Abstract and Applied Analysis

Solution Properties of Linear Descriptor (Singular) Matrix Differential Systems of Higher Order with (Non-) Consistent Initial Conditions

Athanasios A. Pantelous, Athanasios D. Karageorgos, Grigoris I. Kalogeropoulos, and Kostas G. Arvanitis

Full-text: Open access

Abstract

In some interesting applications in control and system theory, linear descriptor (singular) matrix differential equations of higher order with time-invariant coefficients and (non-) consistent initial conditions have been used. In this paper, we provide a study for the solution properties of a more general class of the Apostol-Kolodner-type equations with consistent and nonconsistent initial conditions.

Article information

Source
Abstr. Appl. Anal., Volume 2010 (2010), Article ID 897301, 24 pages.

Dates
First available in Project Euclid: 1 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1288620711

Digital Object Identifier
doi:10.1155/2010/897301

Mathematical Reviews number (MathSciNet)
MR2607128

Zentralblatt MATH identifier
1185.93059

Citation

Pantelous, Athanasios A.; Karageorgos, Athanasios D.; Kalogeropoulos, Grigoris I.; Arvanitis, Kostas G. Solution Properties of Linear Descriptor (Singular) Matrix Differential Systems of Higher Order with (Non-) Consistent Initial Conditions. Abstr. Appl. Anal. 2010 (2010), Article ID 897301, 24 pages. doi:10.1155/2010/897301. https://projecteuclid.org/euclid.aaa/1288620711


Export citation