Abstract and Applied Analysis

On quasilinear elliptic equations in $\mathbb{R}^N$

C. O. Alves, J. V. Concalves, and L. A. Maia

Full-text: Open access

Abstract

In this note we give a result for the operator p-Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation Δu=h(x)uq in N, where 0<q<1, to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.

Article information

Source
Abstr. Appl. Anal., Volume 1, Number 4 (1996), 407-415.

Dates
First available in Project Euclid: 7 April 2003

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1049726083

Digital Object Identifier
doi:10.1155/S108533759600022X

Mathematical Reviews number (MathSciNet)
MR1481551

Zentralblatt MATH identifier
0932.35074

Subjects
Primary: 35J20: Variational methods for second-order elliptic equations 35J25

Keywords
Quasilinear elliptic equation $p$-Laplacian variational method

Citation

Alves, C. O.; Concalves, J. V.; Maia, L. A. On quasilinear elliptic equations in $\mathbb{R}^N$. Abstr. Appl. Anal. 1 (1996), no. 4, 407--415. doi:10.1155/S108533759600022X. https://projecteuclid.org/euclid.aaa/1049726083


Export citation