Abstract and Applied Analysis

A Classification of a Totally Umbilical Slant Submanifold of Cosymplectic Manifolds

Siraj Uddin, Cenap Ozel, and Viqar Azam Khan

Full-text: Open access

Abstract

We study slant submanifolds of a cosymplectic manifold. It is shown that a totally umbilical slant submanifold M of a cosymplectic manifold M ̅ is either an anti-invariant submanifold or a 1−dimensional submanifold. We show that every totally umbilical proper slant submanifold of a cosymplectic manifold is totally geodesic.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 716967, 8 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495649

Digital Object Identifier
doi:10.1155/2012/716967

Mathematical Reviews number (MathSciNet)
MR2889093

Zentralblatt MATH identifier
1237.53023

Citation

Uddin, Siraj; Ozel, Cenap; Khan, Viqar Azam. A Classification of a Totally Umbilical Slant Submanifold of Cosymplectic Manifolds. Abstr. Appl. Anal. 2012 (2012), Article ID 716967, 8 pages. doi:10.1155/2012/716967. https://projecteuclid.org/euclid.aaa/1355495649


Export citation

References

  • B. Y. Chen, “Slant immersions,” Bulletin of the Australian Mathematical Society, vol. 41, no. 1, pp. 135–147, 1990.
  • B.-Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, Belgium, 1990.
  • J. L. Cabrerizo, A. Carriazo, L. M. Fernández, and M. Fernández, “Slant submanifolds in Sasakian manifolds,” Glasgow Mathematical Journal, vol. 42, no. 1, pp. 125–138, 2000.
  • A. Lotta, “Slant submanifolds in contact geometry,” Bulletin Mathematical Society Roumanie, vol. 39, pp. 183–198, 1996.
  • B. Şahin, “Every totally umbilical proper slant submanifold of a Kahler manifold is totally geodesic,” Results in Mathematics, vol. 54, no. 1-2, pp. 167–172, 2009.
  • D. E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, New York, NY, USA, 1976.
  • G. D. Ludden, “Submanifolds of cosymplectic manifolds,” Journal of Differential Geometry, vol. 4, pp. 237–244, 1970.
  • K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific Publishing, Singapore, Singapore, 1984.