Abstract and Applied Analysis

Impulsive Control for the Synchronization of Chaotic Systems with Time Delay

Ming Han, Yang Liu, and Jianquan Lu

Full-text: Open access

Abstract

This paper considers impulsive control for the synchronization of chaotic systems with time delays. Based on the Lyapunov functions and the Razumikhin technique, some new synchronization criteria with an exponential convergence rate are derived. Our results show that impulses do contribute to globally exponential synchronization of dynamical systems. Besides, the impulsive moments are independent of the upper bound of time delays. Furthermore, a bigger upper bound of impulsive intervals for the synchronization of chaotic systems can be obtained when compared with many previous studies. Hence, our results are less conservative and more effective for the synchronization analysis. A numerical example is given to show the validity and potential of the developed results.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 647561, 13 pages.

Dates
First available in Project Euclid: 28 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1364475919

Digital Object Identifier
doi:10.1155/2012/647561

Mathematical Reviews number (MathSciNet)
MR2994945

Zentralblatt MATH identifier
1255.93068

Citation

Han, Ming; Liu, Yang; Lu, Jianquan. Impulsive Control for the Synchronization of Chaotic Systems with Time Delay. Abstr. Appl. Anal. 2012 (2012), Article ID 647561, 13 pages. doi:10.1155/2012/647561. https://projecteuclid.org/euclid.aaa/1364475919


Export citation

References

  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
  • H. N. Agiza and M. T. Yassen, “Synchronization of Rossler and Chen chaotic dynamical systems using active control,” Physics Letters A, vol. 278, no. 4, pp. 191–197, 2001.
  • J. Q. Lu and J. D. Cao, “Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters,” Chaos, vol. 15, no. 4, Article ID 043901, 10 pages, 2005.
  • J. Cao and J. Lu, “Adaptive synchronization of neural networks with or without time-varying delay,” Chaos, vol. 16, no. 1, Article ID 013133, 6 pages, 2006.
  • H. Zhang, X. K. Ma, and W. Z. Liu, “Synchronization of chaotic systems with parametric uncertainty using active sliding mode control,” Chaos, Solitons and Fractals, vol. 21, no. 5, pp. 1249–1257, 2004.
  • Y. Ji, C. Y. Wen, and Z. G. Li, “Impulsive synchronization of chaotic systems via linear matrix inequalities,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 1, pp. 221–227, 2006.
  • Y.-W. Wang, C. Wen, Y. C. Soh, and Z. H. Guan, “Partial state impulsive synchronization of a class of nonlinear systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 19, no. 1, pp. 387–393, 2009.
  • J. Q. Lu, D. W. C. Ho, and J. D. Cao, “A unified synchronization criterion for impulsive dynamical networks,” Automatica, vol. 46, no. 7, pp. 1215–1221, 2010.
  • Y. Liu, S. W. Zhao, and J. Q. Lu, “A new fuzzy impulsive control of chaotic systems based on T-S fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 393–398, 2011.
  • B. Wu, Y. Liu, and J. Q. Lu, “Impulsive control of chaotic systems and its applications in synchronization,” Chinese Physics B, vol. 20, no. 5, Article ID 050508, 2011.
  • B. Wu, Y. Liu, and J. Q. Lu, “New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 837–843, 2012.
  • T. Yang and L. O. Chua, “Practical stability of impulsive synchronization between two nonautonomous chaotic systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engi-neering, vol. 10, no. 4, pp. 859–867, 2000.
  • W. X. Xie, C. Y. Wen, and Z. G. Li, “Impulsive control for the stabilization and synchronization of Lorenz systems,” Physics Letters A, vol. 275, no. 1-2, pp. 67–72, 2000.
  • Y. Li, “Some new less conservative criteria for impulsive synchronization of a hyperchaotic Lorenz system based on small impulsive signals,” Nonlinear Analysis: Real World Applications, vol. 11, no. 2, pp. 713–719, 2010.
  • L. Run-Zi, “Impulsive control and synchronization of a new chaotic system,” Physics Letters A, vol. 372, no. 5, pp. 648–653, 2008.
  • X. Q. Wu, J. A. Lu, C. K. Tse, J. J. Wang, and J. Liu, “Impulsive control and synchronization of the Lorenz systems family,” Chaos, Solitons and Fractals, vol. 31, no. 3, pp. 631–638, 2007.
  • J. D. Cao, D. W. C. Ho, and Y. Q. Yang, “Projective synchronization of a class of delayed chaotic systems via impulsive control,” Physics Letters A, vol. 373, no. 35, pp. 3128–3133, 2009.
  • C. Hu, H. J. Jiang, and Z. D. Teng, “Fuzzy impulsive control and synchronization of general chaotic system,” Acta Applicandae Mathematicae, vol. 109, no. 2, pp. 463–485, 2010.
  • M. Haeri and M. Dehghani, “Modified impulsive synchronization of hyperchaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 728–740, 2010.
  • J. Chen, H. Liu, J. A. Lu, and Q. J. Zhang, “Projective and lag synchronization of a novel hyperchaotic system via impulsive control,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 4, pp. 2033–2040, 2011.
  • G. M. Liu and W. Ding, “Impulsive synchronization for a chaotic system with channel time-delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 958–965, 2011.
  • X. Z. Liu, “Impulsive synchronization of chaotic systems subject to time delay,” Nonlinear Analysis, vol. 71, no. 12, pp. e1320–e1327, 2009.
  • X. Z. Liu and Q. Wang, “Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays,” IEEE Transactions on Neural Networks, vol. 19, no. 1, pp. 71–79, 2008.
  • X. Z. Liu, X. S. Shen, Y. Zhang, and Q. Wang, “Stability criteria for impulsive systems with time delay and unstable system matrices,” IEEE Transactions on Circuits and Systems. I, vol. 54, no. 10, pp. 2288–2298, 2007.
  • A. Khadra, X. Z. Liu, and X. S. Shen, “Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 923–928, 2009.
  • C. Li, X. Liao, and X. Zhang, “Impulsive synchronization of chaotic systems,” Chaos, vol. 15, no. 2, Article ID 023104, 5 pages, 2005.
  • J. Zhou and Q. J. Wu, “Exponential stability of impulsive delayed linear differential equations,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 9, pp. 744–748, 2009.
  • Q. Wang and X. Z. Liu, “Impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method,” Applied Mathematics Letters, vol. 20, no. 8, pp. 839–845, 2007.