Abstract and Applied Analysis

Growth of Solutions of Nonhomogeneous Linear Differential Equations

Jun Wang and Ilpo Laine

Full-text: Open access

Abstract

This paper is devoted to studying growth of solutions of linear differential equations of type f ( k ) + A k 1 ( z ) f ( k 1 ) + + A 1 ( z ) f + A 0 ( z ) f = H ( z ) where A j ( j = 0 , , k 1 ) and H are entire functions of finite order.

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 363927, 11 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745550

Digital Object Identifier
doi:10.1155/2009/363927

Mathematical Reviews number (MathSciNet)
MR2501017

Zentralblatt MATH identifier
1172.34058

Citation

Wang, Jun; Laine, Ilpo. Growth of Solutions of Nonhomogeneous Linear Differential Equations. Abstr. Appl. Anal. 2009 (2009), Article ID 363927, 11 pages. doi:10.1155/2009/363927. https://projecteuclid.org/euclid.aaa/1268745550


Export citation

References

  • W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 1964.
  • G. Jank and L. Volkmann, Einführung in die Theorie der ganzen meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Switzerland, 1985.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, Germany, 1993.
  • G. G. Gundersen, E. M. Steinbart, and S. Wang, ``The possible orders of solutions of linear differential equations with polynomial coefficients,'' Transactions of the American Mathematical Society, vol. 350, no. 3, pp. 1225--1247, 1998.
  • S. Hellerstein, J. Miles, and J. Rossi, ``On the growth of solutions of certain linear differential equations,'' Annales Academiæ Scientiarum Fennicæ. Series A I, vol. 17, no. 2, pp. 343--365, 1992.
  • G. G. Gundersen and E. M. Steinbart, ``Finite order solutions of nonhomogeneous linear differential equations,'' Annales Academiæ Scientiarum Fennicæ. Mathematica, vol. 17, pp. 327--341, 1992.
  • J. Wang and I. Laine, ``Growth of solutions of second order linear differential equations,'' Journal of Mathematical Analysis and Applications, vol. 342, no. 1, pp. 39--51, 2008.
  • J. Tu and C.-F. Yi, ``On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order,'' Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 487--497, 2008.
  • Z.-X. Chen, ``On the hyper order of solutions of higher order differential equations,'' Chinese Annals of Mathematics. Series B, vol. 24, no. 4, pp. 501--508, 2003.
  • C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, vol. 557 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
  • Z.-X. Chen and C.-C. Yang, ``Some further results on the zeros and growths of entire solutions of second order linear differential equations,'' Kodai Mathematical Journal, vol. 22, no. 2, pp. 273--285, 1999.
  • A. Markushevich, Theory of Functions of a Complex Variable, vol. 2, Prentice-Hall, Englewood Cliffs, NJ, USA, 1965.
  • G. G. Gundersen, ``Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates,'' Journal of the London Mathematical Society, vol. s2-37, no. 121, pp. 88--104, 1998.
  • G. G. Gundersen, ``Finite order solutions of second order linear differential equations,'' Transactions of the American Mathematical Society, vol. 305, no. 1, pp. 415--429, 1988.
  • I. Laine and R. Yang, ``Finite order solutions of complex linear differential equations,'' Electronic Journal of Differential Equations, vol. 2004, no. 65, pp. 1--8, 2004.