Abstract and Applied Analysis

Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics

Tatiana Odzijewicz, Agnieszka B. Malinowska, and Delfim F. M. Torres

Full-text: Open access

Abstract

We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 871912, 24 pages.

Dates
First available in Project Euclid: 1 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1364845151

Digital Object Identifier
doi:10.1155/2012/871912

Mathematical Reviews number (MathSciNet)
MR2922940

Zentralblatt MATH identifier
1242.49019

Citation

Odzijewicz, Tatiana; Malinowska, Agnieszka B.; Torres, Delfim F. M. Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 871912, 24 pages. doi:10.1155/2012/871912. https://projecteuclid.org/euclid.aaa/1364845151


Export citation

References

  • B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I, vol. 330 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2006.
  • B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II, vol. 331 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2006.
  • B. van Brunt, The Calculus of Variations, Universitext, Springer, New York, NY, USA, 2004.
  • A. B. Malinowska and D. F. M. Torres, “Nonessential functionals in multiobjective optimal control problems,” Proceedings of the Estonian Academy of Sciences. Physics, Mathematics, vol. 56, no. 4, pp. 336–346, 2007.
  • N. Martins and D. F. M. Torres, “Calculus of variations on time scales with nabla derivatives,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. e763–e773, 2009.
  • T. Odzijewicz and D. F. M. Torres, “Fractional calculus of variations for double integrals,” Balkan Journal of Geometry and Its Applications, vol. 16, no. 2, pp. 102–113, 2011.
  • F. Riewe, “Nonconservative Lagrangian and Hamiltonian mechanics,” Physical Review E, vol. 53, no. 2, pp. 1890–1899, 1996.
  • F. Riewe, “Mechanics with fractional derivatives,” Physical Review E, vol. 55, no. 3, pp. 3581–3592, 1997.
  • K. Balachandran, J. Y. Park, and J. J. Trujillo, “Controllability of nonlinear fractional dynamical systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 4, pp. 1919–1926, 2012.
  • I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, p. 77, 2000.
  • G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2008.
  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010.
  • A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, vol. 378 of CISM Courses and Lectures, Springer, Vienna, Austria, 1997.
  • J. Li and M. Ostoja-Starzewski, “Micropolar continuum mechanics of fractal media,” International Journal of Engineering Science, vol. 49, no. 12, pp. 1302–1310, 2011.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000.
  • N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Physics Letters A, vol. 268, no. 4–6, pp. 298–305, 2000.
  • G. M. Zaslavsky and M. A. Edelman, “Fractional kinetics: From pseudochaotic dynamics to Maxwell's Demon,” Physica D, vol. 193, no. 1–4, pp. 128–147, 2004.
  • V. E. Tarasov, “Fractional statistical mechanics,” Chaos, vol. 16, no. 3, Article ID 033108, 7 pages, 2006.
  • V. E. Tarasov, “Continuous limit of discrete systems with long-range interaction,” Journal of Physics A, vol. 39, no. 48, pp. 14895–14910, 2006.
  • V. E. Tarasov and G. M. Zaslavsky, “Fractional dynamics of coupled oscillators with long-range interaction,” Chaos, vol. 16, no. 2, Article ID 023110, 13 pages, 2006.
  • C. Lánczos, The Variational Principles of Pechanics, Mathematical Expositions, No. 4, University of Toronto Press, Toronto, Canada, 4th edition, 1970.
  • R. Almeida, “Fractional variational problems with the Riesz-Caputo derivative,” Applied Mathematics Letters, vol. 25, no. 2, pp. 142–148, 2012.
  • R. Almeida, A. B. Malinowska, and D. F. M. Torres, “A fractional calculus of variations for multiple integrals with application to vibrating string,” Journal of Mathematical Physics, vol. 51, no. 3, Article ID 033503, 12 pages, 2010.
  • N. R. O. Bastos, R. A. C. Ferreira, and D. F. M. Torres, “Necessary optimality conditions for fractional difference problems of the calculus of variations,” Discrete and Continuous Dynamical Systems. Series A, vol. 29, no. 2, pp. 417–437, 2011.
  • N. R. O. Bastos, R. A. C. Ferreira, and D. F. M. Torres, “Discrete-time fractional variational problems,” Signal Process, vol. 91, no. 3, pp. 513–524, 2011.
  • J. Cresson, “Fractional embedding of differential operators and Lagrangian systems,” Journal of Mathematical Physics, vol. 48, no. 3, Article ID 033504, 34 pages, 2007.\setlengthemsep0.2343pt
  • R. A. El-Nabulsi and D. F. M. Torres, “Fractional actionlike variational problems,” Journal of Mathematical Physics, vol. 49, no. 5, Article ID 053521, 7 pages, 2008.
  • G. S. F. Frederico and D. F. M. Torres, “Fractional conservation laws in optimal control theory,” Nonlinear Dynamics, vol. 53, no. 3, pp. 215–222, 2008.
  • A. B. Malinowska, “Fractional variational calculus for non-differentiable functions,” in Fractional Dynamics and Control, D. Baleanu, J. A. Tenreiro Machado, and A. C. J. Luo, Eds., part 2, chapter 8, pp. 97–108, Springer, New York, NY, USA, 2012.
  • A. B. Malinowska and D. F. M. Torres, “Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative,” Computers & Mathematics with Applications, vol. 59, no. 9, pp. 3110–3116, 2010.
  • D. Mozyrska and D. F. M. Torres, “Minimal modified energy control for fractional linear control systems with the Caputo derivative,” Carpathian Journal of Mathematics, vol. 26, no. 2, pp. 210–221, 2010.
  • D. Mozyrska and D. F. M. Torres, “Modified optimal energy and initial memory of fractional continuous-time linear systems,” Signal Processing, vol. 91, no. 3, pp. 379–385, 2011.
  • T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, “Fractional variational calculus with classical and combined Caputo derivatives,” Nonlinear Analysis: Theory, Methods and Applications, vol. 75, no. 3, pp. 1507–1515, 2012.
  • Z. Sha, F. Jing-Li, and L. Yong-Song, “Lagrange equations of nonholonomic systems with fractional derivatives,” Chinese Physics B, vol. 19, no. 12, Article ID 120301, 2010.
  • O. P. Agrawal, “Generalized variational problems and Euler-Lagrange equations,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1852–1864, 2010.
  • V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1994.
  • T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, “Generalized fractional calculus with applications to the calculus of variations,” Computers & Mathematics with Applications. In press.
  • A. R. El-Nabulsi, “Fractional variational problems from extended exponentially fractional integral,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9492–9496, 2011.
  • P. Angelopoulou, S. Baskoutas, A. Jannussis, and R. Mignani, “Caldirola-Kanai Hamiltonian with complex friction coefficient,” II Nuovo Cimento, vol. 109, no. 11, pp. 1221–1226, 1994.
  • R. A. El-Nabulsi, “Fractional calculus of variations from extended Erdelyi-Kober operator,” International Journal of Modern Physics A, vol. 23, no. 16, pp. 3349–3361, 2009.
  • R. A. El-Nabulsi, “Fractional quantum Euler-Cauchy equation in the Schrodinger picture, complexied harmonic oscillators and emergence of complexied Lagrangian and Hamiltonian dynamics,” Modern Physics Letters A, vol. 23, no. 28, pp. 3369–3386, 2009.
  • R. A. El-Nabulsi, “A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators,” Applied Mathematics Letters, vol. 24, no. 10, pp. 1647–1653, 2011.
  • L. Herrera, L. Núñez, A. Patiño, and H. Rago, “A variational principle and the classical and quantum mechanics of the damped harmonic oscillator,” American Journal of Physics, vol. 54, no. 3, pp. 273–277, 1986.
  • R. Almeida, A. B. Malinowska, and D. F. M. Torres, “Fractional Euler-Lagrange differential equations via Caputo derivatives,” in Fractional Dynamics and Control, part 2, pp. 109–118, Springer, New York, NY, USA, 2012.
  • A. Ya. Helemskii, Lectures and Excercises on Functional Analysis, vol. 233 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 2006.
  • A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton, Fla, USA, 1998.
  • M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa, Poland, 2009.
  • M. Giaquinta and S. Hildebrandt, Calculus of Variations. I, vol. 310 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1996.
  • R. Almeida and D. F. M. Torres, “Calculus of variations with fractional derivatives and fractional integrals,” Applied Mathematics Letters, vol. 22, no. 12, pp. 1816–1820, 2009.
  • G. S. F. Frederico and D. F. M. Torres, “Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,” International Mathematical Forum, vol. 3, no. 9–12, pp. 479–493, 2008.
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
  • U. N. Katugampola, “New approach to a generalized fractional integral,” Applied Mathematics and Computation, vol. 218, no. 3, pp. 860–865, 2011.
  • O. P. Agrawal, M. M. Hasan, and X. W. Tangpong, “A numerical scheme for a class of parametric problem of fractional variational calculus,” Journal of Computational and Nonlinear Dynamics, vol. 7, no. 2, Article ID 021005, 6 pages, 2012.
  • R. Almeida, S. Pooseh, and D. F. M. Torres, “Fractional variational problems depending on indefinite integrals,” Nonlinear Analysis: Theory, Methods and Applications, vol. 75, no. 3, pp. 1009–1025, 2012.
  • S. Pooseh, R. Almeida, and D. F. M. Torres, “Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,” Numerical Functional Analysis and Optimization, vol. 33, no. 3, pp. 301–319, 2012.
  • S. Pooseh, R. Almeida, and D. F. M. Torres, “Approximation of fractional integrals by means of derivatives,” Computers & Mathematics with Applications. In press.
  • L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Foreword by Wendell H. Fleming, W. B. Saunders, Philadelphia, Pa, USA, 1969.
  • L. Tonelli, “Sur une méthode directe du calcul des variations,” Rendiconti del Circolo Matematico di Palermo, vol. 39, no. 1, pp. 233–264, 1915.
  • L. Cesari, Optimization–-Theory and Applications, vol. 17 of Applications of Mathematics (New York), Springer, New York, NY, USA, 1983.
  • D. F. M. Torres, “Carathéodory equivalence, Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control,” Journal of Mathematical Sciences (New York), vol. 120, no. 1, pp. 1032–1050, 2004.