Abstract and Applied Analysis

On the Equilibria of the Extended Nematic Polymers under Elongational Flow

Hong Zhou, Lynda Wilson, and Hongyun Wang

Full-text: Open access

Abstract

We classify the equilibrium solutions of the Smoluchowski equation for dipolar (extended) rigid nematic polymers under imposed elongational flow. The Smoluchowski equation couples the Maier-Saupe short-range interaction, dipole-dipole interaction, and an external elongational flow. We show that all stable equilibria of rigid, dipolar rod dispersions under imposed uniaxial elongational flow field are axisymmetric. This finding of axisymmetry significantly simplifies any procedure of obtaining experimentally observable equilibria.

Article information

Source
Abstr. Appl. Anal., Volume 2007 (2007), Article ID 36267, 15 pages.

Dates
First available in Project Euclid: 5 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1183666874

Digital Object Identifier
doi:10.1155/2007/36267

Mathematical Reviews number (MathSciNet)
MR2320796

Zentralblatt MATH identifier
1140.76309

Citation

Zhou, Hong; Wilson, Lynda; Wang, Hongyun. On the Equilibria of the Extended Nematic Polymers under Elongational Flow. Abstr. Appl. Anal. 2007 (2007), Article ID 36267, 15 pages. doi:10.1155/2007/36267. https://projecteuclid.org/euclid.aaa/1183666874


Export citation

References

  • A. D. Rey and M. M. Denn, ``Dynamical phenomena in liquid-crystalline materials,'' in Annual Review of Fluid Mechanics, vol. 34 of Annu. Rev. Fluid Mech., pp. 233--266, Annual Reviews, Palo Alto, Calif, USA, 2002.
  • A. S. Bhandar and J. M. Wiest, ``Mesoscale constitutive modeling of magnetic dispersions,'' Journal of Colloid and Interface Science, vol. 257, no. 2, pp. 371--382, 2003.
  • M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, UK, 1986.
  • S. Z. Hess, ``Fokker-Planck-equation approach to flow alignment in liquid crystals,'' Zeitschrift für Naturforschung, vol. A 31A, pp. 1034--1037, 1976.
  • P. Constantin, I. G. Kevrekidis, and E. S. Titi, ``Asymptotic states of a Smoluchowski equation,'' Archive for Rational Mechanics and Analysis, vol. 174, no. 3, pp. 365--384, 2004.
  • P. Constantin, I. Kevrekidis, and E. S. Titi, ``Remarks on a Smoluchowski equation,'' Discrete and Continuous Dynamical Systems, vol. 11, no. 1, pp. 101--112, 2004.
  • P. Constantin and J. Vukadinovic, ``Note on the number of steady states for a two-dimensional Smoluchowski equation,'' Nonlinearity, vol. 18, no. 1, pp. 441--443, 2005.
  • I. Fatkullin and V. Slastikov, ``Critical points of the Onsager functional on a sphere,'' Nonlinearity, vol. 18, no. 6, pp. 2565--2580, 2005.
  • H. Liu, H. Zhang, and P. Zhang, ``Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential,'' Communications in Mathematical Sciences, vol. 3, no. 2, pp. 201--218, 2005.
  • C. Luo, H. Zhang, and P. Zhang, ``The structure of equilibrium solutions of the one-dimensional Doi equation,'' Nonlinearity, vol. 18, no. 1, pp. 379--389, 2005.
  • H. Zhou, H. Wang, M. G. Forest, and Q. Wang, ``A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation,'' Nonlinearity, vol. 18, no. 6, pp. 2815--2825, 2005.
  • H. Zhou and H. Wang, ``Steady states and dynamics of 2-D nematic polymers driven by an imposed weak shear,'' Communications in Mathematical Sciences, vol. 5, pp. 113--132, 2007.
  • M. G. Forest, S. Sircar, Q. Wang, and R. Zhou, ``Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory,'' Physics of Fluids, vol. 18, no. 10, Article ID 103102, 14 pages, 2006.
  • G. Ji, Q. Wang, P. Zhang, and H. Zhou, ``Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method,'' Physics of Fluids, vol. 18, no. 12, Article ID 123103, 17 pages, 2006.
  • H. Zhou, H. Wang, Q. Wang, and M. G. Forest, ``Characterization of stable kinetic equilibria of rigid, dipolar rod ensembles for coupled dipole-dipole and Maier-Saupe potentials,'' Nonlinearity, vol. 20, no. 2, pp. 277--297, 2007.
  • Q. Wang, S. Sircar, and H. Zhou, ``Steady state solutions of the Smoluchowski equation for rigid nematic polymers under imposed fields,'' Communications in Mathematical Sciences, vol. 3, no. 4, pp. 605--620, 2005.
  • B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, John Wiley & Sons, New York, NY, USA, 1987.