Abstract and Applied Analysis

On Multiple Twisted p -adic q -Euler ζ -Functions and l -Functions

Min-Soo Kim, Taekyun Kim, and Jin-Woo Son

Full-text: Open access

Abstract

We give the existence of multiple twisted p -adic q -Euler ζ -functions and l -functions, which are generalization of the twisted p -adic ( h , q ) -zeta functions and twisted p -adic ( h , q ) -Euler l -functions in the work of Ozden and Simsek (2008).

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 793297, 14 pages.

Dates
First available in Project Euclid: 10 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1234298990

Digital Object Identifier
doi:10.1155/2008/793297

Mathematical Reviews number (MathSciNet)
MR2443710

Zentralblatt MATH identifier
1217.11114

Citation

Kim, Min-Soo; Kim, Taekyun; Son, Jin-Woo. On Multiple Twisted $p$ -adic $q$ -Euler $\zeta $ -Functions and $l$ -Functions. Abstr. Appl. Anal. 2008 (2008), Article ID 793297, 14 pages. doi:10.1155/2008/793297. https://projecteuclid.org/euclid.aaa/1234298990


Export citation

References

  • T. Kim, ``Euler numbers and polynomials associated with zeta functions,'' Abstract and Applied Analysis, vol. 2008, Article ID 581582, 11 pages, 2008.
  • T. Kim, ``On the $q$-extension of Euler and Genocchi numbers,'' Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp. 1458--1465, 2007.
  • T. Kim, ``On $p$-adic interpolating function for $q$-Euler numbers and its derivatives,'' Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 598--608, 2008.
  • T. Kim, ``On the multiple $q$-Genocchi and Euler numbers,'' to appear in Russian Journal of Mathematical Physics.
  • T. Kim, M.-S. Kim, L. Jang, and S.-H. Rim, ``New $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals,'' Advanced Studies in Contemporary Mathematics, vol. 15, no. 2, pp. 243--252, 2007.
  • T. Kim, L.-C. Jang, and C.-S. Ryoo, ``Note on $q$-extensions of Euler numbers and polynomials of higher order,'' Journal of Inequalities and Applications, vol. 2008, Article ID 371295, 9 pages, 2008.
  • H. Ozden, I. N. Cangul, and Y. Simsek, ``Multivariate interpolation functions of higher-order $q$-Euler numbers and their applications,'' Abstract and Applied Analysis, vol. 2008, Article ID 390857, 16 pages, 2008.
  • H. Ozden and Y. Simsek, ``Interpolation function of the $(h,q)$-extension of twisted Euler numbers,'' Computers & Mathematics with Applications, vol. 56, no. 4, pp. 898--908, 2008.
  • H. Ozden, I. N. Cangul, and Y. Simsek, ``Remarks on sum of products of $(h,q)$-twisted Euler polynomials and numbers,'' Journal of Inequalities and Applications, vol. 2008, Article ID 816129, 8 pages, 2008.
  • Y. Simsek, ``$q$-analogue of twisted $l$-series and $q$-twisted Euler numbers,'' Journal of Number Theory, vol. 110, no. 2, pp. 267--278, 2005.
  • L.-C. Jang, ``Multiple twisted $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals,'' Advances in Difference Equations, vol. 2008, Article ID 738603, 11 pages, 2008.
  • L.-C. Jang and C.-S. Ryoo, ``A note on the multiple twisted Carlitz's type $q$-Bernoulli polynomials,'' Abstract and Applied Analysis, vol. 2008, Article ID 498173, 7 pages, 2008.
  • T. Kim, ``A note on $q$-Euler numbers čommentComment on ref. [5?]: Please update the information of these references [5,10?], if possible. and polynomials,'' preprint 2006, http://arxiv.org/abs/math.NT/0608649.
  • M.-S. Kim, T. Kim, and J.-W. Son, ``Multivariate $p$-adic fermionic $q$-integral on $\mathbbZ_p$ and related multiple zeta-type functions,'' Abstract and Applied Analysis, vol. 2008, Article ID 304539, 13 pages, 2008.
  • T. Kim, ``$q$-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,'' Russian Journal of Mathematical Physics, vol. 15, no. 1, pp. 51--57, 2008.
  • T. Kim, ``Multiple $p$-adic $L$-function,'' Russian Journal of Mathematical Physics, vol. 13, no. 2, pp. 151--157, 2006.
  • K. Kato, N. Kurokawa, and T. Saito, Number Theory 1: Fermat's Dream, vol. 186 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 2000.
  • L. C. Washington, Introduction to Cyclotomic Fields, vol. 83 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1997.
  • L. C. Washington, ``A note on $p$-adic $L$-functions,'' Journal of Number Theory, vol. 8, no. 2, pp. 245--250, 1976.
  • L. C. Washington, ``$p$-adic $L$-functions and sums of powers,'' Journal of Number Theory, vol. 69, no. 1, pp. 50--61, 1998.
  • G. J. Fox, ``A method of Washington applied to the derivation of a two-variable $p$-adic $L$-function,'' Pacific Journal of Mathematics, vol. 209, no. 1, pp. 31--40, 2003.
  • P. T. Young, ``On the behavior of some two-variable $p$-adic $L$-functions,'' Journal of Number Theory, vol. 98, no. 1, pp. 67--88, 2003. \endthebibliography