Abstract and Applied Analysis

Existence and Asymptotic Behavior of Boundary Blow-Up Solutions for Weighted p ( x ) -Laplacian Equations with Exponential Nonlinearities

Li Yin, Yunrui Guo, Jing Yang, Bibo Lu, and Qihu Zhang

Full-text: Open access

Abstract

This paper investigates the following p ( x ) -Laplacian equations with exponential nonlinearities: - Δ p ( x ) u + ρ ( x ) e f ( x , u ) = 0 in Ω , u ( x ) + as ( x , Ω ) 0 , where - Δ p ( x ) u = - div ( | u | p ( x ) - 2 u ) is called p ( x ) -Laplacian, ρ ( x ) C ( Ω ) . The asymptotic behavior of boundary blow-up solutions is discussed, and the existence of boundary blow-up solutions is given.

Article information

Source
Abstr. Appl. Anal., Volume 2010 (2010), Article ID 971268, 20 pages.

Dates
First available in Project Euclid: 12 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1313170923

Digital Object Identifier
doi:10.1155/2010/971268

Mathematical Reviews number (MathSciNet)
MR2739687

Zentralblatt MATH identifier
1216.35064

Citation

Yin, Li; Guo, Yunrui; Yang, Jing; Lu, Bibo; Zhang, Qihu. Existence and Asymptotic Behavior of Boundary Blow-Up Solutions for Weighted p ( x ) -Laplacian Equations with Exponential Nonlinearities. Abstr. Appl. Anal. 2010 (2010), Article ID 971268, 20 pages. doi:10.1155/2010/971268. https://projecteuclid.org/euclid.aaa/1313170923


Export citation