Abstract and Applied Analysis

Some Sufficient Conditions for Analytic Functions to Belong to 𝒬 K , 0 ( p , q ) Space

Xiaoge Meng

Full-text: Open access

Abstract

This paper gives some sufficient conditions for an analytic function to belong to the space consisting of all analytic functions f on the unit disk such lim | a | 1 D | f ( z ) | p ( 1 | z | 2 ) q K ( g ( z , a ) ) d A ( z ) = 0.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 404636, 9 pages.

Dates
First available in Project Euclid: 9 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1220969180

Digital Object Identifier
doi:10.1155/2008/404636

Mathematical Reviews number (MathSciNet)
MR2429625

Zentralblatt MATH identifier
1151.30321

Citation

Meng, Xiaoge. Some Sufficient Conditions for Analytic Functions to Belong to ${\mathcal{Q}}_{K,0}(p,q)$ Space. Abstr. Appl. Anal. 2008 (2008), Article ID 404636, 9 pages. doi:10.1155/2008/404636. https://projecteuclid.org/euclid.aaa/1220969180


Export citation

References

  • J. S. Choa, “Some properties of analytic functions on the unit ball with Hadamard gaps,” Complex Variables: Theory & Application, vol. 29, no. 3, pp. 277–285, 1996.
  • J. Miao, “A property of analytic functions with Hadamard gaps,” Bulletin of the Australian Mathematical Society, vol. 45, no. 1, pp. 105–112, 1992.
  • S. Stević, “A generalization of a result of Choa on analytic functions with Hadamard gaps,” Journal of the Korean Mathematical Society, vol. 43, no. 3, pp. 579–591, 2006.
  • S. Stević, “On Bloch-type functions with Hadamard gaps,” Abstract and Applied Analysis, vol. 2007, Article ID 39176, 8 pages, 2007.
  • H. Wulan and K. Zhu, “Lacunary series in ${\mathcal{Q}}_{K}$ spaces,” Studia Mathematica, vol. 173, no. 3, pp. 217–230, 2007.
  • S. Yamashita, “Gap series and $\alpha $-Bloch functions,” Yokohama Mathematical Journal, vol. 28, no. 1-2, pp. 31–36, 1980.
  • H. Wulan and J. Zhou, “${\mathcal{Q}}_{K}$ type spaces of analytic functions,” Journal of Function Spaces and Applications, vol. 4, no. 1, pp. 73–84, 2006.
  • S. Li and S. Stević, “Compactness of Riemann-Stieltjes operators between $F(p,q,s)$ spaces and $\alpha $-Bloch spaces,” Publicationes Mathematicae Debrecen, vol. 72, no. 1-2, pp. 111–128, 2008.
  • R. Zhao, “On a general family of function spaces,” les Annales Academiæ Scientiarum Fennicæ. Mathematica Dissertationes, no. 105, p. 56, 1996.
  • H. Wulan and K. Zhu, “Derivative-free characterizations of ${Q}_{K}$ spaces,” Journal of the Australian Mathematical Society, vol. 82, no. 2, pp. 283–295, 2007.
  • R. Aulaskari, J. Xiao, and R. H. Zhao, “On subspaces and subsets of BMOA and UBC,” Analysis, vol. 15, no. 2, pp. 101–121, 1995.
  • J. B. Garnett, Bounded Analytic Functions, vol. 96 of Pure and Applied Mathematics, Academic Press, New York, NY, USA, 1981.