Abstract and Applied Analysis

A New 4-Point C 3 Quaternary Approximating Subdivision Scheme

Ghulam Mustafa and Faheem Khan

Full-text: Open access

Abstract

A new 4-point C 3 quaternary approximating subdivision scheme with one shape parameter is proposed and analyzed. Its smoothness and approximation order are higher but support is smaller in comparison with the existing binary and ternary 4-point subdivision schemes.

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 301967, 14 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745556

Digital Object Identifier
doi:10.1155/2009/301967

Mathematical Reviews number (MathSciNet)
MR2515998

Zentralblatt MATH identifier
1167.65342

Citation

Mustafa, Ghulam; Khan, Faheem. A New 4-Point ${C}^{3}$ Quaternary Approximating Subdivision Scheme. Abstr. Appl. Anal. 2009 (2009), Article ID 301967, 14 pages. doi:10.1155/2009/301967. https://projecteuclid.org/euclid.aaa/1268745556


Export citation

References

  • N. Aspert, Non-linear subdivision of univariate signals and discrete surfaces, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003.
  • N. Dyn and D. Levin, ``Subdivision schemes in geometric modelling,'' in Acta Numerica, pp. 73--144, Cambridge University Press, Cambridge, UK, 2002.
  • K. P. Ko, A Study on Subdivision Scheme-Draft, Dongseo University, Busan, South Korea, 2007.
  • C. Beccari, G. Casciola, and L. Romani, ``An interpolating 4-point $C^2$ ternary non-stationary subdivision scheme with tension control,'' Computer Aided Geometric Design, vol. 24, no. 4, pp. 210--219, 2007.
  • C. Beccari, G. Casciola, and L. Romani, ``A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics,'' Computer Aided Geometric Design, vol. 24, no. 1, pp. 1--9, 2007.
  • N. Dyn, D. Levin, and J. A. Gregory, ``A 4-point interpolatory subdivision scheme for curve design,'' Computer Aided Geometric Design, vol. 4, no. 4, pp. 257--268, 1987.
  • N. Dyn, M. S. Floater, and K. Hormann, ``A $C^2$ four-point subdivision scheme with fourth order accuracy and its extensions,'' in Mathematical Methods for Curves and Surfaces: Tromsø 2004, M. Daehlen, K. Morken, and L. L. Schumaker, Eds., Modern Methods in Mathematics, pp. 145--156, Nashboro Press, Brentwood, Tenn, USA, 2005.
  • M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, and M. A. Sabin, ``An interpolating 4-point $C^2$ ternary stationary subdivision scheme,'' Computer Aided Geometric Design, vol. 19, no. 1, pp. 1--18, 2002.
  • K. P. Ko, B.-G. Lee, and G. J. Yoon, ``A ternary 4-point approximating subdivision scheme,'' Applied Mathematics and Computation, vol. 190, no. 2, pp. 1563--1573, 2007.
  • N. Dyn, ``Interpolatory subdivision schemes and analysis of convergence & smoothness by the formalism of Laurent polynomials,'' in Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M. S. Floater, Eds., chapters 2-3, pp. 51--68, Springer, Berlin, Germany, 2002.
  • O. Rioul, ``Simple regularity criteria for subdivision schemes,'' SIAM Journal on Mathematical Analysis, vol. 23, no. 6, pp. 1544--1576, 1992.
  • M. Sabin, ``Eigenanalysis and artifacts of subdivision curves and surfaces,'' in Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M. S. Floater, Eds., chapter 4, pp. 69--92, Springer, Berlin, Germany, 2002.