Abstract and Applied Analysis

A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Carathéodory Spaces

Yongsheng Han, Detlef Müller, and Dachun Yang

Full-text: Open access

Abstract

We work on RD-spaces 𝒳 , namely, spaces of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in 𝒳 . An important example is the Carnot-Carathéodory space with doubling measure. By constructing an approximation of the identity with bounded support of Coifman type, we develop a theory of Besov and Triebel-Lizorkin spaces on the underlying spaces. In particular, this includes a theory of Hardy spaces H p ( 𝒳 ) and local Hardy spaces h p ( 𝒳 ) on RD-spaces, which appears to be new in this setting. Among other things, we give frame characterization of these function spaces, study interpolation of such spaces by the real method, and determine their dual spaces when p 1 . The relations among homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces and Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular integral operators, which include non-isotropic smoothing operators of order zero in the sense of Nagel and Stein that appear in estimates for solutions of the Kohn-Laplacian on certain classes of model domains in N . Our theory applies in a wide range of settings.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 893409, 250 pages.

Dates
First available in Project Euclid: 2 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1267538479

Digital Object Identifier
doi:10.1155/2008/893409

Mathematical Reviews number (MathSciNet)
MR2485404

Zentralblatt MATH identifier
1193.46018

Citation

Han, Yongsheng; Müller, Detlef; Yang, Dachun. A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Carathéodory Spaces. Abstr. Appl. Anal. 2008 (2008), Article ID 893409, 250 pages. doi:10.1155/2008/893409. https://projecteuclid.org/euclid.aaa/1267538479


Export citation

References

  • H. Triebel, Theory of Function Spaces. II, vol. 84 of Monographs in Mathematics, Birkhäuser, Basel, Switzerland, 1992.
  • H. Triebel, Theory of Function Spaces. III, vol. 100 of Monographs in Mathematics, Birkhäuser, Basel, Switzerland, 2006.
  • H. Triebel, Theory of Function Spaces, vol. 78 of Monographs in Mathematics, Birkhäuser, Basel, Switzerland, 1983.
  • A. Jonsson and H. Wallin, ``Function spaces on subsets of $\mathbbR^n$,'' Mathematical Reports, vol. 2, no. 1, pp. 1--221, 1984.
  • H. Triebel, Fractals and Spectra, vol. 91 of Monographs in Mathematics, Birkhäuser, Basel, Switzerland, 1997.
  • H. Triebel, The Structure of Functions, vol. 97 of Monographs in Mathematics, Birkhäuser, Basel, Switzerland, 2001.
  • K.-T. Sturm, ``On the geometry of metric measure spaces. I,'' Acta Mathematica, vol. 196, no. 1, pp. 65--131, 2006.
  • K.-T. Sturm, ``On the geometry of metric measure spaces. II,'' Acta Mathematica, vol. 196, no. 1, pp. 133--177, 2006.
  • S. Semmes, ``An introduction to analysis on metric spaces,'' Notices of the American Mathematical Society, vol. 50, no. 4, pp. 438--443, 2003.
  • N. J. Korevaar and R. M. Schoen, ``Sobolev spaces and harmonic maps for metric space targets,'' Communications in Analysis and Geometry, vol. 1, no. 3-4, pp. 561--659, 1993.
  • P. Hajłasz and P. Koskela, ``Sobolev met Poincaré,'' Memoirs of the American Mathematical Society, vol. 145, no. 688, pp. 1--101, 2000.
  • J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer, New York, NY, USA, 2001.
  • A. Grigor'yan, J. Hu, and K.-S. Lau, ``Heat kernels on metric measure spaces and an application to semilinear elliptic equations,'' Transactions of the American Mathematical Society, vol. 355, no. 5, pp. 2065--2095, 2003.
  • A. Grigor'yan, ``Heat kernels and function theory on metric measure spaces,'' in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), vol. 338 of Contemporary Mathematics, pp. 143--172, American Mathematical Society, Providence, RI, USA, 2003.
  • P. Hajłasz, ``Sobolev spaces on an arbitrary metric space,'' Potential Analysis, vol. 5, no. 4, pp. 403--415, 1996.
  • P. Koskela and P. MacManus, ``Quasiconformal mappings and Sobolev spaces,'' Studia Mathematica, vol. 131, no. 1, pp. 1--17, 1998.
  • B. Franchi, P. Hajłasz, and P. Koskela, ``Definitions of Sobolev classes on metric spaces,'' Annales de l'Institut Fourier, vol. 49, no. 6, pp. 1903--1924, 1999.
  • A. E. Gatto and S. Vági, ``On Sobolev spaces of fractional order and $\epsilon $-families of operators on spaces of homogeneous type,'' Studia Mathematica, vol. 133, no. 1, pp. 19--27, 1999.
  • Y. Liu, G. Lu, and R. L. Wheeden, ``Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces,'' Mathematische Annalen, vol. 323, no. 1, pp. 157--174, 2002.
  • N. Shanmugalingam, ``Newtonian spaces: an extension of Sobolev spaces to metric measure spaces,'' Revista Matemática Iberoamericana, vol. 16, no. 2, pp. 243--279, 2000.
  • J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, ``Sobolev classes of Banach space-valued functions and quasiconformal mappings,'' Journal d'Analyse Mathématique, vol. 85, pp. 87--139, 2001.
  • S. Klainerman and I. Rodnianski, ``A geometric approach to the Littlewood-Paley theory,'' Geometric and Functional Analysis, vol. 16, no. 1, pp. 126--163, 2006.
  • D. Danielli, N. Garofalo, and D.-M. Nhieu, ``Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces,'' Memoirs of the American Mathematical Society, vol. 182, no. 857, pp. 1--119, 2006.
  • P. Hajłasz, T. Iwaniec, J. Malý, and J. Onninen, ``Weakly differentiable mappings between manifolds,'' Memoirs of the American Mathematical Society, vol. 192, no. 899, pp. 1--72, 2008.
  • G. Furioli, C. Melzi, and A. Veneruso, ``Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth,'' Mathematische Nachrichten, vol. 279, no. 9-10, pp. 1028--1040, 2006.
  • R. R. Coifman and G. Weiss, ``Extensions of Hardy spaces and their use in analysis,'' Bulletin of the American Mathematical Society, vol. 83, no. 4, pp. 569--645, 1977.
  • R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, vol. 242 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1971.
  • R. A. Macías and C. Segovia, ``A decomposition into atoms of distributions on spaces of homogeneous type,'' Advances in Mathematics, vol. 33, no. 3, pp. 271--309, 1979.
  • Y. Han, ``Calderón-type reproducing formula and the $Tb$ theorem,'' Revista Matemática Iberoamericana, vol. 10, no. 1, pp. 51--91, 1994.
  • X. T. Duong and L. Yan, ``Hardy spaces of spaces of homogeneous type,'' Proceedings of the American Mathematical Society, vol. 131, no. 10, pp. 3181--3189, 2003.
  • R. A. Macías and C. Segovia, ``Lipschitz functions on spaces of homogeneous type,'' Advances in Mathematics, vol. 33, no. 3, pp. 257--270, 1979.
  • Y. Han and E. T. Sawyer, ``Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces,'' Memoirs of the American Mathematical Society, vol. 110, no. 530, pp. 1--126, 1994.
  • Y. Han, ``Inhomogeneous Calderón reproducing formula on spaces of homogeneous type,'' The Journal of Geometric Analysis, vol. 7, no. 2, pp. 259--284, 1997.
  • Y. Han and D. Yang, ``New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin spaces on homogeneous type spaces and fractals,'' Dissertationes Mathematicae, vol. 403, pp. 1--102, 2002.
  • Y. Han and D. Yang, ``Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces,'' Studia Mathematica, vol. 156, no. 1, pp. 67--97, 2003.
  • A. Bellaïche and J.-J. Risler, Eds., Sub-Riemannian Geometry, vol. 144 of Progress in Mathematics, Birkhäuser, Basel, Switzerland, 1996.
  • R. S. Strichartz, ``Sub-Riemannian geometry,'' Journal of Differential Geometry, vol. 24, no. 2, pp. 221--263, 1986.
  • E. M. Stein, ``Some geometrical concepts arising in harmonic analysis,'' Geometric and Functional Analysis, pp. 434--453, 2000, Special Volume, Part I.
  • A. Nagel and E. M. Stein, ``The $\square_b$-heat equation on pseudoconvex manifolds of finite type in $\mathbbC^2$,'' Mathematische Zeitschrift, vol. 238, no. 1, pp. 37--88, 2001.
  • A. Nagel and E. M. Stein, ``Differentiable control metrics and scaled bump functions,'' Journal of Differential Geometry, vol. 57, no. 3, pp. 465--492, 2001.
  • A. Nagel and E. M. Stein, ``The $\overline\partial _b$ -complex on decoupled boundaries in $\mathbbC^n$,'' Annals of Mathematics. Second Series, vol. 164, no. 2, pp. 649--713, 2006.
  • A. Nagel and E. M. Stein, ``On the product theory of singular integrals,'' Revista Matemática Iberoamericana, vol. 20, no. 2, pp. 531--561, 2004.
  • A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, ``Estimates for the Bergman and Szegö kernels in $\mathbbC^2$,'' Annals of Mathematics. Second Series, vol. 129, no. 1, pp. 113--149, 1989.
  • D.-C. Chang, A. Nagel, and E. M. Stein, ``Estimates for the $\overline\partial $-Neumann problem in pseudoconvex domains of finite type in $\mathbbC^2$,'' Acta Mathematica, vol. 169, no. 1, pp. 153--228, 1992.
  • K. D. Koenig, ``On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian,'' American Journal of Mathematics, vol. 124, no. 1, pp. 129--197, 2002.
  • Y. Han, D. Müller, and D. Yang, ``Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type,'' Mathematische Nachrichten, vol. 279, no. 13-14, pp. 1505--1537, 2006.
  • J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, vol. 1381 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1989.
  • R. L. Wheeden, ``A characterization of some weighted norm inequalities for the fractional maximal function,'' Studia Mathematica, vol. 107, no. 3, pp. 257--272, 1993.
  • A. Jonsson, ``Besov spaces on closed subsets of $\mathbbR^n$,'' Transactions of the American Mathematical Society, vol. 341, no. 1, pp. 355--370, 1994.
  • A. Jonsson, ``Besov spaces on closed sets by means of atomic decompositions,'' Research Reports 7, Department of Mathematics, University of Umeå, Umeå, Sweden, 1993.
  • P. Bylund and J. Gudayol, ``On the existence of doubling measures with certain regularity properties,'' Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3317--3327, 2000.
  • H. Federer, Geometric Measure Theory, vol. 153 of Die Grundlehren der mathematischen Wissenschaften, Springer, New York, NY, USA, 1969.
  • A. Nagel, E. M. Stein, and S. Wainger, ``Balls and metrics defined by vector fields. I. Basic properties,'' Acta Mathematica, vol. 155, no. 1-2, pp. 103--147, 1985.
  • N. Th. Varopoulos, ``Analysis on Lie groups,'' Journal of Functional Analysis, vol. 76, no. 2, pp. 346--410, 1988.
  • N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, vol. 100 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 1992.
  • A. Nagel, F. Ricci, and E. M. Stein, ``Harmonic analysis and fundamental solutions on nilpotent Lie groups,'' in Analysis and Partial Differential Equations, vol. 122 of Lecture Notes in Pure and Applied Mathematics, pp. 249--275, Dekker, New York, NY, USA, 1990.
  • G. Alexopoulos, ``Spectral multipliers on Lie groups of polynomial growth,'' Proceedings of the American Mathematical Society, vol. 120, no. 3, pp. 973--979, 1994.
  • Y. Guivarc'h, ``Croissance polynomiale et périodes des fonctions harmoniques,'' Bulletin de la Société Mathématique de France, vol. 101, pp. 333--379, 1973.
  • J. W. Jenkins, ``Growth of connected locally compact groups,'' Journal of Functional Analysis, vol. 12, pp. 113--127, 1973.
  • A. Nagel and E. M. Stein, ``Corrigenda: ``On the product theory of singular integrals'','' Revista Matemática Iberoamericana, vol. 21, no. 2, pp. 693--694, 2005.
  • G. David, J.-L. Journé, and S. Semmes, ``Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation,'' Revista Matemática Iberoamericana, vol. 1, no. 4, pp. 1--56, 1985.
  • R. A. Macías, C. Segovia, and J. L. Torrea, ``Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type,'' Advances in Mathematics, vol. 93, no. 1, pp. 25--60, 1992.
  • E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30, Princeton University Press, Princeton, NJ, USA, 1970.
  • K. Yosida, Functional Analysis, Classics in Mathematics, Springer, Berlin, Germany, 1995.
  • G. David and J.-L. Journé, ``A boundedness criterion for generalized Calderón-Zygmund operators,'' Annals of Mathematics. Second Series, vol. 120, no. 2, pp. 371--397, 1984.
  • Y. Meyer, ``Les nouveaux opérateurs de Calderón-Zygmund,'' Astérisque, no. 131, pp. 237--254, 1985.
  • F. John and L. Nirenberg, ``On functions of bounded mean oscillation,'' Communications on Pure and Applied Mathematics, vol. 14, no. 3, pp. 415--426, 1961.
  • Y. Meyer and R. Coifman, Wavelets, vol. 48 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1997.
  • M. Christ, ``A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral,'' Colloquium Mathematicum, vol. 60/61, no. 2, pp. 601--628, 1990.
  • D. Goldberg, ``A local version of real Hardy spaces,'' Duke Mathematical Journal, vol. 46, no. 1, pp. 27--42, 1979.
  • Da. Yang, Do. Yang, and Y. Zhou, ``Localized Campanato spaces on RD-spaces and their applications to Schrödinger operators,'' submitted.
  • E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, USA, 1993.
  • Y. Meyer, Wavelets and Operators, vol. 37 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1992.
  • C. Fefferman and E. M. Stein, ``Some maximal inequalities,'' American Journal of Mathematics, vol. 93, no. 1, pp. 107--115, 1971.
  • M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, vol. 79 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1991.
  • Y. Han, ``Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications,'' Proceedings of the American Mathematical Society, vol. 126, no. 11, pp. 3315--3327, 1998.
  • D. Deng, Y. Han, and D. Yang, ``Inhomogeneous Plancherel-Pôlya inequalities on spaces of homogeneous type and their applications,'' Communications in Contemporary Mathematics, vol. 6, no. 2, pp. 221--243, 2004.
  • J. Duoandikoetxea, Fourier Analysis, vol. 29 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 2001.
  • M. Frazier and B. Jawerth, ``A discrete transform and decompositions of distribution spaces,'' Journal of Functional Analysis, vol. 93, no. 1, pp. 34--170, 1990.
  • D. Yang, ``Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations,'' Science in China. Series A, vol. 48, no. 1, pp. 12--39, 2005.
  • D. Yang, ``Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations,'' Studia Mathematica, vol. 167, no. 1, pp. 63--98, 2005.
  • X. T. Duong and L. Yan, ``New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications,'' Communications on Pure and Applied Mathematics, vol. 58, no. 10, pp. 1375--1420, 2005.
  • Y. Han and D. Yang, ``New characterization of BMO $(\mathbbR^n)$ space,'' Boletín de la Sociedad Matemática Mexicanae. Tercera Serie, vol. 10, no. 1, pp. 95--103, 2004.
  • H. Triebel, ``Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers,'' Revista Matemática Complutense, vol. 15, no. 2, pp. 475--524, 2002.
  • J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, Germany, 1976.
  • H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, Germany, 2nd edition, 1995.
  • D. Yang, ``Frame characterizations of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications,'' Georgian Mathematical Journal, vol. 9, no. 3, pp. 567--590, 2002.
  • D. Yang, ``Real interpolations for Besov and Triebel-Lizorkin spaces on spaces of homogeneous type,'' Mathematische Nachrichten, vol. 273, no. 1, pp. 96--113, 2004. \endthebibliography