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Abstract: One of Pranab K. Sen’s major research areas is sequential non-
parametrics and semiparametrics and their applications to clinical trials, to
which he has made many important contributions. Herein we review a number
of these contributions and related developments. We also describe some recent
work on nonparametric and semiparametric inference and the associated com-
putational methods in time-sequential clinical trials with survival endpoints.

1. Introduction

Sequential nonparametrics began in the 1960s with the work of Wilcoxon, Rhodes
and Bradley [68] on extending Wald’s [66] sequential probability ratio test (SPRT)
to construct two-sample grouped rank-sum tests, and with Savage and Sethura-
man’s [50] invariant SPRT of Hy : F = G versus a single Lehmann alternative
H, : F = (Y in the two-sample problem associated with population distribution
functions F' and G. It was soon recognized that natural hypotheses in conventional
(i.e., fixed sample size) nonparametrics could not be handled by invariant SPRTs,
e.g., F = G? with fixed § # 1 is highly artificial. An alternative approach is to make
use of the weak convergence of the sequence of suitably normalized nonparamet-
ric test statistics under the null hypothesis and under contiguous alternatives to
Brownian motion, with drift 0 under Hy and drift # under a contiguous alternative,
so that the nonparametric testing problem is asymptotically equivalent to that of
testing whether the drift of Brownian motion is 0 or 6. Sen and Ghosh [57], Sen
[53, 54], Ghosh and Sen [18], Hall and Loynes [24] and Lai [34, 35] were some of the
earliest applications of this approach. Chapters 9 and 11 of Sen’s [56] monograph
give an overview of these and subsequent developments in nonparametric sequential
testing. Chapter 10 reviews related developments in nonparametric sequential in-
terval and point estimation, while Chapters 2-8 provide the basic weak convergence
theory.

Besides marking the publication of Sen’s monograph, the year 1981 also wit-
nessed another important event in sequential nonparametrics and its applications
to clinical trials. The early termination of the Beta-Blocker Heart Attack Trial
(BHAT) in October 1981 prior to its prescheduled end nine months later drew im-
mediate attention of the medical community to the benefits of sequential methods
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and spurred important advances and new developments in sequential nonparamet-
rics and semiparametrics in the following two decades, which are reviewed in Section
2. To tackle the complexity of time-sequential clinical trials with staggered patient
entry and failure-time endpoints, new weak convergence results and asymptotic ex-
pansions were developed by making use of powerful tools involving continuous-time
martingales, stochastic integrals and empirical process theory. Section 3 summa-
rizes these and other results under the rubric of functional central limit theorems
(CLT), also called “invariance principles” as in Sen’s monograph, in sequential non-
parametrics and semiparametrics.

In applying the asymptotic theory to the design and analysis of time-sequential
trials with failure-time endpoints, several implementation issues need to be ad-
dressed and are discussed in Section 4. For example, the asymptotic approximations
may be inadequate for the sample size considered, or may be difficult to compute
directly. Another long-standing problem is related to terminal analysis of the trial.
How can valid nonparametric/semiparametric confidence intervals be constructed
for the primary and secondary endpoints when early stopping may occur during
interim analysis of the trial? This problem is addressed in Section 4 which makes
use of recent developments in Monte Carlo and resampling methods to resolve dif-
ficulties in the design and analysis of complex time-sequential trials.

2. Time-sequential rank tests in clinical trials

In a typical clinical trial to compare times to failure between two treatment groups
X and Y, n patients enter the trial at different times during an accrual period, are
randomly assigned to treatment X or Y and are then followed until they fail or
withdraw from the study or until the study is terminated. In particular, BHAT was
a multicenter, double-blind, randomized, placebo-controlled clinical trial designed
to test the efficacy of long-term therapy with propranolol given to survivors of
an acute myocardial infarction. The trial was scheduled for 4 years, with reviews
of the data by a Data and Safety Monitoring Board (DSMB) at 11, 16, 21, 28,
34, 40 and 48 months. The trial design assumed an accrual rate of 149 patients
per month for a period of 27 months, so the planned total number of patients
was 4123. Another assumption is that each patient is randomized to placebo or
treatment upon entering the trial, and is followed for a maximum of 3 years. The
actual recruitment period was 27 months, within which 3837 patients were accrued
from 136 coronary care units in 31 clinical centers, with 1916 patients randomized
into the propranolol group and 1921 into the placebo group. Successive values of
the standardized logrank statistics (see the next paragraph) at 11, 16, 21, 28, 34
and 40 months when the DSMB met were 1.68, 2.24, 2.37, 2.30, 2.34 and 2.82,
respectively. Instead of continuing the trial to its scheduled end at 48 months, the
DSMB recommended terminating it in their last meeting because of conclusive
evidence in favor of propranolol. To adjust for repeated significance testing, the
DSMB used critical values provided by O’Brien and Fleming’s [43] method for
normal observations; see Section 2.2. Since logrank statistics (rather than normal
means) were actually used, the DSMB also appealed to Tsiatis’ [62] result on the
joint asymptotic normality of time-sequential logrank statistics.

To describe a typical time-sequential trial with staggered patient entry, we first
introduce the following notation. Let 7} > 0 denote the entry time and X; > 0 the
survival time (or time to failure) after entry of the ith subject in treatment group
X, and let T](’ and Y; denote the entry time and survival time after entry of the jth
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subject in treatment group Y, 1 <i: < n’,1 < j < n”. Let n = n’ +n”. Thus the
data at calendar time ¢ consist of (X;(t),0;(¢)),7 =1,...,n/, and (Y;(t), (?é’(t)),j =
L...,n", where X;(t) = X; AN A (t = T4, Y;(t) = Y3 AN A (E=T])T, 6;(t)

Ixin=x107 (1) = Tvym=viy mae(s) = EiliIixmzsy muls) =
Z;ﬁl Iy, (1)>sy, and &[(§]) denotes the withdrawal time, possibly infinite, of the
ith (jth) subject in treatment group X(Y). At a given calendar time ¢, one can
compute, on the basis of the observed data from the two treatment groups, a rank
statistic of the general form considered by Tsiatis [63]:

n’ ) m/n’t(XZ(t))
Sn(t) =Y 6/()Qult, Xi<t>>{1 o, (X (1) + m

A my (Y (1))
~ L O 0 e o) )

where @y, (t,s) is some weight function satisfying certain measurability assump-
tions. Let H,: denote a product-limit-type estimator of the common distribu-
tion function of the two treatment groups under the null hypothesis, based on
{(X5(),0:(t),Y;(t),6;(t)) : i <n',j < n”}. Note that this setting is considerably
more complicated than the progressively censored case considered by Chatterjee
and Sen [9] and Sen [55, 56] in the context of life testing experiments. As will be re-
viewed in Section 3, for a general weight function of the form @, (¢,s) = ¥(Hp (s))
in (1), {Sn(t)/+/n,t > 0} converges weakly to a Gaussian process with independent
increments and variance function V(¢) under the null hypothesis, and contiguous
alternatives. Gu, Lai and Lan [22] have pointed out that these time-sequential rank
statistics based on censored data are natural extensions of classical rank statistics
in fixed sample size (FSS) tests of Hy : F' = G, where F is the common distribution
function of the X; and G is that of the Y;, in which X; and Y; are completely
observable (i.e., there is no censoring). Letting R; denote the rank of X; in the
combined sample {X7,..., X/, Y7,...,Y,»}, a classical rank statistic has the form
Zf;l @(Ri/n), where ¢ : (0,1] — R is a score function, and its extension to cen-
sored time-sequential data has the form (1) with Q,(¢,s) = ¥(H, (s)), with ¢
related to ¢ via the relation

1
vlo) =)~ (-0 [ ptdt o<u<t )
see Gu, Lai and Lan [22]. Taking ¢(u) = (1 — u)” (p > 0) yields the G statistics
proposed by Harrington and Fleming [25]. The case p = 0 corresponds to Mantel’s
[42] logrank statistic whose corresponding ¢ is the asymptotically optimal score
function for testing Lehmann alternatives. The case p = 1 corresponds to the gen-
eralization of Wilcoxon’s statistic by Peto and Peto [44] and Prentice [48]. In the
remainder of Section 2 it will be assumed that Q,, (¢, s) = ¥(H,(s)), unless stated
otherwise.
The mean function of the limiting Gaussian process associated with S,,(t)/v/n is
0 under the null hypothesis Hy : F' = G and is of the form p,4(t) under contiguous
alternatives that satisfy

| VRS — tlanr = 012, VG ) ~ 1} = o) 3)
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as n — oo, uniformly over closed subintervals of {s € [0,t*] : F'(s) < 1}, where Ap
and Ag are the cumulative hazard functions of F' and G; see Section 3. Moreover,
ig(t) = V(t) when 9 is an asymptotically optimal score function of the form 1 (-) =
g(F~1()). In practice, the actual alternatives are unknown and x4, need not even be
monotone when v is not optimal for the actual alternatives, such as using logrank
statistics for non-proportional hazards (i.e., not Lehmann) alternatives, which allow
repeated significance tests based on S, () to achieve both savings in study duration
and increase in power over the fixed-duration test based on S, (t*); see Example 1
of Gu and Lai [20].

2.1. Estimation of V (t) and two time scales

An estimate of the variance of S, (¢) under Hy can be used to estimate the variance
V(t) of the limiting Gaussian approximation to Sy,(t)/+/n under Hy and under
contiguous alternatives. Two commonly used variance estimates are

v = [ YU (Dmn eI mne(S) govr L N7 (), (da)

(5,4 (s) +mi 4 (s))?

_ ! w2(Hn,t(s)) m// s 2 ! s m/ s 2 " s
Vn(t)_A (m%,t(3)+m%,t(s))2{( n,t( )) dNn,t( )+( n,t( )) dNn,t( )}7 (4b)

where Ny, = 370, Iixo<ern—1tnsy, Npw = 20y Ly, <ern-1+nsy- As a
compromise between these two choices, Gu and Lai [19] also considered

Vo (t) = {(4a) + (4b)}/2. (4¢)

For all three estimates, n~'V,,(t) converges in probability to V(t) under Hp and
under contiguous alternatives. Hence, letting v = n=1V,,(¢) and W (v) = n=/28,,(t),
we can regard W(v),v > 0, as the standard Wiener process under Hy. Moreover,
if ¢ is a scalar multiple of the asymptotically optimal score function, then we can
also regard W (v),v > 0, as a Wiener process with some drift coefficient under
contiguous alternatives.

As pointed out by Lan and DeMets [39], there are two time scales in time-
sequential trials with failure-time endpoints. One is calendar time t and the other
is information time V,(t), and there is no simple relation between them. The cal-
endar times of interest are those when interim (including final) analyses are per-
formed and they are usually specified, at least approximately, in the trial protocol.
The information time V;,(t) is typically unknown before time ¢ unless restrictive as-
sumptions are made a priori. The two time scales have led to several long-standing
difficulties in applying the asymptotic theory to repeated significance tests based
on time-sequential rank statistics and to interval estimation following these tests.
These difficulties have been resolved in the past five years, as reviewed in Sections
2.2 and 4.2.

2.2. Stopping boundaries for time-sequential rank tests

Let 0 < t; < --- <t =t* be prescribed times for periodic reviews of the data. To
test Hp : F' = G with the time-sequential rank statistics S, (¢;), Slud and Wei [61]
introduced the following simple approach. First choose positive numbers aq, . .., ag
such that Z’f a; = a (= the overall significance level). Then use the multivariate
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normal approximation to the null distribution of (Sn(ti)/an/2 (ti))1<i<k to deter-
mine dy, ..., d; recursively by

P, {|Sn(tj)|/V,Y2(t;) > dj and |S,,(t:)|/V,Y/2(t;) < d; for all i < j} = ;. (5)

With the d; thus determined, the Slud-Wei repeated significance test rejects Hy
whenever |S,(t;)| > djan/Z(tj)(l < j < k) and stops the trial at the first ¢; this
occurs (or at t* if this does not occur for 1 < j < k).

The Slud-Wei method does not provide practical guidelines concerning how the
a; in (5) should be chosen. Lan and DeMets [38] and Lan, DeMets and Halperin
[40] proposed to derive the o from an error spending function, which specifies how
fast we can spend the Type I error « over time. To begin with, let {W(v),0 < v <
1} be the standard Wiener process and consider the stopping rule T' = inf{v €
[0,1]) : [W(v)| > h(v)}(inf @ = o), where h is a positive function on [0,1] such that
P{T =0} =0 and P{T < 1} = a. The error spending function is A(v) = P{T <
v},0 < v < 1. Taking v to represent the proportion of information accumulated
at time ¢, with A(0) = 0 and A(1) = «. In particular, suppose that instead of
survival data one has immediate responses from the patients who enter the study
serially and are randomized to either treatment, with a target sample size of n at
the scheduled end of the trial. Lan and DeMets [39] call such trials “maximum
information trials”. Here the proportion of information accumulated at time t; of
interim analysis v; = n;/n, where n; is the total number of patients available at ¢;.
Hence Lan and DeMets [38] proposed to choose a; = A(v;) — A(vj—_1) in (5). For
the time-sequential rank statistics (1) in what Lan and DeMets [39] call “maximum
duration trials”, the asymptotic null variance of S, (¢;) is no longer proportional to
the sample size n; at t; and a natural analogue of n;/n here is V;,(¢;)/V, (t*).

Let Z1, Zs, ... bei.i.d. normal random variables with unknown mean 6 and known
variance 1. To test H : 8 = 0 at level «, the Neyman-Pearson test rejects H if
|Zf:1 Zi| > zoVk, where 1 — ®(z,) = a. Sample size calculation in clinical trial
applications typically assume an alternative 6 of particular interest and find the
k that attains some given power 1 — § at 6. The basic idea behind Haybittle’s
[26] repeated significance test is to keep k and « as the maximum sample size
and significance level but to allow for early stopping when the data are monitored
sequentially, at the expense of some minor loss in power at §. This leads to the
stopping rule 7, = min(k,inf{n > 1 : Y1, Z;| > by/n}) and terminal decision
rule that rejects H if 7, < k or if 7, = k and | E?Zl Zi| > ¢Vk. Since we require the
loss in power at 6 to be small relative to the fixed sample size test and also require
the maximum sample size to be the same as the fixed sample size k, it is clear that
¢ has to be near z,, implying that Py(7, < k) is small in comparison with «. In
particular, the Haybittle-Peto method [26, 45] in the field of clinical trials uses some
relatively large value of b, such as 3, and conventional critical values of ¢ for the
final test when the number k of interim analyses is small. The fact that Py(7, < k)
is typically small relative to a (or equivalently that most of the Type I error is
to be spent at the terminal data ¢*) suggests that using an elaborate Lan-DeMets
boundary determination procedure would not lead to substantial improvement over
a simple procedure of the Haybittle-Peto type. Lai and Shih [37] recently developed
a theory of group sequential tests, based on Z1,Z,,..., for the parameter 6 of
an exponential family of densities fg(z) = =% with respect to some measure
on the real line. This theory yields the following modified Haybittle-Peto test as
an asymptotically optimal solution. Let S,, = Z1 + - -+ + Z,,. To test the one-sided
hypothesis Hy : 6 < 6 at significance level «, suppose no more than M observations
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are to be taken. The fixed-sample-size test that rejects Hy if Sj; > ¢, has maximal
power at any alternative 6 > 6y, in particular at the alternative 8(M) “implied”
by M (in the sense that M can be derived from the assumption that the above
fixed-sample-size test has some prescribed power 1 — & at O(M)). Although the
protocol of a clinical trial typically justifies its choice of sample size by stating
some conventional level (such as 80% or 90%) at a specified alternative, one often
does not have much information prior to the trial to come up with a realistic
alternative. Under the constraint of M on the sample size, it is desirable to adapt
to the information on the actual 6 gathered during the course of the trial, allowing
early stopping at times of interim analysis so that the test has nearly optimal power
and expected sample size properties.

To achieve these goals in a group sequential test with k& groups and group sizes
ny,Ng — Ny, ...,N, —ng_1 S0 that ny = M, Lai and Shih [37] use a rejection region
of the form S,,, > c at the kth analysis, where ¢ > ¢, but ¢ does not differ much
from c¢,. For the first £ — 1 analyses, they use a stopping region of the form

é\m >0y and nil(gni,ﬂo) > b, or (6a)

0,, < O(M) and  niI(0,,,0(M)) > b, (6b)

for 1 <i <k —1, where I(6, \) denotes the Kullback-Leibler information number
Eg{log[fo(Z:)/ f(Z;)]}. If (6a) holds, reject Hy upon stopping. If stopping occurs
with (6b), accept Hy. In case stopping does not occur in the first &k — 1 analyses,
reject Hy if Sy, > c. The thresholds b,b and ¢ are so chosen that Py, (Test rejects
Hp)= « and the power of the test at (M) does not differ much from its upper
bound 1 — &. In the special case of p = 0 and normal Z; with mean 6 and vari-
ance 1, ¥(0) = 6%/2 and 1(0,)) = (6 — \)?/2, so the test reduces to that in the
preceding paragraph. Previous works on efficient group sequential tests have used
the expected sample size at an alternative, or more generally a weighted average of
expected sample sizes over a set of parameter values, as the optimization criterion
while controlling the error probabilities under the null hypothesis and a specified
alternative at prescribed levels; see Pocock [47], Wang and Tsiatis [67], Kim and
DeMets [32], Eales and Jennison [15] and Barber and Jennison [4]. There are several
practical difficulties with this approach to efficient group sequential design. First,
even though the mean of the random sample size is minimized at some alternative,
the maximum sample size can be substantially larger than the mean and also the
fixed sample size. Secondly, the optimization problem requires precise specification
of the relative sizes of all groups, e.g. equal group sizes, but it is often not feasi-
ble to do so prior to the trial because interim analyses are usually scheduled at
calender times for administrative reasons. Thirdly, it may be difficult to come up
with a realistic alternative before data are collected from the trial, but the opti-
mization problem depends on the chosen alternative. Clearly efficiency of a group
sequential test depends not only on the choice of the stopping rule but also on
the test statistics used. To decouple these two issues, Lai and Shih [37] consider
the one-parameter exponential family, for which sufficient statistics are the sam-
ple means that are maximum likelihood estimators of 4’(6). Although the normal
case is usually chosen to be the prototype in the group sequential literature, Lai
and Shih choose the exponential family because linearity of 3’ in the normal case
obscures the general form of (nearly) optimal test statistics and stopping bound-
aries. Making use of Hoeffding’s [27] lower bound for the expected sample size of a
test that has Type I error probability « at 8y and Type II error probability & at
6(M), they establish the asymptotic efficiency of the modified Haybittle-Peto test
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by showing that the expected sample size of the test under Py attains Hoeffding’s
lower bound asymptotically as & — 0 and & — 0. They have also carried out ex-
tensive simulation studies of the expected sample size and power function of the
modified Haybittle-Peto test in the N (6,1) case, comparing it with different classes
of group sequential tests that have been developed primarily for this normal setting
in the literature. Their numerical results demonstrate the advantages of the mod-
ified Haybittle-Peto test, which is flexible and efficient and can “self-tune” to the
unknown parameters during the course of the trial, under prespecified constraints
on the maximum sample size and Type I error probability.

The preceding modified Haybittle-Peto test has in fact been proposed earlier by
Gu and Lai [20] for repeated significance testing, which involves a maximum of
k significance tests, based on the time-sequential censored rank statistics (1). Gu
and Lai proposed to determine b such that Py(7, < k) = ea, where 0 < e < 1
is small and 7, is the stopping rule defined above for normal Z;. With b thus
chosen, their repeated significance test stops the trial and rejects Hy at t; < t* if
|Sn(t:)| > bV, (t;). If the trial proceeds to the terminal date ¢*, their test rejects

Hy if |S,(t")] > CVJ/Q(t*), where c is so chosen that
P{IW (Va(tr))| > eV, /2 (t) or [W (Va(t:))] = 0V, /2 (t:)

for some i < k|Vi,(t1),..., Vo(te)} = o, (7)

in which ¢, = ¢* and {W(v),v > 0} is a standard Wiener process independent of
{(X5,8,t.,Y3,6,T)),i > 1}. Letting a; = V,,(t;) and d = ¢,d; =bfor 1 < j <
k —1, the probability (7) can be written as a sum of the probabilities P{|W (a;)| >
dj\/aj and W (a;) < d;/a; for all i < j}, which can be computed by the recursive
numerical integration algorithm of Armitage, McPherson and Rowe [3]. The choice
of ¢ in (7) is not predetermined at the beginning of the trial but depends on the
actual values of V,(t1),..., V,(t), allowing great flexibility in how information
accumulates at different times of interim analyses. This modified Haybittle-Peto
time-sequential test based on (1), with ¢ restricted to the set {¢1,...,tx} of calendar
times at which interim analyses are conducted, yields an efficient stopping rule that
circumvents the difficulty of “calendar time” versus “information time” in the error
spending approach, which Scharfstein and Tsiatis [51] proposed to address by using
simulations at each interim analysis to estimate the maximum information under
the null hypothesis.

2.3. Adjustments for other covariates in testing treatment effects

It is widely recognized that tests of treatment effects based on the rank statistics
(1) may lose substantial power when the effects of other covariates are strong. In
nonsequential trials, a commonly used method to remedy this when logrank sta-
tistics are used is to assume the proportional hazards regression model and to use
Cox’s partial likelihood approach to adjust for other covariates. Tsiatis, Rosner and
Tritchler [65], Gu and Ying [23] and Bilias, Gu and Ying [5] have developed group
sequential tests using this approach. Instead of relying on the proportional haz-
ards model to adjust for concomitant variables, it is useful to have other methods
for covariate adjustment, especially in situations where other score functions than
the logrank are used in (1) to allow for the possibility of non-proportional hazards
alternatives. Lin [41] and Gu and Lai [20] have proposed alternative covariate ad-
justment methods based on rank estimators and M-estimators in accelerated failure
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time models. In the absence of more efficient computational schemes, these estima-
tors took much longer to compute than those based on the proportional hazards
model. The situation has subsequently improved with the algorithm of Jin et al.
[29] for rank estimators and Kim and Lai [33] for M-estimators.

3. Functional CLT in sequential non-(or semi-)parametrics

Let ﬁn be the empirical distribution function of i.i.d. random variables X1, X, ...
with common continuous distribution function F', and let Fyy(u) = u for 0 < u <1,
the distribution function of a uniform random variable. Whereas the weak con-
vergence of \/n(F,, o F~1 — Fy;) to Brownian bridge, when applied in conjunction
with the functional delta method, provides a basic tool for deriving asymptotic
normality of nonparametric/semiparametric statistics, sequential nonparametrics
and semiparametrics involve an additional time parameter, which results in weak
convergence to Gaussian random fields (i.e., multiparameter processes). Sen’s [56]
monograph therefore focuses on weak convergence in C([0,1]*) or D([0, 1]*) with
k > 2. In particular, [nt](ﬁ[m] o F~1 — Fy)/\/n converges weakly in D([0,1]?) to a
Kiefer process K (t,s) whose covariance function is given by

Cov(K(t,s),K(t',s')) = (tAt')(sNs —ss),

i.e., K(-,s) is Brownian bridge for every fixed s and K (t,-) is Brownian motion for
every fixed t. An alternative approach is to represent the nonparametric statistics
(e.g. U-statistics, rank statistics and linear combinations of order statistics) in terms
of partial sums S, of i.i.d. random variables plus negligible remainders; see Lai
[34, 35].

When the X; are not fully observable because of censoring by &;, it is more conve-
nient to work with the cumulative hazard function A(z) = [*__(1—F(s—)) = dF(s),
which can be consistently estimated by the nonparametric maximum likelihood es-
timator A, (z) = [ (mn(s)) ™' dNy(s), where

n n
ma(s) =Y Iixinezsrs Nals) = D Iixicens)-
i=1 =1

Making use of the key property that {Ny(s) — [°_ my(t) dA(t), s > 0} is a square
integrable martingale with predictable variation process fjoo my(t) dA(t), we can
apply martingale central limit theorems to prove asymptotic normality of statistics
of the form ffoo Qn(s) dA,(s), where Q,, () is a predictable process. The monograph
by Andersen et al. [1] summarizes this martingale approach to functional central
limit theorems for nonparametric and semiparametric statistics based on censored
data and their applications.

This martingale approach can be easily extended to the vector of the time-
sequential rank statistics (S, (t1),...,Sn(tk))/+/n involving a fixed set of calendar
times ¢y, ..., tx, where S, (¢) is defined in (1), as shown by Tsiatis [62, 63]. However,
proving weak convergence of the continuous-time process {n=/25,(t),0 < t <
t*}, where t* is the terminal tie of the study, is much more difficult even though
it involves only checking an additional tightness condition. By combining certain
maximal inequalities for continuous-time martingales with empirical process theory,
Gu and Lai ([19], Lemma 2 and Appendix) established the desired tightness under
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some weak conditions on the weights @, (¢, s) in (1) and the assumptions that

V(t,s)= lim m™* ZP{fZ’- >s,t—T > s},
i=1

V'(ts) = Tim m~' Y P{g) > 5.t =T > s}
j=1

exist and are continuous in 0 < s < t, that
n'/n — v asn— oo with 0 <y <1,

and that F' and G are continuous. Instead of S,,(t), they considered S, (¢, s) which
is defined by (1) but with >, _,.,, and >2, ., replaced by >, v, <, and
Zj:Yj(t)gs' In particular, for the case Q,(t,s) = ¥(H,(t, s)) such that (1 —xz)%(x)
is a function of bounded variation on [0, 1] for some 0 < 3 < 1, their weak con-
vergence theory for the random field {S,(¢,5),0 <t < ¢*,0 < s < t*} yields the
following results for S,,(¢):

(i) For fixed F and G, {n='/2(S,(t) — un(t)),0 < t < t*} converges weakly in
DI[0,t*] to a zero-mean Gaussian process and n~!u,(t) converges in proba-
bility as n — oo, where

m%,t(S)mii,t(S)

m%,t(s) + mg,t(s)

tin(t) = / G(Ho i (5)) (dAp(s) — dAg(s)).

(i1) Let {Z(¢),0 < ¢t < t*} denote the zero-mean Gaussian process in (i) when
F = G. This Gaussian process has independent increments and

L P(F(s)Y (8, 5)b"(t, 5)

Var(Z(t)) = v(1 —~) o W(t,s)+ (1—y)'(t,s)

dF(s).

(iii) For fixed F' (and therefore Ap also), suppose that as n — oo, G — F such
that (3) holds uniformly over closed subintervals I of {s € [0,¢*] : F(s) < 1}
and sup,c; |g(s)| < oo. Then {n~1/28,(¢),0 < ¢t < t*} converges weakly in
DI[0,t*] to {Z(t) + u(t),0 < t < t*}, where Z(t) is the same Gaussian process
as that in (ii) and

" Y(F (w)g(w)b' (t, wb" (t, u)
o Wt u)+ (1 =7)b"(t u)

pu(t) = —y(1—7) dF (u).

From (ii) and (iii), the limiting Gaussian process of {n~1/2S,,(t),t > 0} has inde-
pendent increments under Hy : F' = G and under contiguous alternatives.
Previous results in the literature only treated the case F' = G. In particular,
assuming the 7} (and T, &, &/, respectively) to be i.i.d., Tsiatis [63] showed that
(n=Y28,(t1),...,n" /28, (tx)) has a limiting multivariate normal distribution for
any k. Sellke and Siegmund [52] proved tightness and weak convergence in the case
where the S,,(t) are logrank statistics, and more generally where S,,(¢) is the score
statistic in the proportional hazards model, without assuming the 7} (or T}, &L, &)

to be i.i.d.. Slud [60] considered weighted logrank statistics with weights that do
not depend on t.



Sequential nonparametrics and semiparametrics 341

4. Implementation issues in sequential non-(or semi-)parametrics

This section considers certain implementation issues in sequential nonparametrics
and semiparametrics, particularly in the context of design and analysis of com-
plex clinical trials with failure-time endpoints and periodic data reviews. Although
the asymptotic joint normality of the sequential non-(or semi-)parametric statistics
greatly simplifies their seemingly intractable distributions, the adequacy of these
approximations may be questionable. For example, using the normal approximation
to evaluate the power of a sequential rank test at an alternative that is assumed to
be “contiguous” may be unreliable as it is difficult to assess whether the alternative
is actually contiguous for the sample size associated with a prescribed stopping rule
that allows early termination. Another important issue is related to the construc-
tion of confidence intervals following sequential tests. The normal approximation
can be applied if the stopped information time is asymptotically nonrandom by
Anscombe’s [2] theorem, but it is difficult to assess whether that is indeed the case
in practice. The two time scales in time-sequential clinical trials further increase the
difficulty. In this section we use recent developments in Monte Carlo and resampling
methods to address these issues.

4.1. Direct Monte Carlo and its enhancements

The Monte Carlo simulation method provides a flexible and practical way to com-
pute the power and expected duration of time-sequential tests, and also to check
the adequacy of the normal approximation to the type I error probability under var-
ious scenarios of baseline survival, censoring pattern, noncompliance, and accrual
rate. To provide the clinical trial designer with a tool to perform these Monte Carlo
simulations, Gu and Lai [21] developed a simulation program which gives the user
some options for choosing the stopping boundary, including the modified Haybittle-
Peto-type boundary. They also incorporated this power calculation program into
another program that computes the sample size of a group sequential trial having
a prescribed power at given baseline and alternative distributions. Adjustment for
other covariates in time-sequential tests of treatment effects, however, is unavail-
able in the program developed by Gu and Lai [21]. Because of the computational
complexity of time-sequential tests and because the Monte Carlo simulations used
to compute power and type I error probability should not take too long to run for
the software to be “user-friendly”, the direct Monte Carlo approach used by Gu and
Lai [21], which is already slow to run a “bare-bones” trial design, cannot absorb
the additional computational costs of covariate adjustment without further slowing
it down substantially.

Importance sampling and related exponential tilting techniques are powerful
methods for Monte Carlo evaluation of small probabilities of events observed up
to a stopping time. The basic idea comes from the likelihood ratio identity P(F N
{T < o0}) = Eq(L1lpn{r<s}) for all F' € Fr, where T' is a stopping time and
L,, is the likelihood ratio; see Siegmund [59], page 13. For complicated problems,
however, implementation of these importance sampling methods may be difficult
due to difficulties of sampling from Q. Instead of sampling directly from @, we
can generate B sequences from a more convenient distribution @ and then use a
resampling step to convert samples from @) to samples from (). There are results
from the bootstrap literature that shed light on how to carry this out; see Johns
[30], Davison and Hinkley [13], Do and Hall [14] and Hu and Su [28]. The following
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example illustrates this idea with the choice of resampling weights for bootstrap
estimation of the sampling distribution of a two-sample Mann-Whitney statistic
from unknown (F,G).

Example 1. Denote the two independent samples by X = {Xi,...,X,,} and
Y ={Y1,...,Y,} drawn from F and G, respectively. The Mann-Whitney statistic

is given by U = 371" 377 U(4, j), where

i X > Y,
UG =4 0 ifX; =Y,

To estimate the probability P(U < z) from X and ), the bootstrap method es-
timates P(U* < z|X,)) by Monte Carlo simulations, where U* is the value of
the statistic calculated from the bootstrap resamples X'* and Y*. To reduce the
Monte Carlo variance of the bootstrap approach, we fix the first sample and resam-
ple from the second sample with resampling weights p;(i = 1,...,n) instead of the
usual weights 1/n corresponding to the empirical distribution of Y. We can estimate
P(U* < z|X,Y) by # := B~} Zle Up [T, (np;)~Mvi, where B is the number of
resamples, Uy, is the value of the test statistic calculated from the bth resample, and
My; denotes the number of times that Y; appears in the bth resample. The optimal
resampling weights are those that minimize Var(7), or equivalently, minimize

E{I(U" < ) [J(ps) ™™ | 2,2}
i=1

= E{I(ZMl*ul < ) ﬁ (nps) M7
i=1 i=1

E{IZM i — 1) <x—ni f[npZ —M;
=1

X, v}

i — U T —nu

\/Euz—u = Vs

n

- E{I(ZM;@Z- <) [T | 2,0}

i=1 i=1

~ B{I(N; <#)e™ | X, )}, (8)

— EB{I ZM* ﬁnpl MU XYy
1=1

where (N7, No) is bivariate normal random vector with mean (0, %sz), variances
1,s% and covariance Y @;0;. Here M denotes the number of times Y; appears in a
bootstrap resample and

uj :ZU(i,j), 0; = —log(np;), s —25
i=1
Q:Zizlui7 . T —ni i — w; — U

V- )

Since E{I(Ny < #)eN2 | X, Y} = (7 — sp)e®”, where p = 3 u;6;/ /> uis and @

denotes the cumulative distribution function of the standard normal distribution,
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TABLE 1
Bootstrap estimates of tail probabilities of 2-sample Wilcoxon statistic and their normal
approrimations
P(Z) Direct resampling Importance resampling
0.005 0.0044 + 0.0046 0.0045 + 0.0006
0.01 0.0096 + 0.0078 0.0110 + 0.0012
0.025 0.0279 + 0.0132 0.0279 4 0.0030
0.05 0.0472 + 0.0139 0.0464 4+ 0.0040
0.1 0.1023 + 0.0214 0.0994 4+ 0.0078

the resampling weights that minimize (8) are
o— Aty

bi = n A’
Zj:le ’

1<1<n,

where A = A(z) > 0 is chosen to minimize ®(% — A)e?”.

Table 1 gives the bootstrap estimate of P(U* < x|X,)) and the standard errors
for the usual resampling weights 1/n and for the optimal resampling weights given
above. Here m = 30,n = 25, B = 500 bootstrap samples are used and F' = G is
the exponential distribution with median 3. Table 1 shows that this importance
resampling approach yields considerably smaller standard errors than the direct
resampling approach. Further details of importance sampling with resampling for
Monte Carlo computation of the power and Type I error of group sequential or
time-sequential nonparametric/semiparametric tests will be given elsewhere.

4.2. Confidence intervals following time-sequential trials

Although group sequential or time-sequential tests are attractive in clinical trials
because they allow for early termination while preserving the overall significance
level of the test and can adapt to information gathered during the course of the trial,
the use of a stopping rule may introduce substantial difficulties in constructing valid
confidence intervals, which has inhibited the applications of sequential methodology.
Siegmund [58] introduced an exact method, based on ordering the sample space
(T, St) in the following way, to construct exact confidence intervals for the mean
of a normal population with known variance following a repeated significance test.
Suppose Z; has variance 1 and T is a two-sided stopping rule of the form T =
inf{n € J : S, > b,orS, <a,}, where S,, = Z; +---+ Z, and J is a finite
set of positive integers. Siegmund ordered the sample space of (T, St) as follows:
(t,s) > (t',¢') whenever (i) t =t and s > &', or (ii) t < ¢ and s > by, or (iii) ¢ > ¢’
and s' < ap. Let p. denote the value of p for which P,{(T,St) > (t,5)obs} = ¢,
where (¢, s)obs denotes the observed value of (7', St). Siegmund’s confidence interval
i te < p < p1—o, which has coverage probability 1 — 2«. Tsiatis, Rosner and
Mehta [64] extended Siegmund’s method to the group sequential tests of Pocock
[46] and O’Brien and Fleming [43]. Alternative orderings of the sample space were
subsequently introduced by Chang and O’Brien [8], Rosner and Tsiatis [49], Chang
[7] and Emerson and Fleming [17]. To remove the normal assumption in these exact
methods, a natural way is to extend Efron’s [16] bootstrap confidence intervals
from the fixed sample size to the group sequential setting. Chuang and Lai [10, 11],
however, have shown that bootstrap confidence intervals following group sequential
tests have inaccurate coverage probabilities because the approximate pivots for a
fixed sample size n may not remain to be approximate pivots when n is replaced
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by a random stopping time 7T'. By integrating the main ideas behind the exact and
bootstrap methods, they proposed a hybrid resampling method and considered in
particular those based on Siegmund’s and other orderings for deriving the exact
methods. They showed that hybrid resampling still works well in situations where
the bootstrap method fails.

To extend the hybrid resampling method to more general statistics ¥ and
stopping rules T', e.g. those arising in time-sequential nonparametrics and semi-
parametrics, Lai and Li [36] recently introduced the following ordering scheme for
the sample space of a stochastic process X, (in which u denotes either discrete or
continuous time) that is observed up to a stopping time T'. Let ¥y, ¢t < T, be real-
valued statistics based on {X;,t < T'}. A total ordering of the sample space of X
can be defined via (U, t <T') as follows:

X >z ifand only if Wpa; > Yrae, 9)

in which (¢g, s < t) is defined from z = (x5, s < t) in the same way as (U,,s <t) is
defined from X. In particular, they applied this ordering scheme to construct con-
fidence intervals for the regression parameter § in Cox’s [12] proportional hazards
model

Ply <Y <y+dylY; >y, 1} = e’ dA(y)

with baseline cumulative hazard function A. Differentiation of the log partial likeli-
hood at 8 = 0 (the null hypothesis) and calendar time ¢ yields Cox’s score statistic

sqL(t):ZCs,-(t){zi—( > zj>/|Ri(t)}, (10)
i=1 JER(t)

where R;(t) = {j : Y;(¢t) > Y;(¢)} and |R;(¢)| denotes the size of the “risk set” R;(¢),
using the same notation as that in Section 2 and assuming the censoring variables
to be i.i.d.. The observed Fisher information at calendar time ¢ is

Va(t) = Zsz‘(t)[ > 2 /IR —{ > Zj/|Ri(t)|} 1 (11)
i JER;(t) JER;(t)

which provides an estimate of the null variance of S,,(¢). Suppose one uses a repeated
significance test that rejects Hy at the jth interim analysis (1 < j < k) if

Sn(t;)/ Va2 (t;) = bj or Sp(t;)/ Va2 (L) < aj, (12)

where a; < 0 < bj;, and stops the trial at the first time 7 € {t,...,t;} when (12)
occurs. Lai and Li [36] proposed to order the sample space of (7, ¥, ) by

(7-1) qut‘?) < (TQa \I/g)) if and only if \I,‘(Ii)/\‘l'z < \Ij'(r?)/\'rgv (13)
where W = S(t)/V/(t). They also proposed to estimate the unknown baseline dis-

tribution G =1 — e by G =1 — e, where A is Breslow’s [6] estimator of the
cumulative hazard function from all the data at the end of the trial:

K(S)Z Z {(51‘(7')/( Z 8B2'7>}a (14)
i:Y;(1)<s JER(T)
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in which B is Cox’s [12] estimate of § that maximizes the partial likelihood at time
7. Since the &; are censored by min{Y;, (r — T;)™}, the distribution C of &; can be
estimated by the Kaplan-Meier estimator C'. Let

p(B) = P{(rD, 00y > (7,0, )ons}, (15)

where the superscript () means that the observations are generated by the pro-
portional hazards model with baseline distribution G, censoring distribution C' and
regression parameter J. As shown by Lai and Li [36], the confidence set

{B:a<p(B) <1-a} (16)

has coverage probability 1 — 2« + O(n‘l/ 2) and is usually an interval under certain
regularity conditions.

Lai and Li [36] used direct Monte Carlo to compute p(3), and the confidence
interval thus constructed is computationally intensive. The reason is that a large
number of simulations are needed to compute p(3) for each 3, and a sample of
survival times needs to be generated for each simulation. To reduce the computation
time, we can use importance sampling by re-writing p(3) as

p(B) = Ej Le)

L(B)
in which L(-) is the full likelihood at time 7. This importance sampling technique
provides a one-pass algorithm that only needs to generate data once under PB (after
tilting Ps to PB)’ instead of having to generate data for each possible value 8 of
the confidence set in the direct Monte Carlo approach. For the Beta-Blocker Heart
Attack Trial, Lai and Li [36] computed the confidence interval for the hazard ratio
by direct Monte Carlo, which took over one day on a computer with Pentium 4
CPU 2.4GHz and 1024MB of RAM, in contrast to about 2.5 hours to compute the
hybrid resampling confidence interval via (17) on the same computer.

An alternative approach that is commonly used in the literature is to use the
space-time Brownian motion approximation of (S, (t), V,,(t)) (see Jones and White-
head [31] and Siegmund [59]) to which Siegmund’s ordering can be applied. The
following example, however, shows that the confidence intervals for 8 constructed
by this approach may have quite inaccurate coverage errors.

I (17)

(@ w0 >0 )ons} |

Example 2. Consider a time-sequential trial in which n = 350 subjects enter the
trial uniformly during a 3-year recruitment period and are randomized to treatment
or control with probability % The trial is designed to last for a maximum of t* = 5.5
years, with interim analyses after 1 year and every 6 months thereafter. The logrank
statistic is used to test Hy : § = 0 at each data monitoring time ¢; (j = 1,...,10)
and the test is stopped at the smallest ¢; such that

Vi(t;) > 55, or Vi(t;) > 11 and |Sa(t;)]/Vi2 (t;) > 2.85, (18)

or at t10(= t*) when (18) does not occur, where V,,(t) is defined by (11). If the test

stops with V,,(¢;) > 55 or at t*, reject Hy if |Sn(t*)|/Vn% (t*) > 2.05. Also reject
Hy if the second event in (18) occurs for some j < 10. The threshold 2.05 for the
final analysis at t* is chosen so that the Type I error probability of the test is
approximately 5% using the Brownian motion approximation; see Siegmund [59],
page 132. When the space-time Brownian motion approximation of (S,(t), V,.(¢))
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is applied in conjunction with Siegmund’s ordering, thereby yielding score-based
confidence intervals, the lower and upper coverage errors for nominal value o =
5% are 4.45% and 5.05% for 3 = 0, 4.65% and 0.35% for 3 = logg, and 5.75%
and 0.00% for 8 = log% with 2000 simulations. This shows that the Brownian
motion approximation does not provide an adequate approximation unless [ is
very close to 0. The problem is that it fails to incorporate calendar time besides the
information time. In contrast, Lai and Li’s [36] hybrid resampling confidence set
(16) has coverage errors 4.45% and 4.55% for 3 = 0, 5.25% and 5.35% for 8 = log 2,
and 5.05% and 4.05% for 8 = log 5.
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