Abstract and Applied Analysis

Fixed Points and Stability of an Additive Functional Equation of n -Apollonius Type in C -Algebras

Fridoun Moradlou, Hamid Vaezi, and Choonkil Park

Full-text: Open access

Abstract

Using the fixed point method, we prove the generalized Hyers-Ulam stability of C -algebra homomorphisms and of generalized derivations on C -algebras for the following functional equation of Apollonius type i = 1 n f ( z x i ) = ( 1 / n ) 1 i < j n f ( x i + x j ) + n f ( z ( 1 / n 2 ) i = 1 n x i ) .

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 672618, 13 pages.

Dates
First available in Project Euclid: 10 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1234298988

Digital Object Identifier
doi:10.1155/2008/672618

Mathematical Reviews number (MathSciNet)
MR2439255

Zentralblatt MATH identifier
1159.47032

Citation

Moradlou, Fridoun; Vaezi, Hamid; Park, Choonkil. Fixed Points and Stability of an Additive Functional Equation of $n$ -Apollonius Type in $C^{*}$ -Algebras. Abstr. Appl. Anal. 2008 (2008), Article ID 672618, 13 pages. doi:10.1155/2008/672618. https://projecteuclid.org/euclid.aaa/1234298988


Export citation

References

  • S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, NY, USA, 1960.
  • D. H. Hyers, ``On the stability of the linear functional equation,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222--224, 1941.
  • T. Aoki, ``On the stability of the linear transformation in Banach spaces,'' Journal of the Mathematical Society of Japan, vol. 2, pp. 64--66, 1950.
  • Th. M. Rassias, ``On the stability of the linear mapping in Banach spaces,'' Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297--300, 1978.
  • P. Găvruţa, ``A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,'' Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431--436, 1994.
  • L. Maligranda, ``A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions---a question of priority,'' Aequationes Mathematicae, vol. 75, no. 3, pp. 289--296, 2008.
  • D. G. Bourgin, ``Classes of transformations and bordering transformations,'' Bulletin of the American Mathematical Society, vol. 57, pp. 223--237, 1951.
  • L. Cădariu and V. Radu, ``On the stability of the Cauchy functional equation: a fixed point approach,'' Grazer Mathematische Berichte, vol. 346, pp. 43--52, 2004.
  • H.-M. Kim and J. M. Rassias, ``Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings,'' Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 277--296, 2007.
  • Y.-S. Lee and S.-Y. Chung, ``Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions,'' Applied Mathematics Letters, vol. 21, no. 7, pp. 694--700, 2008.
  • P. Nakmahachalasint, ``On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equations,'' International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 63239, 10 pages, 2007.
  • C.-G. Park, ``On the stability of the linear mapping in Banach modules,'' Journal of Mathematical Analysis and Applications, vol. 275, no. 2, pp. 711--720, 2002.
  • C.-G. Park, ``On an approximate automorphism on a $C^\ast $-algebra,'' Proceedings of the American Mathematical Society, vol. 132, no. 6, pp. 1739--1745, 2004.
  • C.-G. Park, ``Homomorphisms between Poisson $JC^\ast $-algebras,'' Bulletin of the Brazilian Mathematical Society, vol. 36, no. 1, pp. 79--97, 2005.
  • C. Park, ``Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras,'' Fixed Point Theory and Applications, vol. 2007, Article ID 50175, 15 pages, 2007.
  • C.-G. Park, ``Stability of an Euler-Lagrange-Rassias type additive mapping,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 101--111, 2007.
  • C. Park, ``Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach,'' Fixed Point Theory and Applications, vol. 2008, Article ID 493751, 9 pages, 2008.
  • A. Pietrzyk, ``Stability of the Euler-Lagrange-Rassias functional equation,'' Demonstratio Mathematica, vol. 39, no. 3, pp. 523--530, 2006.
  • J. M. Rassias and M. J. Rassias, ``Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 126--132, 2007.
  • Th. M. Rassias, ``The problem of S. M. Ulam for approximately multiplicative mappings,'' Journal of Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352--378, 2000.
  • Th. M. Rassias, ``On the stability of functional equations in Banach spaces,'' Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 264--284, 2000.
  • J. M. Rassias, ``On approximation of approximately linear mappings by linear mappings,'' Bulletin des Sciences Mathématiques, vol. 108, no. 4, pp. 445--446, 1984.
  • J. M. Rassias, ``On approximation of approximately linear mappings by linear mappings,'' Journal of Functional Analysis, vol. 46, no. 1, pp. 126--130, 1982.
  • J. M. Rassias, ``Solution of a problem of Ulam,'' Journal of Approximation Theory, vol. 57, no. 3, pp. 268--273, 1989.
  • L. Cădariu and V. Radu, ``Fixed points and the stability of Jensen's functional equation,'' Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, 7 pages, 2003.
  • L. Cădariu and V. Radu, ``Fixed points and the stability of quadratic functional equations,'' Analele Universităţii de Vest din Timişoara, vol. 41, no. 1, pp. 25--48, 2003.
  • S.-M. Jung and J. M. Rassias, ``A fixed point approach to the stability of a functional equation of the spiral of Theodorus,'' Fixed Point Theory and Applications. In press.
  • V. Radu, ``The fixed point alternative and the stability of functional equations,'' Fixed Point Theory, vol. 4, no. 1, pp. 91--96, 2003.
  • J. M. Rassias, ``Alternative contraction principle and Ulam stability problem,'' Mathematical Sciences Research Journal, vol. 9, no. 7, pp. 190--199, 2005.
  • J. M. Rassias, ``Alternative contraction principle and alternative Jensen and Jensen type mappings,'' International Journal of Applied Mathematics & Statistics, vol. 4, pp. 1--10, 2006.
  • F. Skof, ``Local properties and approximation of operators,'' Rendiconti del Seminario Matematico e Fisico di Milano, vol. 53, pp. 113--129, 1983.
  • S. Czerwik, ``The stability of the quadratic functional equation,'' in Stability of Mappings of Hyers-Ulam Type, Th. M. Rassias and J. Tabor, Eds., Hadronic Press Collection of Original Articles, pp. 81--91, Hadronic Press, Palm Harbor, Fla, USA, 1994.
  • C. Borelli and G. L. Forti, ``On a general Hyers-Ulam stability result,'' International Journal of Mathematics and Mathematical Sciences, vol. 18, no. 2, pp. 229--236, 1995.
  • K.-W. Jun and Y.-H. Lee, ``On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality,'' Mathematical Inequalities & Applications, vol. 4, no. 1, pp. 93--118, 2001.
  • G. H. Kim, ``On the stability of the quadratic mapping in normed spaces,'' International Journal of Mathematics and Mathematical Sciences, vol. 25, no. 4, pp. 217--229, 2001.
  • C.-G. Park and Th. M. Rassias, ``Hyers-Ulam stability of a generalized Apollonius type quadratic mapping,'' Journal of Mathematical Analysis and Applications, vol. 322, no. 1, pp. 371--381, 2006.
  • J. Aczél and J. Dhombres, Functional Equations in Several Variables, vol. 31 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 1989.
  • A. Najati, ``Hyers-Ulam stability of an $n$-Apollonius type quadratic mapping,'' Bulletin of the Belgian Mathematical Society. Simon Stevin, vol. 14, no. 4, pp. 755--774, 2007.
  • C. Park and Th. M. Rassias, ``Homomorphisms in $C^\ast $-ternary algebras and $JB^\ast $-triples,'' Journal of Mathematical Analysis and Applications, vol. 337, no. 1, pp. 13--20, 2008.
  • C. Park, ``Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between $C^\ast $-algebras,'' Mathematische Nachrichten, vol. 281, no. 3, pp. 402--411, 2008.
  • J. B. Diaz and B. Margolis, ``A fixed point theorem of the alternative, for contractions on a generalized complete metric space,'' Bulletin of the American Mathematical Society, vol. 74, pp. 305--309, 1968.
  • P. Ara and M. Mathieu, Local Multipliers of C$^\ast $-Algebras, Springer Monographs in Mathematics, Springer, London, UK, 2003.