
DEPENDENCE ORDERING IN STATISTICAL MODELS AND
OTHER NOTIONS

BY TAKEMI YANAGIMOTO

Institute of Statistical Mathematics

The relation of notions of dependence ordering with other
notions in statistics such as heaviness of tail and largeness
of dispersion are reviewed and developed. The problem
of over dispersion in reproductive studies is discussed as
a practical, attractive example.

1. Introduction. The notion of positive dependence is closely associated
with other various statistical notions. This has been emphasized by many authors
including Yanagimoto and Sibuya (1972) and Karlin and Rinott (1980a). Recent
theoretical development of the notion of positive dependence permits us better
understandings of statistical models. However, as Kimeldorf and Sampson (1987)
stressed, the research on dependence orderings does not appear fully developed.
We often assume a family of distributions having monotone dependence. To state
this clearer, consider a distribution function, Fa(x), of a random variable X on
Rn. The suffix α, representing the degree of largeness of dependence, is considered
to be favorably parameterized, if a = 0 stands for independence and dependence
ordering is monotone increasing in α; as a result a > 0 means positive dependence
of Fa(x).

The situation is largely different according to the value of n. In the bivariate
case negative dependence of (ΛΊ, X2) is reasonably recognized as positive depen-
dence of (Xi, —X2)' The notion of negative dependence is much more complicated
in the multivariate case than in the bivariate case. The aim of the present paper
is to review and develop dependence orderings with emphasis on the relation with
other statistical notions and practical models. In Sections 2 and 4 definitions of
dependence orderings are studied in the bivariate case and in the multivariate case.
Some relations are discussed in Sections 3 and 5.

As usual conventions, we will employ simple descriptions unless any confusion is
anticipated. Therefore, for example, dependence of a distribution, that of a random
variable with the distribution and that of a distribution function of the distribution
are not distinguished, and an increasing function means a nondecreasing function.

2. Dependence Ordering: Bivariate Case A systematic definition of
notions of positive dependence in the bivariate case was developed by Lehmann
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(1966), which was followed by many works such as Esary, Proschan, and Walkup
(1967), Yanagimoto (1972), and Shaked (1977a). Among these notions, that of as-
sociation introduced by Esary et al. is inconvenient to be extended to a dependence
ordering.

Unified definitions of notions of positive and negative dependence given in
Yanagimoto (1972) permit us a straightforward extension to those of dependence
orderings. Let F(x,y) and G(x,y) be cumulative distribution functions both hav-
ing common marginal distribution functions. Following the idea and the notations
of Yanagimoto (1972) and Kimeldorf and Sampson (1987), we give the following
definition.

DEFINITION 1. Let Iχ and J2 be real intervals. We say Iχ < J2 if and only if
x\ G I\ and x2 € /2 imply x\ < x2. Define the four families of products of interval
as

5(1) = {(-00,xι] x (a?i,oo) I -00 < x\ < 00}

5(2') = {(xi,x2] X (z2,oo) I -00 < xx < x2 < 00}

5(2") = {(-00,xx] x (zi,z2] I -00 < xι < x2 < 00}

5(3) = {(xi,x2] x (^2^3] I -00 < xi < x2 < x3 < 00}.

Then G(z, y) is said to have larger dependence F(x, y) in the sense of P(z, j) , if it
holds

for any I\ < J2 and J\ < J2 satisfying Iχ x J2 G S(i) and J\ x J 2 G 5(j), where
PF(I>> J) represents the probability assigned by F to the rectangle I x J.

The above definition provides the 16 strictly different notions of dependence
orderings. The implication scheme among these orderings holds parallel to that
of P(i, j)'s. Among them two orderings coincide with ones in existing literature.
Yanagimoto and Okamoto (1969) called G(x,y) has larger quadrant dependence
than F(x,y) when (i,j) takes (1,1). The ordering was also discussed in Tchen
(1980). Kimeldorf and Sampson (1987) introduced the ordering called that G(x, y)
is more TP 2 than F{x, y). This ordering is strictly stronger than that correspond-
ing (ij) = (3,3).

Yanagimoto and Okamoto (1969) present another extension of the positive re-
gression dependence ordering, which corresponds to P(3,1) in Yanagimoto (1972).

DEFINITION 2. Suppose that G(x,y) and F(x,y) have both the common
marginal distribution functions. G(x,j/) is called to have larger regression de-
pendence on x than F(x, y), if it holds
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F-\u I x') > F-\v I x) implies G~\u \ x') > G~\v \ x)

for any x1 > x and 0 < w, v < 1, where F~~x(u \ x) = inf{y \ F(y \ x) > u}.

Schriever (1987) introduced a new dependence ordering, weaker than the above.
We assume common marginal distributions to compare dependence orderings of
random variables X and Y. Obviously, the assumption is inessential.

Examples of distributions FQ(x,y) whose dependence ordering is monotone in
a were presented in Yanagimoto and Okamoto (1969), Yanagimoto (1971) and
Kimeldorf and Sampson (1987). Examples cover the normal distribution and fam-
ilies due to Farlie (1960) or Plackett (1965).

3. Some Relations — I. Dependence ordering is expected to possess a close
relation with a measure of dependence and the distribution of a test statistic
for independence. When G(x,y) has larger dependence than F(x,y), we expect
COVG(YIJY2) > Coviτ(Xi,X2)> if they exist. This is true if G{x,y) has larger
quadrant dependence, which was essentially given in Lehmann (1966). Yanagimoto
and Okamoto (1969) obtained monotonic properties of the distribution of a test
statistic under dependence orderings. The statement (ii) was improved in Schriever
(1987).

PROPOSITION 1. (Yanagimoto and Okamoto, 1969) (i) Suppose G(x,y) has
larger quadrant dependence than F(x,y). Let Q be Blomqυist's statistic. Then the
distribution of Q under G(x,y) is stochastically larger than that under F(x,y).

(ii) Suppose G(x,y) has larger regression dependence on x than F(x,y). Let
T be a test statistic in a family satisfying regularity conditions, which includes
Kendall's and Spearman's statistics. Then the distribution of T under G(x,y) is
stochastically larger than that under F(x,y).

Next, we consider the notion of heaviness of tail of a positive distribution
function F(x). F(x) is said to have increasing hazard rate, when —log (1 —
F(x)) is convex. This notion is regarded as describing lighter tails for F(x) than
that of the exponential distribution. Let X^ and X(2) be order statistics in
ascending order from independent identically distributed random variables having
a distribution function F(x). If F(x) is exponential, T = (XM^X^) — X(i))
is independent. Conversely Shanbhag (1970) showed independency of T yields
that F{x) is exponential or geometric. Yanagimoto (1972) showed that negative
dependence of T can characterize increasing hazard rate.

The notion of heaviness of tail is extended to that of heavier tail. G(x) is said
to have heavier HR tail than F(x), if G~1(F(x)) is convex.

PROPOSITION 2. Suppose G(x) and F(x) are continuous. G(x) has heavier
HR tail than F(x), if and only if the distribution of T under G(x) has smaller
regression dependence on x than that under F(x).
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Results concerning positive dependence and heaviness of tail were explored in
Shaked (1977b) and Shaked and Tong (1985). Yanagimoto and Sibuya (1976)
showed the close relationship of the notion of heaviness of tail and that of disper-
sion.

4. Dependence Ordering — Multivariate Case. Only a few number
of papers on positive or negative dependence in the multivariate case are found
in existing literature. For our purpose, it appears that MTP2 by Karlin and
Rinott (1980a,b), negative association by Joag-Dev and Proschan (1983) and LOD
and UOD by Shaked (1982) are attractive. Suppose G(x) and F(x) have all the
common one dimensional marginal functions. G(x) is said to more LOD than
F(x),iΐ it holds that

(1) PG(Yi<Ci,i=l,...,n) > PF(Xi<cui = l,...,n)

for any ct. The dependence ordering more UOD is given by replacing < by > in
(1). Karlin and Rinott (1980a,b) defined positive TP2 dependence by

(2) f(χVy)f(χΛy) > f(χ)f(y)

for any x, y £ i£n, where x\l y denotes the vector with each component having the
greater one of corresponding components of x and y, and x\Jy+xf\y — x + y. They
defined negative TP2 dependence by reversing the inequality in (2) and adding
additional requirements. Since TP2 dependence of f(x) does not necessarily mean
that of a marginal density of /(#), we require additional assumptions. We write
a marginal density of f(x) as /(y). Analogous with Definition 1, we present a
definition of larger TP 2 dependence ordering.

DEFINITION 3. Let G(x) and F(x) be distribution functions having density
functions on a common measure. G(x) is said to have larger TP2 dependence than
F(x), if it holds that

Vy2)5(yiΛy2)/(yi)/(y2) > ff(yi)5(ί/2)/(ί/i V y2)/(yi Λ y2)

for any marginal density g(y) and /(y) and any yi, y2 € Rm-

The above definition is not an extension of positive or negative TP2 dependence
in a strict sense, while it is intended to extend negative TP2 dependence in a
simpler way. In the bivariate case the larger TP2 dependence ordering is weaker
than the ordering in Kimeldorf and Sampson (1987), when the density functions
exist.

An attractive notion of multivariate negative dependence is negative associa-
tion (Joag-Dev and Proschan, 1983). The random variable X is called negatively
associated, if

(3) Cov^X! ) , φ(X2)) < 0,
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provided it exists, where Xi and X2 are any partitions of X, and ψ and φ are in-
creasing functions. The extension of this notion to positive dependence is straight-
forward, though the corresponding notion of positive dependence is strictly weaker
than well known association (Esary et al. 1967). To avoid confusion of nomencla-
ture, we will call negative association negative weak-association (w-association).

A difficulty arises from the fact that the distributions of φ{X\) and Φ(Y\) are
different in general, even though all the one dimensional marginals of X and Y are
common. Note that the condition (3) can be replaced by that (y>(Xi), φ{X2)) has
negative quadrant dependence. This fact permits us a definition of w-association
ordering.

DEFINITION 4. Let X and Y be random variables having all the common one
dimensional marginal distributions. Y is said to have larger w-association than X,
if it holds that (ψ(Yι)y φ(Y2)) has larger quadrant dependence than (<^(Xi), φ{X2))
for any corresponding partitions X\, X2 and Y\, I2 and increasing functions ψ and
*φ.

5. Some Relations - II. In this section we will review relations of the notion
of multivariate dependence with other notions, with emphasis paid to the prob-
lem of overdispersion arising in the multi-generation experiments for reproductive
toxicology.

Consider an n dimensional exchangeable random variable X = (-XΊ,.. . ,Xn)
Shaked and Tong (1985) suggested that larger dependence of X is associated with
"hanging together" within components of X. They studied the joint distribution
of order statistics from components of X, and obtained several relations of larger
dependence with larger dispersion and majorization properties. A simple fact of
their results is that larger dependence of X is associated with larger dispersion
of T = ΣXi. Recall that V(T) = nV(Xx) + n(n - l)Cov(Xi,X2). Therefore,
when we fix all the one dimensional marginal distributions, larger covariance of X
means larger variance of T. In other words, positive dependence of X results in
overdispersion of Γ.

The problem of overdispersion is important for a model used for analyzing
reproductive experiment data (for example, Krewski, Colin, Hogan, and Yanagi-
moto, in press). Assume that X represents an underlying (tolerance) distribution
of n fetuses in a litter, and that for a critical point c, say c = 0, a pathological
finding is observed in the ith fetus when Xt > c. Define the ith. component of
Z(X), a statistic, to be 1 for X{ > c, and as 0, otherwise. Note Z(X) is expressed
as an increasing function of X. It is widely accepted that the random variables
Xi, are not necessarily independent and consequently Z(X) is not a vector of inde-
pendent elements. It is likely to be positively dependent (and possibly negatively
dependent). Positive dependence is reasonably interpreted by the fact that fetuses
within a litter share common genetic and environmental factors. Potential nega-
tive dependence may be interpreted as unequal distribution of toxic substances to
fetuses in a pregnant animal.
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These two interpretations can be formulated by a mixture distribution. Let
Ha(x) be a one dimensional distribution function, which is stochastically monotone
in a. Let K(ot) be a mixing distribution. The positively dependent distribution
function F(x) of X can be expressed by

(4) F(x) = j Iί?=1Ha(xi)dK(a).

When Ha(x) is expressed as H(x — α), we can give another expression,

(5) X ~ U + Fe,

where U = (£7i,..., ί/n), e = ( 1 , . . . , 1), and V and ί7t , i = 1,..., n are random
variables having distribution functions K(x) and ϋΓ(x), respectively. The nega-
tively dependent distribution of X may be expressed by

(6) X~(Uu...9Un)\ΣUi=vo

for a constant value UQ.

All the distributions represented in (4)-(6) have been studied as typical multi-
variate positive or negative distributions. A family of distribution functions given
by (4) was pursued in depth by Dykstra, Hewett, and Thompson (1973) and Shaked
(1975). A family of distributions given by (6) was discussed by Block, Savits,
and Shaked (1982) in a more general manner. They generalized conditioning to
Uo + ΣJ7t by adding an independent random variable, and showed that such a
distribution is UOD and also LOD if each random variable has a TP2 density.

In practical applications the distribution function K(a) in (4) contains a pa-
rameter representing dispersion. We can expect that larger dispersion of a mixing
distribution results in larger dependency of the mixture distribution, though we
need marginal adjustments for comparison. The generalization of (6) by Block
et al. (1982) looks appealing, and larger dispersion of Uo is expected to result in
smaller dependency of X. Finally, we present examples of the normal case (Ochi
and Prentice, 1984) and the beta-binomial case (Skellam, 1948, Williams, 1975).

EXAMPLE 1. As usual the normal case presents us a simple, clear example. Let
Ui ~ iV(0,σ2), σ2 > 0, V ~ N(0,δ2), δ2 > 0, Uo - ΛΓ(0,r2), r 2 > 0 and u0 = 0.
Then the random variable X in (5) belongs to JV(0,σ2/ 4- δ2e'e) and that in (6)
belongs to JV(0,σ2J - (σ4/(nσ2 + r2))e ;e). By adjusting all the one dimensional
marginal distributions as iV(0,1), the former family is written as iV(0, (1 — p)I +
pe'e) for 1 > p > 0 and the latter is written as N(0, (1 - p)I + pe'e) for 0 > p >
- l / ( n - 1). Note that both the families superficially share the same form of the
normal distribution. It is easily checked that the larger TP2 dependence ordering
of the above families of distributions is monotone increasing in p, that is, monotone
increasing in δ2 and monotone decreasing in r 2 . As a result the more LOD or the
more UOD ordering also is monotone increasing in p.
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EXAMPLE 2. The beta-binomial distribution is the most familiar distribution
employed in the model for reproductive studies because of its simple form as a
mixture distribution of the binomial distribution. The probability function of the
beta-binomial distribution is written as

(7) p(x; n,α,/3) = nCtIίx

rll(μ + rβ^I^^l - μ) + rβ}/Π^(l + rθ).

Note that (7) makes sense to some extent, even when θ is less than 0 (Prentice,
1986).

Let W be a random variable having the beta distribution, Be(a,β) and V =
logW7(l — W). Let Ui be a random variable having the distribution function
exp#/(l + expx). To define Z(X) having the multivariate beta-binomial distri-
bution we set X = U + Ve and c = 0. The probability function of t = ΣX{ is
given by p(t] n,θ,μ)/nCt with μ = a/(a + β) and θ = l/(α + /?). It follows that
this distribution is associated if θ > 0. Straightforward calculations yield that the
larger TP2 dependence ordering of the multivariate beta-binomial distribution is
monotone increasing in θ for a fixed μ as far as (7) makes sense.
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