Abstract and Applied Analysis

Models of Function Type for Commutative Symmetric Operator Families in Krein Spaces

Vladimir Strauss

Full-text: Open access

Abstract

Commutative symmetric operator families of the so-called D κ + -class are considered in Krein spaces. It is proved that the restriction of a family of this type on a special kind of invariant subspace is similar to a family of operators adjoint to multiplication operators by scalar functions acting on a suitable function space.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 439781, 40 pages.

Dates
First available in Project Euclid: 9 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1220969164

Digital Object Identifier
doi:10.1155/2008/439781

Mathematical Reviews number (MathSciNet)
MR2407277

Zentralblatt MATH identifier
1167.47032

Citation

Strauss, Vladimir. Models of Function Type for Commutative Symmetric Operator Families in Krein Spaces. Abstr. Appl. Anal. 2008 (2008), Article ID 439781, 40 pages. doi:10.1155/2008/439781. https://projecteuclid.org/euclid.aaa/1220969164


Export citation

References

  • I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, NY, USA, 1968.
  • V. Strauss, “The structure of a family of commuting $J$-selfadjoint operators,” Ukrainskiĭ Matematicheskiĭ Zhurnal, vol. 41, pp. 1431–1433, 1989 (Russian), English translation in Ukrainian Mathematical Journal, vol. 41, no. 10, pp. 1232–1234, 1989.
  • J. Bognár, Indefinite Inner Product Spaces, Springer, New York, NY, USA, 1974.
  • T. Ya. Azizov and I. S. Iohvidov, “Linear operators in spaces with an indefinite metric and their applications,” in Mathematical Analysis, vol. 17 of Itogi Nauki i Tekhniki, pp. 113–205, Vserossiisky Institut Nauchnoi i Tekhnicheskoi Informatsii, Moscow, Russia, 1979.
  • I. S. Iohvidov, M. G. Kreĭn, and H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, vol. 9 of Mathematical Research, Akademie, Berlin, Germany, 1982.
  • H. Langer, “Spectral functions of definitizable operators in Kreĭn spaces,” in Functional Analysis (Dubrovnik, Yugoslavia, 1981), vol. 948 of Lecture Notes in Mathematics, pp. 1–46, Springer, Berlin, Germany, 1982.
  • I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser, Basel, Switzerland, 2005.
  • T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric, Nauka, Moscow, Russia, 1986.
  • V. Strauss, “A model representation for a simplest ${\pi{}}$-selfadjoint operator,” in Collection: Funktsionalnii Analiz, Spectral Theory, pp. 123–133, State Pedagogical Institute of Uliyanovsk, Ulyanovsk, Russia, 1984.
  • V. Strauss, “Functional representation of an algebra generated by a selfadjoint operator in a Pontryagin space,” Funktsional'nyĭ Analiz i ego Prilozheniya, vol. 20, no. 1, pp. 91–92, 1986 (Russian), English translation: Functional Analysis and Applications.
  • V. Strauss, “Functional representation of operators that doubly commute with a selfadjoint operator in a Pontryagin space,” Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 29, no. 6, pp. 176–184, 1988 (Russian), English translation: Siberian Mathematical Journal, vol. 29, no. 6, pp. 1012–1018, 1988.
  • P. Jonas, H. Langer, and B. Textorius, “Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces,” in Operator Theory and Complex Analysis (Sapporo, Japan, 1991), vol. 59 of Operator Theory: Advances and Applications, pp. 252–284, Birkhäuser, Basel, Switzerland, 1992.
  • I. Gohberg and B. Reichstein, “On classification of normal matrices in an indefinite scalar product,” Integral Equations and Operator Theory, vol. 13, no. 3, pp. 364–394, 1990.
  • O. V. Holtz and V. Strauss, “Classification of normal operators in spaces with indefinite scalar product of rank 2,” in Proceedings of the 4th Conference of the International Linear Algebra Society, vol. 241–243 of Linear Algebra and Its Applications, pp. 455–517, Rotterdam, The Netherlands, 1996.
  • T. Ya. Azizov and V. Strauss, “Spectral decompositions for special classes of self-adjoint and normal operators on Krein spaces,” in Spectral Analysis and Its Applications, vol. 2 of Theta Series in Advanced Mathematics, pp. 45–67, Theta, Bucharest, Romania, 2003.
  • A. Gheondea, “Pseudo-regular spectral functions in Kreĭn spaces,” Journal of Operator Theory, vol. 12, no. 2, pp. 349–358, 1984.
  • N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Interscience, New York, NY, USA, 1958.
  • E. Kissin and V. Shulman, Representations on Krein Spaces and Derivations of ${C}^{*}$-Algebras, vol. 89 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, Harlow, UK, 1997.
  • N. Dunford and J. T. Schwartz, Linear Operators–-Part III: Spectral Operators, John Wiley & Sons, New York, NY, USA, 1971.
  • T. Ya. Azizov and V. Strauss, “On a spectral decomposition of a commutative family of operators on spaces with indefinite metric,” Methods of Functional Analysis and Topology, vol. 11, no. 1, pp. 10–20, 2005.
  • S. G. Kreĭn, Y. I. Petunin, and E. M. Semënov, Interpolyatsiya Lineinykh Operatorov, Nauka, Moscow, Russia, 1978.
  • M. A. Naĭmark, Normed Algebras, Wolters-Noordhoff, Groningen, The Netherlands, 3rd edition, 1972.
  • M. Š. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Leningrad University, Leningrad, Russia, 1980.
  • O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 1, Springer, New York, NY, USA, 1979.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press, New York, NY, USA, 2nd edition, 1980.
  • N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Monographs and Studies in Mathematics, Pitman, London, UK, 1981.
  • D. A. Suprunenko and R. I. Tyškevič, Perestanovochnye Matritsy, Nauka i Tehnika, Minsk, Russia, 1966.
  • M. G. Kreĭn and G. K. Langer, “On the spectral function of a self-adjoint operator in a space with indefinite metric,” Doklady Akademii Nauk SSSR, vol. 152, pp. 39–42, 1963 (Russian).
  • P. Jonas, “On the functional calculus and the spectral function for definitizable operators in Kreĭn space,” Beiträge zur Analysis, no. 16, pp. 121–135, 1981.
  • V. Strauss, “Integro-polynomial representation of regular functions of an operator whose spectral function has critical points,” Akademiya Nauk Ukrainskoĭ SSR. Doklady, Seriya A, vol. 8, no. 85, pp. 26–29, 1986 (Russian).
  • I. Bacalu, “$S$-decomposable operators in Banach spaces,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 20, no. 10, pp. 1101–1107, 1975.
  • V. E. Lyantze, “On one generalization of the notion of spectral measure,” Matematicheskiĭ Sbornik, vol. 61, no. 1, pp. 80–120, 1983 (Russian).
  • B. Nagy, “Operators with spectral singularities,” Journal of Operator Theory, vol. 15, no. 2, pp. 307–325, 1986.
  • B. Nagy, “Spectral measures with singularities,” Acta Mathematica Hungarica, vol. 49, no. 1-2, pp. 51–64, 1987.
  • M. A. Naĭmark, “Commutative algebras of operators in a space ${{\Pi{}}}_{1}$,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 9, pp. 499–528, 1964 (Russian).
  • A. I. Loginov, “Complete commutative symmetric operator algebras in a Pontrjagin space ${{\Pi{}}}_{1}$,” Matematicheskiĭ Sbornik, vol. 84 (126), pp. 575–582, 1971 (Russian).
  • V. S. Šul'man, “Symmetric Banach algebras of operators in a space of type ${{\Pi{}}}_{1}$,” Matematicheskiĭ Sbornik. Novaya Seriya, vol. 89(131), pp. 264–279, 1972 (Russian).
  • S. N. Litvinov, “Description of commutative symmetric algebras of operators in the Pontryagin space ${{\Pi{}}}_{1}$,” Doklady Akademii Nauk UzSSR, no. 1, pp. 9–12, 1987 (Russian).
  • H. Langer and B. Textorius, “$L$-resolvent matrices of symmetric linear relations with equal defect numbers; applications to canonical differential relations,” Integral Equations and Operator Theory, vol. 5, no. 2, pp. 208–243, 1982.
  • P. Jonas and H. Langer, “A model for ${\pi{}}$-selfadjoint operators in ${{\pi{}}}_{1}$-spaces and a special linear pencil,” Integral Equations and Operator Theory, vol. 8, no. 1, pp. 13–35, 1985.
  • M. A. Naĭmark and R. S. Ismagilov, “Representations of groups and algebras in spaces with indefinite metric,” in Mathematical Analysis, pp. 73–105, Vserossiisky Institut Nauchnoi i Tekhnicheskoi Informatsii, Moscow, Russia, 1969.
  • T. Ya. Azizov, L. I. Sukhocheva, and V. A. Shtraus, “Operators in a Kreĭn space,” Matematicheskie Zametki, vol. 76, no. 3, pp. 324–334, 2004 (Russian).
  • V. Strauss, “Some singularities of the spectral function of a ${\pi{}}$-selfadjoint operator,” in Functional Analysis, No. 21, pp. 135–146, State Pedagogical Institute of Uliyanovsk, Uliyanovsk, Russia, 1983.
  • V. Strauss, “On an analogue of the Wold decomposition for a ${\pi{}}$-semi-unitary operator and its model representation,” in Harmonic Analysis and Operator Theory (Caracas, Venezuela, 1994), vol. 189 of Contemporary Mathematics, pp. 473–484, Proceedings of the American Mathematical Society, Providence, RI, USA, 1995.
  • M. A. Naĭmark, “Commutative operator algebras in the space ${{\Pi{}}}_{1}$,” Doklady Akademii Nauk SSSR, vol. 156, pp. 734–737, 1964 (Russian).
  • H. Langer, “Spectraltheorie linearer Operatoren in $J$-räumen und enige Anwendungen auf die Shar $L({\lambda{}})={{\lambda{}}}^{2}I+{\lambda{}}B+C$,” Habilitationsschrift, Dresden University of Technology, Dresden, Germany, 1965.
  • V. Strauss, “A functional description for the commutative $W{J}^{*}$-algebras of the ${D}_{{\kappa{}}}^{+}$-class,” in Operator Theory and Indefinite Inner Product Spaces (Vienna, Austria, 2004), vol. 163 of Operator Theory: Advances and Applications, pp. 299–335, Birkhäuser, Basel, Switzerland, 2006.
  • V. Strauss, “On models of function type for a special class of normal operators in Kreĭn spaces and their polar representation,” Methods of Functional Analysis and Topology, vol. 13, no. 1, pp. 67–82, 2007.