Abstract and Applied Analysis

On Convexity of Composition and Multiplication Operators on Weighted Hardy Spaces

Karim Hedayatian and Lotfollah Karimi

Full-text: Open access

Abstract

A bounded linear operator T on a Hilbert space , satisfying T 2 h 2 + h 2 2 T h 2 for every h , is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 931020, 9 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745616

Digital Object Identifier
doi:10.1155/2009/931020

Mathematical Reviews number (MathSciNet)
MR2564003

Zentralblatt MATH identifier
1191.47040

Citation

Hedayatian, Karim; Karimi, Lotfollah. On Convexity of Composition and Multiplication Operators on Weighted Hardy Spaces. Abstr. Appl. Anal. 2009 (2009), Article ID 931020, 9 pages. doi:10.1155/2009/931020. https://projecteuclid.org/euclid.aaa/1268745616


Export citation

References

  • C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
  • J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics, Springer, New York, NY, USA, 1993.
  • R. F. Allen and F. Colonna, ``Isometries and spectra of multiplication operators on the Bloch space,'' Bulletin of the Australian Mathematical Society, vol. 79, no. 1, pp. 147--160, 2009.
  • R. F. Allen and F. Colonna, ``On the isometric composition operators on the Bloch space in $\textC^n$,'' Journal of Mathematical Analysis and Applications, vol. 355, no. 2, pp. 675--688, 2009.
  • F. Bayart, ``Similarity to an isometry of a composition operator,'' Proceedings of the American Mathematical Society, vol. 131, no. 6, pp. 1789--1791, 2003.
  • B. J. Carswell and C. Hammond, ``Composition operators with maximal norm on weighted Bergman spaces,'' Proceedings of the American Mathematical Society, vol. 134, no. 9, pp. 2599--2605, 2006.
  • B. A. Cload, ``Composition operators: hyperinvariant subspaces, quasi-normals and isometries,'' Proceedings of the American Mathematical Society, vol. 127, no. 6, pp. 1697--1703, 1999.
  • F. Colonna, ``Characterisation of the isometric composition operators on the Bloch space,'' Bulletin of the Australian Mathematical Society, vol. 72, no. 2, pp. 283--290, 2005.
  • S. Li and S. Stević, ``Weighted composition operators from $H^\infty $ to the Bloch space on the polydisc,'' Abstract and Applied Analysis, vol. 2007, Article ID 48478, 13 pages, 2007.
  • S. Li and S. Stević, ``Weighted composition operators from Zygmund spaces into Bloch spaces,'' Applied Mathematics and Computation, vol. 206, no. 2, pp. 825--831, 2008.
  • S. Ohno and R. Zhao, ``Weighted composition operators on the Bloch space,'' Bulletin of the Australian Mathematical Society, vol. 63, no. 2, pp. 177--185, 2001.
  • J. H. Shapiro, ``What do composition operators know about inner functions?'' Monatshefte für Mathematik, vol. 130, no. 1, pp. 57--70, 2000.
  • S. Stević, ``Essential norms of weighted composition operators from the $\alpha $-Bloch space to a weighted-type space on the unit ball,'' Abstract and Applied Analysis, vol. 2008, Article ID 279691, 11 pages, 2008.
  • S. Stević, ``Norms of some operators from Bergman spaces to weighted and Bloch-type spaces,'' Utilitas Mathematica, vol. 76, pp. 59--64, 2008.
  • S. Stević, ``Norm of weighted composition operators from Bloch space to $H_\mu ^\infty $ on the unit ball,'' Ars Combinatoria, vol. 88, pp. 125--127, 2008.
  • S. I. Ueki and L. Luo, ``Compact weighted composition operators and multiplication operaors between Hardy spaces,'' Abstract and Applied Analysis, vol. 2008, Article ID 196498, 12 pages, 2008.
  • E. A. Nordgren, ``Composition operators,'' Canadian Journal of Mathematics, vol. 20, pp. 442--449, 1968.
  • H. Schwarz, Composition operators on H$^p$, Ph.D. thesis, University of Toledo, Toledo, Ohio, USA, 1969.
  • F. Forelli, ``The isometries of $H^p$,'' Canadian Journal of Mathematics, vol. 16, pp. 721--728, 1964.
  • J. A. Cima and W. R. Wogen, ``On isometries of the Bloch space,'' Illinois Journal of Mathematics, vol. 24, no. 2, pp. 313--316, 1980.
  • R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, vol. 129 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2003.
  • W. Hornor and J. E. Jamison, ``Isometries of some Banach spaces of analytic functions,'' Integral Equations and Operator Theory, vol. 41, no. 4, pp. 410--425, 2001.
  • M. J. Martín and D. Vukotić, ``Isometries of the Bloch space among the composition operators,'' Bulletin of the London Mathematical Society, vol. 39, no. 1, pp. 151--155, 2007.
  • L. J. Patton and M. E. Robbins, ``Composition operators that are m-isometries,'' Houston Journal of Mathematics, vol. 31, no. 1, pp. 255--266, 2005.
  • S. Stević and S. I. Ueki, ``Isometries of a Bergman-Privalov-type space on the unit ball,'' Discrete Dynamics in Nature and Society, vol. 2009, Article ID 725860, 16 pages, 2009.