Abstract and Applied Analysis

Global Self-similar Solutions of a Class of Nonlinear Schrödinger Equations

Yaojun YE

Full-text: Open access

Abstract

For a certain range of the value p in the nonlinear term | u | p u , in this paper we mainly study the global existence and uniqueness of global self-similar solutions to the Cauchy problem for some nonlinear Schrödinger equations using the method of harmonic analysis.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 836124, 9 pages.

Dates
First available in Project Euclid: 9 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1220969158

Digital Object Identifier
doi:10.1155/2008/836124

Mathematical Reviews number (MathSciNet)
MR2393123

Zentralblatt MATH identifier
1180.35493

Citation

YE, Yaojun. Global Self-similar Solutions of a Class of Nonlinear Schrödinger Equations. Abstr. Appl. Anal. 2008 (2008), Article ID 836124, 9 pages. doi:10.1155/2008/836124. https://projecteuclid.org/euclid.aaa/1220969158


Export citation

References

  • T. Cazenave and F. B. Weissler, “The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,” Nonlinear Analysis. Theory, Methods & Applications, vol. 14, no. 10, pp. 807–836, 1990.
  • J. Ginibre and G. Velo, “On a class of nonlinear Schrödinger equations,” Journal of Functional Analysis, vol. 32, pp. 1–71, 1979.
  • J. Ginibre and G. Velo, “Scattering theory in the energy space for a class of nonlinear Schrödinger equations,” Journal de Mathématiques Pures et Appliquées, vol. 64, no. 4, pp. 363–401, 1985.
  • J. Ginibre and G. Velo, “The global Cauchy problem for the nonlinear Schrödinger equation revisited,” Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, vol. 2, no. 4, pp. 309–327, 1985.
  • M. Nakamura and T. Ozawa, “Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces,” Reviews in Mathematical Physics, vol. 9, no. 3, pp. 397–410, 1997.
  • T. Cazenave and F. B. Weissler, “Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations,” Mathematische Zeitschrift, vol. 228, no. 1, pp. 83–120, 1998.
  • F. Ribaud and A. Youssfi, “Regular and self-similar solutions of nonlinear Schrödinger equations,” Journal de Mathématiques Pures et Appliquées, vol. 77, no. 10, pp. 1065–1079, 1998.
  • H. Pecher and W. von Wahl, “Time dependent nonlinear Schrödinger equations,” Manuscripta Mathematica, vol. 27, no. 2, pp. 125–157, 1979.
  • P. Sjögren and P. Sjölin, “Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials,” Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, vol. 16, no. 1, pp. 3–12, 1991.
  • P. Sjölin, “Regularity of solutions to nonlinear equations of Schrödinger type,” Tohoku Mathematical Journal, vol. 45, no. 2, pp. 191–203, 1993.
  • Y. J. Ye, “The global small solutions for a class of nonlinear Schrödinger equations,” Acta Mathematicae Applicatae Sinica, vol. 29, no. 1, pp. 91–96, 2006.
  • B. Guo and B. Wang, “The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^s$,” Differential and Integral Equations, vol. 15, no. 9, pp. 1073–1083, 2002.
  • C. X. Miao, “The global strong solution for Schrödinger equation of higher order,” Acta Mathematicae Applicatae Sinica, vol. 19, no. 2, pp. 213–221, 1996, Chinese.
  • C. X. Miao, Harmonic Analysis and Applications to Partial Differential Equations, Science Press, Beijing, China, 1999.
  • W. Littman, “Fourier transforms of surface-carried measures and differentiability of surface averages,” Bulletin of the American Mathematical Society, vol. 69, pp. 766–770, 1963.
  • F. Ribaud and A. Youssfi, “Self-similar solutions of the čommentPlease update the information of this reference, if possible. nonlinear wave equation,” preprint, 2007.