Abstract and Applied Analysis

Monotone Hybrid Projection Algorithms for an Infinitely Countable Family of Lipschitz Generalized Asymptotically Quasi-Nonexpansive Mappings

Watcharaporn Cholamjiak and Suthep Suantai

Full-text: Open access

Abstract

We prove a weak convergence theorem of the modified Mann iteration process for a uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two kinds of new monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mappings in a Hilbert space. The results improve and extend the corresponding ones announced by Kim and Xu (2006) and Nakajo and Takahashi (2003).

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 297565, 16 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745620

Digital Object Identifier
doi:10.1155/2009/297565

Mathematical Reviews number (MathSciNet)
MR2576579

Zentralblatt MATH identifier
1195.47042

Citation

Cholamjiak, Watcharaporn; Suantai, Suthep. Monotone Hybrid Projection Algorithms for an Infinitely Countable Family of Lipschitz Generalized Asymptotically Quasi-Nonexpansive Mappings. Abstr. Appl. Anal. 2009 (2009), Article ID 297565, 16 pages. doi:10.1155/2009/297565. https://projecteuclid.org/euclid.aaa/1268745620


Export citation

References

  • N. Shahzad and H. Zegeye, ``Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps,'' Applied Mathematics and Computation, vol. 189, no. 2, pp. 1058--1065, 2007.
  • W. A. Kirk, ``Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type,'' Israel Journal of Mathematics, vol. 17, pp. 339--346, 1974.
  • R. Bruck, T. Kuczumow, and S. Reich, ``Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property,'' Colloquium Mathematicum, vol. 65, no. 2, pp. 169--179, 1993.
  • Z. Opial, ``Weak convergence of the sequence of successive approximations for nonexpansive mappings,'' Bulletin of the American Mathematical Society, vol. 73, pp. 591--597, 1967.
  • W. R. Mann, ``Mean value methods in iteration,'' Proceedings of the American Mathematical Society, vol. 4, pp. 506--510, 1953.
  • H. H. Bauschke, E. Matoušková, and S. Reich, ``Projection and proximal point methods: convergence results and counterexamples,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 56, no. 5, pp. 715--738, 2004.
  • A. Genel and J. Lindenstrauss, ``An example concerning fixed points,'' Israel Journal of Mathematics, vol. 22, no. 1, pp. 81--86, 1975.
  • S. Reich, ``Weak convergence theorems for nonexpansive mappings in Banach spaces,'' Journal of Mathematical Analysis and Applications, vol. 67, no. 2, pp. 274--276, 1979.
  • K. Nakajo and W. Takahashi, ``Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups,'' Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372--379, 2003.
  • T.-H. Kim and H.-K. Xu, ``Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 5, pp. 1140--1152, 2006.
  • P. Cholamjiak, ``A hybrid iterative scheme for equilibrium problems, variational inequality problems, and fixed point problems in Banach spaces,'' Fixed Point Theory and Applications, vol. 2009, Article ID 719360, 18 pages, 2009.
  • G. Marino and H.-K. Xu, ``Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces,'' Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336--346, 2007.
  • C. Martinez-Yanes and H.-K. Xu, ``Strong convergence of the CQ method for fixed point iteration processes,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 11, pp. 2400--2411, 2006.
  • W. Nilsrakoo and S. Saejung, ``Weak and strong convergence theorems for countable Lipschitzian mappings and its applications,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2695--2708, 2008.
  • W. Nilsrakoo and S. Saejung, ``Strong convergence theorems for a countable family of quasi-Lipschitzian mappings and its applications,'' Journal of Mathematical Analysis and Applications, vol. 356, no. 1, pp. 154--167, 2009.
  • D. R. Sahu, H.-K. Xu, and J.-C. Yao, ``Asymptotically strict pseudocontractive mappings in the intermediate sense,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 10, pp. 3502--3511, 2009.
  • A. Tada and W. Takahashi, ``Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem,'' Journal of Optimization Theory and Applications, vol. 133, no. 3, pp. 359--370, 2007.
  • W. Takahashi, Y. Takeuchi, and R. Kubota, ``Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces,'' Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 276--286, 2008.
  • H. Zhou, ``Strong convergence theorems for a family of Lipschitz quasi-pseudo-contractions in Hilbert spaces,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 1-2, pp. 120--125, 2009.
  • H. Zhou and Y. Su, ``Strong convergence theorems for a family of quasi-asymptotic pseudo-contractions in Hilbert spaces,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 11, pp. 4047--4052, 2009.
  • M. O. Osilike and S. C. Aniagbosor, ``Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings,'' Mathematical and Computer Modelling, vol. 32, no. 10, pp. 1181--1191, 2000.
  • H. K. Xu, ``Inequality in Banach spacees with applications,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 16, pp. 1127--1138, 1991.