Abstract and Applied Analysis

The Study of Triple Integral Equations with Generalized Legendre Functions

B. M. Singh, J. Rokne, and R. S. Dhaliwal

Full-text: Open access

Abstract

A method is developed for solutions of two sets of triple integral equations involving associated Legendre functions of imaginary arguments. The solution of each set of triple integral equations involving associated Legendre functions is reduced to a Fredholm integral equation of the second kind which can be solved numerically.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 395257, 12 pages.

Dates
First available in Project Euclid: 10 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1234298996

Digital Object Identifier
doi:10.1155/2008/395257

Mathematical Reviews number (MathSciNet)
MR2453145

Zentralblatt MATH identifier
1160.45301

Citation

Singh, B. M.; Rokne, J.; Dhaliwal, R. S. The Study of Triple Integral Equations with Generalized Legendre Functions. Abstr. Appl. Anal. 2008 (2008), Article ID 395257, 12 pages. doi:10.1155/2008/395257. https://projecteuclid.org/euclid.aaa/1234298996


Export citation

References

  • A. A. Babloian, ``Solutions of certain dual integral equations,'' Prikladnaya Matematika i Mekhanika, vol. 28, no. 6, pp. 1015--1023, 1964, English translation in Journal of Applied Mathematics and Mechanics, vol. 28, no. 6, pp. 1227--1236, 1964.
  • R. S. Pathak, ``On a class of dual integral equations,'' Koninklijke Nederlandse Akademie van Wetenschappen, vol. 40, no. 4, pp. 491--501, 1978.
  • B. N. Mandal, ``A note on dual integral equations involving associated Legendre function,'' International Journal of Mathematics and Mathematical Sciences, vol. 15, no. 3, pp. 601--604, 1992.
  • B. M. Singh, J. Rokne, and R. S. Dhaliwal, ``The study of dual integral equations with generalized Legendre functions,'' Journal of Mathematical Analysis and Applications, vol. 304, no. 2, pp. 725--733, 2005.
  • K. N. Srivastava, ``On some triple integral equations involving Legendre functions of imaginary argument,'' Journal of Maulana Azad College of Technology, vol. 1, pp. 54--67, 1968.
  • J. C. Cooke, ``Triple integral equations,'' The Quarterly Journal of Mechanics and Applied Mathematics, vol. 16, no. 2, pp. 193--203, 1963.
  • J. C. Cooke, ``Some further triple integral equation solutions,'' Proceedings of the Edinburgh Mathematical Society, vol. 13, pp. 303--316, 1963.
  • J. C. Cooke, ``The solution of triple integral equations in operational form,'' The Quarterly Journal of Mechanics and Applied Mathematics, vol. 18, no. 1, pp. 57--72, 1965.
  • J. C. Cooke, ``The solution of triple and quadruple integral equations and Fourier-Bessel series,'' The Quarterly Journal of Mechanics and Applied Mathematics, vol. 25, no. 2, pp. 247--263, 1972.
  • C. J. Tranter, ``Some triple integral equations,'' Proceedings of the Glasgow Mathematical Association, vol. 4, pp. 200--203, 1960.
  • E. R. Love and D. L. Clements, ``A transformation of Cooke's treatment of some triple integral equations,'' Journal of the Australian Mathematical Society. Series B, vol. 19, no. 3, pp. 259--288, 1976.
  • N. Srivastava, ``On triple integral equations involving Bessel function as kernel,'' Journal of Maulana Azad College of Technology, vol. 21, pp. 39--50, 1988.
  • I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam, The Netherlands, 1966.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Vol. II, McGraw Hill, New York, NY, USA, 1954.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw Hill, New York, NY, USA, 1954.
  • W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der Mathematischen Wissenschaften. 52, Springer, New York, NY, USA, 1966. \endthebibliography