Abstract and Applied Analysis

Fixed Points and the Stability of an AQCQ-Functional Equation in Non-Archimedean Normed Spaces

Choonkil Park

Full-text: Open access

Abstract

Using fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation f ( x + 2 y ) + f ( x 2 y ) = 4 f ( x + y ) + 4 f ( x y ) 6 f ( x ) + f ( 2 y ) + f ( 2 y ) 4 f ( y ) 4 f ( y ) in non-Archimedean Banach spaces.

Article information

Source
Abstr. Appl. Anal., Volume 2010 (2010), Article ID 849543, 15 pages.

Dates
First available in Project Euclid: 1 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1288620721

Digital Object Identifier
doi:10.1155/2010/849543

Mathematical Reviews number (MathSciNet)
MR2652390

Zentralblatt MATH identifier
1192.39024

Citation

Park, Choonkil. Fixed Points and the Stability of an AQCQ-Functional Equation in Non-Archimedean Normed Spaces. Abstr. Appl. Anal. 2010 (2010), Article ID 849543, 15 pages. doi:10.1155/2010/849543. https://projecteuclid.org/euclid.aaa/1288620721


Export citation