greece, July 2010.
  • W. S. Don and A. Solomonoff, “Accuracy and speed in computing the Chebyshev collocation derivative,” SIAM Journal on Scientific Computing, vol. 16, no. 6, pp. 1253–1268, 1995.
  • L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, UK, 1985.
  • K. Maleknejad, S. Sohrabi, and Y. Rostami, “Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 123–128, 2007.
  • S. Yalçinbaş, M. Sezer, and H. H. Sorkun, “Legendre polynomial solutions of high-order linear Fredholm integro-differential equations,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 334–349, 2009.
  • H. M. Jaradat, F. Awawdeh, and O. Alsayyed, “Series solution to the high-order integro-differential equations,” Fascicola Matematica, vol. 16, pp. 247–257, 2009.