Abstract and Applied Analysis

On a Two-Variable p -Adic l q -Function

Min-Soo Kim, Taekyun Kim, D. K. Park, and Jin-Woo Son

Full-text: Open access

Abstract

We prove that a two-variable p -adic l q -function has the series expansion l p , q ( s , t , χ ) = ( [ 2 ] q / [ 2 ] F ) a = 1 , ( p , a ) = 1 F ( 1 ) a ( χ ( a ) q a / a + p t s ) m = 0 ( s m ) ( F / a + p t ) m E m , q F * which interpolates the values l p , q ( n , t , χ ) = E n , χ n , q ( p t ) p n χ n ( p ) ( [ 2 ] q / [ 2 ] q p ) E n , χ n , q p ( t ) , whenever n is a nonpositive integer. The proof of this original construction is due to Kubota and Leopoldt in 1964, although the method given in this note is due to Washington.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 360517, 10 pages.

Dates
First available in Project Euclid: 9 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1220969176

Digital Object Identifier
doi:10.1155/2008/360517

Mathematical Reviews number (MathSciNet)
MR2411043

Zentralblatt MATH identifier
1149.11011

Citation

Kim, Min-Soo; Kim, Taekyun; Park, D. K.; Son, Jin-Woo. On a Two-Variable $p$ -Adic ${l}_{q}$ -Function. Abstr. Appl. Anal. 2008 (2008), Article ID 360517, 10 pages. doi:10.1155/2008/360517. https://projecteuclid.org/euclid.aaa/1220969176


Export citation

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 of National Bureau of Standards Applied Mathematics Series, US Government Printing Office, Washington, DC, USA, 1964.
  • D. Cvijović and J. Klinowski, ``New formulae for the Bernoulli and Euler polynomials at rational arguments,'' Proceedings of the American Mathematical Society, vol. 123, no. 5, pp. 1527--1535, 1995.
  • T. Kim, M.-S. Kim, L. Jang, and S.-H. Rim, ``New $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals,'' Advanced Studies in Contemporary Mathematics, vol. 15, no. 2, pp. 243--252, 2007.
  • L. C. Washington, ``A note on $p$-adic $L$-functions,'' Journal of Number Theory, vol. 8, no. 2, pp. 245--250, 1976.
  • G. J. Fox, ``A method of Washington applied to the derivation of a two-variable $p$-adic $L$-function,'' Pacific Journal of Mathematics, vol. 209, no. 1, pp. 31--40, 2003.
  • T. Kim, ``On $p$-adic interpolating function for $q$-Euler numbers and its derivatives,'' Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 598--608, 2008.
  • T. Kim, ``Power series and asymptotic series associated with the $q$-analog of the two-variable $p$-adic $L$-function,'' Russian Journal of Mathematical Physics, vol. 12, no. 2, pp. 186--196, 2005.
  • T. Kim, ``On $p$-adic $q$-$L$-functions and sums of powers,'' Discrete Mathematics, vol. 252, no. 1--3, pp. 179--187, 2002.
  • T. Kim, ``On the analogs of Euler numbers and polynomials associated with $p$-adic $q$-integral on $\mathbbZ_p$ at $q=-1$,'' Journal of Mathematical Analysis and Applications, vol. 331, no. 2, pp. 779--792, 2007.
  • P. T. Young, ``On the behavior of some two-variable $p$-adic $L$-functions,'' Journal of Number Theory, vol. 98, no. 1, pp. 67--88, 2003.
  • L. C. Washington, Introduction to Cyclotomic Fields, vol. 83 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1997.
  • K. Iwasawa, Lectures on p-adic L-Functions, vol. 74 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, USA, 1972.
  • Y. Simsek, ``On twisted $q$-Hurwitz zeta function and $q$-two-variable $L$-function,'' Applied Mathematics and Computation, vol. 187, no. 1, pp. 466--473, 2007.