## Abstract and Applied Analysis

### The Equivalence of Convergence Results of Modified Mann and Ishikawa Iterations with Errors without Bounded Range Assumption

#### Abstract

Let $E$ be an arbitrary uniformly smooth real Banach space, let $D$ be a nonempty closed convex subset of $E$, and let $T:D\to D$ be a uniformly generalized Lipschitz generalized asymptotically $\mathrm{\Phi }$-strongly pseudocontractive mapping with $q\in F(T)\ne \varnothing$. Let $\{{a}_{n}\},\{{b}_{n}\},\{{c}_{n}\},\{{d}_{n}\}$ be four real sequences in $[0,1]$ and satisfy the conditions: (i) ${a}_{n}+{c}_{n}\le 1$, ${b}_{n}+{d}_{n}\le 1$; (ii) ${a}_{n},{b}_{n},{d}_{n}\to 0$ as $n\to \infty$ and ${c}_{n}=o({a}_{n})$; (iii) ${\Sigma }_{n=0}^{\infty }{a}_{n}=\infty$. For some ${x}_{0},{z}_{0}\in D$, let $\{{u}_{n}\},\{{v}_{n}\},\{{w}_{n}\}$ be any bounded sequences in $D$, and let $\{{x}_{n}\},\{{z}_{n}\}$ be the modified Ishikawa and Mann iterative sequences with errors, respectively. Then the convergence of $\{{x}_{n}\}$ is equivalent to that of $\{{z}_{n}\}$.

#### Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 909187, 15 pages.

Dates
First available in Project Euclid: 28 March 2013

https://projecteuclid.org/euclid.aaa/1364475837

Digital Object Identifier
doi:10.1155/2012/909187

Mathematical Reviews number (MathSciNet)
MR2975304

Zentralblatt MATH identifier
06116470

#### Citation

Xue, Zhiqun; Wang, Yaning; Zhou, Haiyun. The Equivalence of Convergence Results of Modified Mann and Ishikawa Iterations with Errors without Bounded Range Assumption. Abstr. Appl. Anal. 2012 (2012), Article ID 909187, 15 pages. doi:10.1155/2012/909187. https://projecteuclid.org/euclid.aaa/1364475837

#### References

• K. Goebel and W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 35, pp. 171–174, 1972.
• J. Schu, “Iterative construction of fixed points of asymptotically nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 158, no. 2, pp. 407–413, 1991.
• B. E. Rhoades, “Comments on two fixed point iteration methods,” Journal of Mathematical Analysis and Applications, vol. 56, no. 3, pp. 741–750, 1976.
• V. Colao, “On the convergence of iterative processes for generalized strongly asymptotically $\varphi$-pseudocontractive mappings in Banach spaces,” Journal of Applied Mathematics, vol. 2012, Article ID 563438, 18 pages, 2012.
• S. S. Chang, “Some results for asymptotically pseudo-contractive mappings and asymptotically nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 129, no. 3, pp. 845–853, 2001.
• C. E. Chidume and C. O. Chidume, “Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators,” Proceedings of the American Mathematical Society, vol. 134, no. 1, pp. 243–251, 2006.
• K. Deimling, Nonlinear Functional Analysis, Springer, New York, NY, USA, 1980.
• X. Weng, “Fixed point iteration for local strictly pseudo-contractive mapping,” Proceedings of the American Mathematical Society, vol. 113, no. 3, pp. 727–731, 1991.