Abstract and Applied Analysis

Fixed Point and Weak Convergence Theorems for , β) -Hybrid Mappings in Banach Spaces

Tian-Yuan Kuo, Jyh-Chung Jeng, Young-Ye Huang, and Chung-Chien Hong

Full-text: Open access

Abstract

We introduce the class of , β) -hybrid mappings relativeto a Bregman distance D f in a Banach space, and then we study the fixedpoint and weak convergence problem for such mappings.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 789043, 12 pages.

Dates
First available in Project Euclid: 1 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1364845184

Digital Object Identifier
doi:10.1155/2012/789043

Mathematical Reviews number (MathSciNet)
MR2872313

Zentralblatt MATH identifier
1034.49036

Citation

Kuo, Tian-Yuan; Jeng, Jyh-Chung; Huang, Young-Ye; Hong, Chung-Chien. Fixed Point and Weak Convergence Theorems for $\mathrm{(\alpha },\mathrm{\beta )}$ -Hybrid Mappings in Banach Spaces. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 789043, 12 pages. doi:10.1155/2012/789043. https://projecteuclid.org/euclid.aaa/1364845184


Export citation

References

  • S. Iemoto and W. Takahashi, “Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 12, pp. e2082–e2089, 2009.
  • F. Kohsaka and W. Takahashi, “Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces,” Archiv der Mathematik, vol. 91, no. 2, pp. 166–177, 2008.
  • W. Takahashi, “Fixed point theorems for new nonlinear mappings in a Hilbert space,” Journal of Non-linear and Convex Analysis, vol. 11, no. 1, pp. 79–88, 2010.
  • P. Kocourek, W. Takahashi, and J.-C. Yao, “Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces,” Taiwanese Journal of Mathematics, vol. 14, no. 6, pp. 2497–2511, 2010.
  • D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, vol. 40, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
  • I. Ciorãnescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
  • Y. Y. Huang, J. C. Jeng, T. Y. Kuo, and C. C. Hong, “Fixed point and weak convergence theorems for point-dependent $\lambda $-hybrid mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2011, article 105, 2011.
  • Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive map-pings,” Bulletin of the American Mathematical Society, vol. 73, pp. 591–597, 1967.
  • M. A. Noor, “New approximation schemes for general variational inequalities,” Journal of Mathemati-cal Analysis and Applications, vol. 251, no. 1, pp. 217–229, 2000.
  • M. Aslam Noor, “Some developments in general variational inequalities,” Applied Mathematics and Computation, vol. 152, no. 1, pp. 199–277, 2004.
  • M. A. Noor, “General variational inequalities and nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 331, no. 2, pp. 810–822, 2007.