Abstract and Applied Analysis

Pairwise Weakly Regular-Lindelöf Spaces

Adem Kılıçman and Zabidin Salleh

Full-text: Open access

Abstract

We will introduce and study the pairwise weakly regular-Lindelöf bitopological spaces and obtain some results. Furthermore, we study the pairwise weakly regular-Lindelöf subspaces and subsets, and investigate some of their characterizations. We also show that a pairwise weakly regular-Lindelöf property is not a hereditary property. Some counterexamples will be considered in order to establish some of their relations.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 184243, 13 pages.

Dates
First available in Project Euclid: 9 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1220969163

Digital Object Identifier
doi:10.1155/2008/184243

Mathematical Reviews number (MathSciNet)
MR2407276

Zentralblatt MATH identifier
1147.54320

Citation

Kılıçman, Adem; Salleh, Zabidin. Pairwise Weakly Regular-Lindelöf Spaces. Abstr. Appl. Anal. 2008 (2008), Article ID 184243, 13 pages. doi:10.1155/2008/184243. https://projecteuclid.org/euclid.aaa/1220969163


Export citation

References

  • J. C. Kelly, ``Bitopological spaces,'' Proceedings of the London Mathematical Society, vol. 13, no. 3, pp. 71--89, 1963.
  • Z. Frolík, ``Generalisations of compact and Lindelöf spaces,'' Czechoslovak Mathematical Journal, vol. 9 (84), pp. 172--217, 1959, (Russian).
  • F. Cammaroto and G. Santoro, ``Some counterexamples and properties on generalizations of Lindelöf spaces,'' International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 4, pp. 737--746, 1996.
  • A. K\il\içman and A. J. Fawakhreh, ``On some generalizations of Lindelöf spaces and its subspaces,'' Bulletin of Pure & Applied Sciences. Section E, vol. 19, no. 2, pp. 505--515, 2000.
  • A. J. Fawakhreh and A. K\il\içman, ``On generalizations of regular-Lindelöf spaces,'' International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 9, pp. 535--539, 2001.
  • A. K\il\içman and A. J. Fawakhreh, ``Some counterexamples and properties on subspaces of generalized regular-Lindelöf spaces,'' Tamkang Journal of Mathematics, vol. 32, no. 3, pp. 237--245, 2001.
  • A. K\il\içman and Z. Salleh, ``On pairwise Lindelöf bitopological spaces,'' Topology and Its Applications, vol. 154, no. 8, pp. 1600--1607, 2007.
  • Z. Salleh and A. K\il\içman, ``Pairwise weakly Lindelöf bitopological spaces,'' submitted.
  • A. J. Fawakhreh, ``Properties and counterexamples on generalizations of Lindelöf spaces,'' Ph.D. thesis, University of Putra Malaysia, Serdang, Malaysia, 2002.
  • A. K\il\içman and Z. Salleh, ``Mappings and pairwise continuity on pairwise Lindelöf bitopological spaces,'' Albanian Journal of Mathematics, vol. 1, no. 2, pp. 115--120, 2007.
  • F. H. Khedr and A. M. Al-Shibani, ``On pairwise super continuous mappings in bitopological spaces,'' International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 4, pp. 715--722, 1991.
  • A. R. Singal and S. P. Arya, ``On pairwise almost regular spaces,'' Glasnik Matematički, vol. 6, no. 26, pp. 335--343, 1971.
  • A. A. Fora and H. Z. Hdeib, ``On pairwise Lindelöf spaces,'' Revista Colombiana de Matemáticas, vol. 17, no. 1-2, pp. 37--57, 1983.
  • M. K. Singal and A. R. Singal, ``Some more separation axioms in bitopological spaces,'' Annales de la Societé Scientifique de Bruxelles, vol. 84, pp. 207--230, 1970.
  • Z. Salleh and A. K\il\içman, ``Pairwise nearly Lindelöf bitopological spaces,'' submitted.
  • A. K\il\içman and Z. Salleh, ``Pairwise almost Lindelöf bitopological spaces,'' in Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Their Applications, Universiti Sains Malaysia, Penang, Malaysia, June 2006.
  • A. K\il\içman and Z. Salleh, ``Pairwise almost regular-Lindelöf spaces čommentPlease update the information of these references [13,14, 15, 16?], if possible.,'' submitted.
  • Z. Salleh and A. K\il\içman, ``Pairwise nearly regular-Lindelöf spaces,'' submitted.
  • L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Springer, New York, NY, USA, 2nd edition, 1978.
  • S. Willard, General Topology, Addison-Wesley, Don Mills, Ontario, Canada, 1970.