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Mirror symmetry between orbifold projective lines 
and cusp singularities 

Atsushi Takahashi 

Abstract. 

We report on our recent study on the mirror symmetry between 
orbifold projective lines and cusp singularities. Both of their homolog­
ical mirror symmetry, an equivalence of triangulated categories, and 
their classical mirror symmetry, an isomorphism of Frobenius mani­
folds, are discussed. 

§1. Introduction 

Let A be a triple of positive integers (a1 , a 2 , a3 ). We can naturally 
associate two mathematical objects from completely different geometric 
origins; an orbifold projective line IP'~ := 1P'~1 ,a2 ,a3 , an orbifold IP'1 with 
at most three isotropic points of orders a 1 , a 2 , a3 , and a polynomial 
f A(x1, x2, x3) := x~1 +x~2 +x~3 -q-1x1x2x3, q E <C\ {0}. At first glance, 
IP'~ and fA are unrelated. However, it turns out by mirror symmetry that 
they can be considered as two different geometric realizations of more 
intrinsic objects behind them. 

Mirror symmetry is a categorical duality between algebraic geometry 
and symplectic geometry. One of our motivations is to apply some ideas 
of mirror symmetry to singularity theory in order to understand various 
mysterious correspondences among isolated singularities, root systems, 
Weyl groups, Lie algebras, discrete groups, finite dimensional algebras 
and so on. In this paper, we explain some of these correspondences by 
taking the case of the mirror symmetry between IP'~ and !A. 

After preparing some necessary notations in Section 2, we discuss 
in Section 3 the homological mirror symmetry between IP'~ and fA, an 
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equivalence of triangulated categories associated to lP'~ and fA. In Sec­
tion 4, we study the classical mirror symmetry between lP'~ and fA, 
an isomorphism of Frobenius manifolds associated to Gromov-Witten 
theory for lP'~ and the deformation theory of fA. 

§2. Notations and useful elementary facts 

Throughout this paper, we denote by A a triple of positive integers 
( a1, a2, a3). For the later use, we set 

3 

(1) J.LA := 2 + L (ai - 1), 
i=l 

(2) XA := 2 + t ( :. -1) . 
i=l • 

The numbers J.LA and XA will appear, for example, as the orbifold Euler 
number of lP'~, the total dimension of orbifold cohomology groups of lP'~, 
and the orbifold Euler characteristics of lP'~, respectively. Note that one 
has 

(3) 

In the case XA > 0 we regard the polynomial fA as a globally defined 
function on the affine variety C3 with several critical points, whereas 
in the case XA s; 0, we regard it as a germ of holomorphic function on 
a suitable small neighborhood of the origin of C3 defining an isolated 
singularity only at the origin. Therefore, J.LA can be interpreted as the 
Milnor number for fA. 

Consider the classification of A with XA > 0 and XA = 0. It is 
obviously given by Table 1 and Table 2, respectively. If XA ~ 0, we 
shall mean by type of A the corresponding name given in the "Type" 
row of Table 1 and Table 2. It is a name of the weighted homogeneous 
singularity (and its root system) related by Orlov's semi-orthogonal de­
composition of the triangulated category associated to A discussed in 
the next section. 
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(p, q, 1) Ap,q (p, q?: 1) 
(r, 2, 2) Dr+2 (r ?: 2) 
(3, 3, 2) E6 
(4, 3, 2) E1 
(5, 3, 2) Es 

Table 1. The classification of A with XA > 0 

A= (a1, a2, a3) I Type 

(3 3 3) E~l,lJ , , 6 

(4 4 2) Ei1•1J , , 7 

(6 3 2) E~1 ' 1 J , , 8 

Table 2. The classification of A with XA = 0 

§3. Homological mirror symmetry 

We associate two triangulated categories to A. On the algebraic 
geometry side, the triangulated category to consider is the derived cat­
egory Dbcoh(IP']JJ of bounded complexes of coherent sheaves on IP'1. On 
the symplectic geometry side, we regard fA as a globally defined tame 
polynomial on C3 if XA > 0 and as a germ of a holomorphic function 
defined on a small neighborhood of 0 E C3 if XA :::; 0 and then con­
sider the derived category DbFuk--+ (!A) of the directed Fukaya category 
Fuk--+(/A)· Here, Fuk--+(/A) is a directed A00-category which can be 
thought of as a "categorification" of a distinguished basis of vanishing 
cycles in the Milnor fiber of fA· In this paper, we omit the details about 
Fukaya categories and refer the interested reader to [28], [29] for Fukaya 
categories associated to singularities and to [12] for generality. For the 
convenience of the reader, we give a rough definition of Fuk--+ (!A): 

Definition 3.1. The directed Fukaya category Fuk--+ (!A) is a strictly 
unital A00 -category consists of 

(4) 

• J.LA vanishing graded Lagrangian submanifolds .C1, ... , .C,..A in 
the Milnor fiber off A together with an ordering of these objects 
as (.C1, ... , .C,..A) such that 

if i > j, 
if i = j, 

if i < j, 
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where [-] denotes the translation of the complex, deg(p) is 
defined by the gradings gr .c., : Li ---+ lR and gr .C.; : Lj ---+ lR 
as the largest integer less than or equal to gr(£J)Ip- gr(£i)lp, 

• the ( non-triviaQ composition maps 

(5) rnA. : Fuk--+ (JA)(£i,._p £i,.) ®c · · · ®c Fuk--+(JA)(£ip Li2 ) 

---+ Fuk--+(JA)(£ipLi,.)[2- n], i1 <···<in, 

defined by the "numbers of pseudo-holomorphic polygons" with 
boundaries on £1, ... , £/LA and corners on intersection points. 

Although Fuk--+ (!A) depends on many choices other than the initial 
data fA, it turns out that after taking the derived category it will be an 
invariant of the polynomial fA as a triangulated category. 

3.1. Homological mirror symmetry conjecture 

In order to formulate our homological mirror symmetry conjecture, 
we recall some terminologies for a quiver and its path algebra. 

Definition 3.2. A quiver Q is an oriented graph. More precisely, 
a quiver is a quadruple (Q0 , Q1 ; s, t) where Q0 is a set called the set of 
vertices, Q1 is a set called the set of arrows and s, t are maps from Q1 
to Qo which associate the source vertex and the target vertex for each 
arrow. An arrow with the source s(a) and the target t(a) is often written 
as s(a) ~ t(a). 

Definition 3.3. A path of length l 2: 1 from the vertex v to the ver­
tex v' in a quiver Q is a symbol ( vla1 · · · a1!v') with arrows ai, i = 
1, ... , l such that s(vl) = v, t(vl) = v' and s(ai+l) = t(ai), i = 
1, ... , l- 1. A path of length 0 is a symbol (viv) defined for each vertex 
v E Qo. For a path p = (vla1 · · · azlv'), set s(p) := v and t(p) := v'. 
An ordered pair of paths (Pl,P2) is composable if t(pl) = s(p2). The 
composition of composable paths ((v1la1 · · · azlvD, (v2I,B1 · · · .Bmlvm is a 
path ( v1!a1 · · · a1,81 · · · .Bm lv~). 

The path algebra CQ of a quiver Q is then defined as the C-vector 
space generated by all paths in Q together with the associative product 
structure defined by the composition of paths, where the product of two 
non-composable paths is set to be zero. A quiver with relations is a pair 
( Q, I) where Q is a quiver and I is an ideal of CQ. 

The homological mirror symmetry conjecture between IP'1 and fA 
can be formulated as follows: 
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Fig. 1. The quiver with relations ( Q A, I). The double dotted 
line denotes two linear combinations P1 + p 3 and P2 + 
P3 of three paths P1, P2, P3 from •1 to •~" A, which 
generate the ideal I. 

261 

Conjecture 1 (cf. [11], [32]). There should exist triangulated equiv­
alences 

where ( Q A, I) is the quiver with relations given in Fig. 1. 

The first equivalence Dbcoh(lP'1) c::: Db(mod-CQA/ I) is given by 
Geigle-Lenzing [16] more than twenty years ago. The author observed 
that K 0 (Dbcoh(lP'1)) together with the symmetrized Euler form is iso­
morphic as a lattice to the Milnor lattice of fA computed by Ebeling 
[10] and Gabrielov [15], which leads him to the above conjecture. 

If ai = 1 for some i = 1, 2, 3, Conjecture 1 has been already known 
in different contexts to some experts including Auroux-Katzarkov-Orlov 
[5], Seidel [28], van Straten [31] and Ueda. Also the cases when XA = 0, 
which correspond to simple elliptic hypersurface singularities, are known 
( cf. [5], [13], [33]). 

3.2. Our result 

The following theorem was first stated by the author in 2008. To­
gether with the above known results, it turns out that Conjecture 1 
holds for XA 2 0. 
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Theorem 2. If a3 = 2, we have a triangulated equivalence 

(7) 

The author's contribution to this theorem is the idea to relate the 
polynomial fA with the quiver with relations ( Q A ,I). He learned from 
Seidel that the stable equivalence of the Fukaya categories (Lemma 3) 
follows from results in Section 18 of his book [29]. It is also known 
by Seidel [28] how to calculate Fukaya categories for curve singularities 
based on A'Campo's divide [3], [4] (see Proof of Lemma 4 below). 

Now, we shall give a proof of Theorem 2. 

Proof. For simplicity, we set q = 1 here since DbFuk-+ (gA) does 
not depend on q. Consider the reduction of surface singularities to curve 
singularities. 

Lemma 3. Assume that a3 = 2. Then, we have a triangulated 
equivalence 

(8) 

h ._ ( ) ._ a1 + a2 1 2 2 w ere gA .- gA x1,x2 .- x 1 x 2 - 4x1x 2. 

Proof. Note that fA= gA + (x 3 - ~x 1 x2 ) 2 . The statement follows 
from the stable equivalence of Fukaya categories. See Theorem 2.1 of 
[13] and Section 18 of [29] for example. Q.E.D. 

The problem is reduced to calculate the Fukaya categories for curve 
singularities. The following statement holds: 

Lemma 4. Let f' be a curve singularity and f.L be its Milnor number. 
There exists a distinguished basis of vanishing graded Lagrangian sub­
manifolds £ 1 , ... , £1-' in the Milnor fiber of g such that Fuk-+ (!') (£i, Lj) 
is at most one dimensional complex concentrated in degree 0. 

Proof. See Conjecture 8.1 of [28] proven for n = 1 which states 
an equivalence between Fuk-+ (!') and the Morse category associated 
to f', Section (7 A) and the first half of Section (7 B) of [28] on the 
description of the Morse category for n = 1. We shall explain how 
to calculate morphisms and compositions more in detail after the next 
Corollary. Q.E.D. 

This yields that the derived category DbFuk-+(f') of Fuk-+(f') is 
described by a finite dimensional algebra. 

Corollary 5. There exists a quiver Q and relations I such that 

(9) 
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Proof. It is easy to see that £ 1 , ... , £1-' forms a strongly exceptional 
collection of DbFuk-+ (!'). Then, the functor DbFuk-+ (!') ( EBr=1 Li, -) 
gives the triangulated equivalence between DbFuk-+(J') and Db(mod-E) 
where E is the endomorphism algebra EBtj=1Fuk-+(J')(£i,£j)· Since E 
is a basic finite dimensional <C-algebra, by Gabriel's theorem (see [14]), 
one has a unique quiver Q such that for some relations I the <C-algebra 
<CQ/ I~ E. Q.E.D. 

Here, we give a general recipe to construct a quiver with relations 
from an A'Campo's divide [3], [4], which can be obtained by setting 
n = 1 in Section (7A) of [28]. 

The quiver Q and relations I in Corollary 5 can be described as 
follows: 

(i) Choose a real Morsification h of f'. 
(ii) Draw a picture of h - 1 (0) in JFg_2 . 

(iii) Put a vertex • to each ordinary double point. 
(iv) Put a vertex with a sign EB (8) into each compact connected 

component of JFg_2 \h-1 (0) if his positive (resp. negative) on 
the component. 

( v) Draw 1 arrow ---+ from EB to • (from • to 8) if • is on the 
boundary of the component for EB (resp. 8). 

(vi) Draw 1 dotted line from EB to 8 if there are 2 paths from EB 
to 8, which means a commutative relation between them. 

Note that the pair ( Q, I) depends on the choice of a real Morsification h 
off'. However, it is known that the derived category Db(mod-<CQ/ I), as 
a triangulated category, becomes an invariant of g. Indeed, two different 
choices of pairs ( Q1 , h) and ( Q2 ,I2 ) are connected by a sequence of 
mutations, the braid group action on the set of distinguished basis of 
vanishing cycles, which gives the desired triangulated equivalence. See 
the first half of Section (7 B) of [28] for a typical example of this mutation. 

Now, we give a quiver with relations (Q~,I') for 9A· First, we 
consider the case when XA > 0. After applying suitable mutations to 
( Q~, I'), we obtain the extended Dynkin quiver (the extended Dynkin 
diagram with an arbitrary orientation) of type A ( cf. Fig. 28 and Fig. 
30 in [1]). In the pictures below, o denotes the vertex to remove in order 
to get the finite Dynkin quiver of type A. It is also known by [16] that 
Dbcoh(IP'~) is equivalent to the derived category of the extended Dynkin 
quiver of type A. 

2k 2 1 2 2 
• 9A = X1 +x2- 4X1X2, 

hA := (1 - ~xi) (x2 - 2 n7,:-; (x1 - Ci)) (x2 + 2 n7,:-11 (x1 - Ci) ), 
-2 < C1 < · · · < Ck-1 < 2, 
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• 

~ / 
8 -+----- • ______,.. . . . -+----- • ______,.. 8 

/ ~ 
• 

• g _ x2k+l + x2 _ lx2x2 
A - 1 2 4 1 2' 

hA := (1- ~xi)(x~- 4(x1- co) TI7~11 (x1- ci) 2), 
Co < -2 < C1 < · · · < Ck-1 < 2, 
(i52k+3) : 

• 

• 

0 

/~ / 
EEl - - - - - - 8 -+----- • ______,.. ... -+----- • ______,.. 8 

~/ ~ 
• 

• 

0 

• gA = XT +X~- ~xix~, hA := (x2- ~xi+ 8)(x~- 4(x1 + 8)), 
(E6): 

0 

• -+------ EEl -* • 
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• 9A = xf +x~- ix~x~, hA := (x2- ix~ +2)(x~- 4x~(x1 + 2)), 
(Es): 

Finally, we give an example of a quiver with relations (Q'.4, I') for 
9A with XA ~ 0. Note that the number of vertices, the Milnor number, 
is given by J.LA = a1 + a2 + a3 - 1. 

e fA= X~1 +x~ +x~ -x1X2X3 (a1 ~ 6), J.LA ~ 10: 

By applying suitable mutations, one can show that the derived category 
Db(mod-CQ'.4/ I') is equivalent to Db(mod-CQA/ I). This finishes the 
proof of Theorem 2. Q.E.D. 

§4. Classical mirror symmetry 

In the previous section, we compared triangulated categories. Here, 
we study the mirror symmetry as an isomorphism between the Frobe­
nius manifold from the Gromov-Witten invariants of a variety and that 
from the deformation theory of another variety (in our situation, a sin­
gularity). It is interesting to study this isomorphism since it provides 
quite important information such as the number of curves in the variety 
in terms of the periods for the another. 
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4.1. Frobenius manifolds 
Recall the notion of Frobenius manifolds. The definition below is 

taken from [24]. 

Definition 4.1. Let M = (M, OM) be a connected complex man­
ifold or a formal manifold over <C of dimension J.l whose holomorphic 
tangent sheaf and cotangent sheaf are denoted by TM, Olr respectively 
and let d be a complex number. A Probenius structure of rank J.l and 
dimension d is a tuple (rt, o, e, E), where rt is a non-degenerate OM­
symmetric bilinear form on TM, o is an OM-bilinear product on TM, 
defining an associative and commutative OM-algebra structure with the 
unite, and E is a holomorphic vector field on M, called the Euler vector 
field, which are subject to the following axioms: 

(10) 

(11) 

(12) 

(13) 

(14) 

(i) The product o is self-ajoint with respect to rt : that is, 

(ii) 

(iii) 

(iv) 

(v) 

rt(8oo',8") =rt(8,o'o8"), 8,8',8" ETM· 

The Levi-Civita connection \! : TM ®oM TM -+ TM with 
respect to rt is flat: that is, 

[\! 8, \! o'l = V[o,o'J' 8, 8' E TM. 

The tensor C: TM ®oM TM-+ TM defined by Gao':= 8 o 8', 
( o, 8' E TM) is flat: that is, 

\!C = 0. 

The unit element e of the a-algebra is a \!-flat homolophic 
vector field: that is, 

\!e = 0. 

The metric rt and the product o are homogeneous of degree 
2 - d ( d E C), 1 respectively with respect to Lie derivative 
Lie E of Euler vector field E : that is, 

Liee(rt) = (2- d)rt, Liee(o) = o. 

Consider the space of horizontal sections of the connection \!: 

(15) Tk := {8 E TM I \!o'O = 0 for all 01 E TM} 

which is, due to (11), a local system of rank J.L on M such that the metric 

rt takes constant value on Tk. Namely, we have 

(16) rt(8, 8') E <C, 8, 8' E Tt. 
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Proposition 6. At each point of M, there exist a local coordinate 
(t1, ... , tl-'), called fiat coordinates, such that e = 81, Tlr is spanned by 
81' ... 'aJ.L and ry( ai, aj) E c for all i, j = 1, ... 'p,, where we denote a I 8ti 
by ai. 

The axiom \!C = 0, implies the following: 

Proposition 7. At each point of M, there exist the local holomor­
phic function F, called Frobenius potential, satisfying 

for any system of fiat coordinates. In particular, one has 

(18) 

The associativity of the product o implies the following Witten­
Dijkgraaf-Verlinde- Verlinde ( WDVV) equations: 

Proposition 8. One has 

J.L 
(19) L aiajaaF ·"lab · abakazF 

a,b=1 
J.L 
L aiakaaF. "lab. abaj8zF, i,j, k, l = 1, ... 'p,, 

a,b=1 

where (ryab) := (Ttab)- 1. 

Recall the intersection form of Frobenius manifold ( cf. Lecture 3 of 
[8]). 

Definition 4.2. The intersection form of the Frobenius manifold is 
a symmetric OM-bilinear form I on the cotangent sheaf Dlt defined by 
the formula 

1-' 

(20) I(dti,dti) := L Tfikryi1E(8k81F), i,j = 1, ... ,p,. 
k,l=1 

4.2. Three constructions of Frobenius manifolds 

There are essentially three constructions of Frobenius manifolds 
from completely different origins; the theory of Gromov-Witten invari­
ants, the invariant theory of Weyl groups and the theory of primitive 
forms. 
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4.2.1. Gromov-Witten Theory for JP'~ to Frobenius Manifolds For 
g E Z>o, n E Z>o and (3 E H2 (1P'~, Z), the moduli space (stack) 
M9,n(P~, (3) of orbifold (twisted) stable maps of genus g with n-marked 
points of degree (3 is defined by Chen-Ruan [6] in symplectic geometry 
and later by Abramovich-Graber-Vistoli [2] in algebraic geometry. It is 
shown that there exists a virtual fundamental class [M9,n(1P'~, (3)Jvir and 
Gromov-Witten invariants of genus g with n-marked points of degree (3 
are defined as 

(21) ( ) lP'~ ·-1 * * 'Y1, ... , 'Yn g,n,(J .- _ . ev1 'Y1 1\ ... evn 'Yn, 
[Mg,n (JP'~ ,{J)]v•r 

'Y1, .. ·,'Yn E H;rb(JP'~,Q), 

where ev; : H;rb(JP'~, Q) ---t H* (M9,n(1P'~, (3), Q) denotes the induced 
homomorphism by the evaluation map at i-th marked point. Then, we 
consider the generating function 

{LA 

(22) t = L.::tni 
i=1 

and call it the genus g potential where { -y1, ... , 'Y f!A} are Q-basis of 
H;rb(JP'~, Q) and {t1, ... , tf!A} are the dual coordinates of the C-basis 
h1' · · · ' 'Y f!A} of H;rb (lP'~' C) = H;rb (lP'~' Q) ®IQ C. 

The main result in [2], [6] is the associativity of the quantum prod­
uct, which yields a Frobenius manifold. 

Theorem 9 (Theorem 6.2.1 of [2], Theorem 3.4.3 of [6]). One has 

the WDVV equation for F~~. In particular, there is a structure of a 
formal Frobenius manifold Mp1 of rank f.LA and dimension one where 

A 

Mp1 is a formal manifold whose structure sheaf 0 M 1 and tangent sheaf 
A ~ 

fM 1 are defined as the algebra C( ( et"A)) [[t1 , ... , tf!A _1]] and fM 1 := 
~ ~ 

H;rb(JP'~, C) ®c OM 1 where tf!A is a dual coordinate corresponding to 
II' A 

the one-dimensional subspace H;rb (JP'~, Q). 

Remark 10. By the divisor axiom of the Gromov-Witten invari­

ants, the "quantum part" of the potential Fa~ 

"" 1 p1 ~ n! (t, .. . , t)o;;,,fJ 
n,(J#-0 

is an element of C[[t1, ... , tf!A-1, et"A ]]. Note that this formal series 
may not converge and hence, in order to get a Frobenius manifold, we 
have to assume the convergence of it on some domain in H;rb(JP'~, C). 
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I 
• 

I 

Fig. 2. The Coxeter-Dynkin diagram TA 

In this paper, for simplicity, instead of assuming the convergence 
we consider the formal Frobenius structure for the one constructed from 
Gromov-Witten invariants. 

However, in our case, it turns out that the quantum product do con­
verge (on some domain) due to the mirror isomorphism Corollary 19 
since the Frobenius potential from the universal unfolding is holomor­
phic. 

4.2.2. Extended Weyl Groups WA to Frobenius Manifolds Let TA 
be the Coxeter-Dynkin diagram given in Fig. 2. Note that it can be 
embedded into a sub-diagram of the Coxeter-Dynkin diagram for the 
quiver with relations (QA, I) in Fig. 1. 

Let lJA be the complexified Cartan subalgebra associated to TA. 
Denote by all ... , ai-'A _ 1 E [JA_, [JA_ := Home((), C) the simple roots and 
by a¥, ... , a~A _1 E lJA the simple coroots. The Weyl group WA is a 
group generated by the reflections 

(23) ri(h) := h- (ai, h) a{, h E lJA, i = 1, ... , JLA- 1, 

where (,) denotes the natural pairing (,) : [JA_ ®c lJA ---+C. 
From now on, we assume that XA =/= 0. Note that under the as­

sumption XA =/= 0 the Cartan matrix for T A is non-degenerate. Set 
~A:= lJA x C. The affinization WA of WA acts on ~A by 

JLA -1 

(24) (h,xJLA)r-t(w(h)+ L mia{,xJLA), miEZ, 
i=1 
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and Z acts on lJA by 

(25) (h, x,..A) r-+ (h + mw'(, x,..A - m), mE Z, 

where w'(, ... ,w~A-1 denotes the fundamental coweights, the elements 
of lJA sarisfying (ai,wj) = Oij (where Oij is the Kronecker's delta). 

It is important that WA is isomorphic to the Weyl group w(QA,I) 
associated to the Coxeter-Dynkin diagram for the quiver with relations 
(QA, I), where (all a~A), the entry of the Cartan matrix corresponding 
to the double dotted line, is +2. 

Then, WA is defined as a group acting on ~A generated by WA and 
Z with the above actions on ~A· In particular, one has the following 
exact sequence 

(26) 

By the invariant theory of WA, Dubrovin-Zhang [9] give the follow-
ing: 

Theorem 11 (Theorem 2.1 of [9]). Assume that XA > 0. There 

exists a unique structure of Probenius manifold on Mw A := ~A/WA of 
rank f.lA and dimension one with flat coordinates t1, h,1, ... , h,a1 -1, 

t2,1, ... , t2,a2 -1, t3,1, ... , t3,aa-1, t,..A := (2nH)x,..A such that 

8 8 3 a;- 1 ai - j 8 8 
e=~, E=t1~+L:L:--ti,j~+XA~, 

u~1 ut1 i=1 j=1 ai uti,j ut,..A 

and the intersection form I w A is given by 

(27) 

(28) 

(29) 

where we identify the cotangent space of MwA with lJA. EB!Cdx,..A. 

If XA = 0, then w A is defined as a certain extension of the elliptic 
Weyl group, which is WA ~ w(QA,I)l and ~A := ICI-'A-1 X lHI where 
lHI := {T E IC I Im(T) > 0}. Kyoji Saito and Satake construct a structure 
of Frobenius manifolds on the orbit space. We omit the details here and 
refer the reader to [23], [26] for the elliptic root systems, Weyl groups 
and the construction of Frobenius manifolds. 
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Theorem 12 ([23], [26]). Assume that XA = 0. There exists a 

structure of Frobenius manifold on MwA := ~A/WA of rank f.LA and 
dimension one. 

For XA < 0, the construction has not yet been succeeded and it is 
one of most important problems. 

4.2.3. Universal Unfolding of fA to Probenius Manifolds We refer 
the reader to [24] for the introduction to the theory of primitive forms. 
We follow the definitions and the terminologies described in [24]. 

Consider a universal unfolding FA of fA given by 

where we identify the parameter q in fA with the deformation parameter 
si-'A E C\{0}. 

Remark 13. Let t1, t1,1, ... , t3,a3 -1, ti-'A be fiat coordinates associ­
ated to the primitive form (A given below, where ti-'A is a fiat coordinate 
of degree 0. The deformation parameter si-'A will turn out to be expressed 
as 

(31) 

where s(t) is a convergent power series in t1,1, ... , t3,a3 -l, et""A which is 
invertible, is of degree zero (namely, one has Es( t) = 0 for the Euler 
vector field E) and, in particular, takes value 1 if t1,1 = · · · = t3,a3 -l = 
0. 

Therefore, if XA > 0, we shall always identify the parameter q (and 
si-'A) with et~"A from the first. 

In order to define a notion of a primitive form, one needs to con­
struct the filtered de Rham cohomology group 1-lFA, the Gauss-Manin 
connection \7 on 1-lFA and the higher residue pairings KFA on 1-lFA. 

If XA > 0, this is given by Sabbah [7], [21] since FA is tame at 
any point on the parameter space, namely, there are no critical points 
coming from infinity. 

If XA :S: 0, this is a classical result developed by Kyoji Saito [22]. 
Therefore, it is possible to ask the existence of a primitive form. We 
have the following: 
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Theorem 14 (Ishibashi-Shiraishi-Takahashi [18]). For the univer­
sal unfolding FA, there exists a unique primitive form (A E HFA with 
the minimal exponent one such that 

(32) 

where (A is the residue of the formal Fourier-Laplace dual of (A along 
{FA = 0} and /o is the 2-cycle in the Milnor fiber ofF A corresponding 
to the 3-cycle ro := {Jx1J = Jx2J = Jx3J = 1} c C3. 

In particular, if XA > 0, one has 

(33) 

(34) 

Proof. If XA > 0, we can show the statement by the similar method, 
counting degrees of higher residue pairings with respect to the Euler vec­
tor field, with some calculations as the one used for the ADE singularities 
and simple elliptic singularities ( cf. [22]). The details will be given in 
[18]. 

If XA ~ 0, the statement is an easy consequence of Morihiko Saito's 
existence theorem of primitive forms for germs of isolated hypersurface 
singularities [25]. In particular, (A is uniquely determined by the equa­
tion (32). Q.E.D. 

Once we have a primitive form, we obtain a Frobenius manifold. 

Corollary 15. For a universal unfolding FA off A, there exists a 
structure of a Probenius manifold of rank J.LA and dimension one on the 
base space of the universal unfolding. 

Proof. This is obvious from Theorem 7.5 of [24]. Q.E.D. 

4.3. Classical mirror conjecture 

It is natural to expect the following Conjecture from the homologi­
cal mirror symmetry (Conjecture 1) since the spaces of stability condi­
tions for the triangulated categories Dbcoh(lP'1), Db(mod-CQA/I) and 
DbFuk-+ (fA) should be naturally isomorphic and they should also carry 
natural Frobenius structures. 

Conjecture 16 ( cf. [27]). There should exist isomorphisms of 
Frobenius manifolds between 
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• MIP1 , the one constructed from the theory of Gromov-Witten 
A 

invariants for lP'~, 
• MwA, the one (that should be) constructed from the invariant 

theory of the extended Weyl group WA associated to the quiver 
with relations ( Q A, I), 

• MJA,(A, the one constructed from the universal unfolding of 
fA by the primitive form (A. 

Conjecture 16 is known to hold if ai = 1 for some i = 1, 2, 3 by 
Milanov-Tseng [19] and if XA > 0 by Rossi [20]. The next case to 
consider is when XA = 0, in other words, the case when the polynomial 
fA defines a simple elliptic singularity. 

4.4. Our results 

First, we state our result for the cases when XA = 0. 

Theorem 17 (Satake-Takahashi [27]). Assume that XA = 0. We 
have the following isomorphisms of Frobenius manifolds 

(35) 

where MwA denotes the Frobenius manifold constructed from the invari­
ant theory of certain extension of the elliptic Weyl group of the corre­
sponding type in [23], [26]. 

Moreover, the genus zero Gromov-Witten potential Fo1 and the 

genus one Gromov-Witten potential 1{1 are expressed by quasi-modular 
forms. 

Motivated by the proof of Theorem 17, we obtain the following 
uniqueness theorem for Frobenius manifolds. Note that we do not need 
any assumptions on XA· 

Theorem 18 (Ishibashi-Shiraishi-Takahashi [17]). There exists a 
unique formal Frobenius manifold M of rank f.LA and dimension one 
with fiat coordinates (t1, t1,1, ... , t3,aa-1, tMA) satisfying the following 
conditions: 

(i) The unit vector field e and the Euler vector field E are given 
by 

f) f) ~ ~1 a· - j f) f) 
e = fJtl , E = tl- + L....- L....- -'--ti,j -- + XA --. 

fJh i=l j=l ai fJti,j fJtMA 
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(ii) The non-degenerate symmetric bilinear form 7] on TM satisfies 

(iii) The Frobenius potential F satisfies EFit,=O = 2Fit,=O, 

(iv) Assume the condition (iii). The restriction of the Frobenius 
potential F to the submanifold { t 1 = et"A = 0} is given as 

Flt,=e'~'A =0 = g(l) + Y(2) + Y(3)' 

where Q(i) E C[[ti.l, ... , ti,a; -1]], i = 1, 2, 3. 

(v) Assume again the condition (iii). In the frame a~,, at~.,, ... , 

-at a , ata ofTM, the product o can be extended to the limit 
3,a3-1 f-LA 

t1 = t1,1 = · · · = t3,a3 -1 = et"A = 0. The C-algebra obtained 
in this limit is isomorphic to 

where 8j8t1,1,8/8t2,1,8/8t3,1 are mapped to X1,X2,X3, re­
spectively. 

(vi) The term 

{

et"A if a1=a2=a3=1, 

t3,1et~'A if 1 = a1 = a2 < a3, 

t2,1t3,1et"A if 1 = a1 < a2, 

h,1t2,1t3,1et"A if a1 2': 2, 

occurs with the coefficient 1 in F. 

Actually, the condition (iv) follows from others if A # (1, 2, 2) or 
A # (2, 2, r), r ;::: 2. If A = (1, 2, 2) or A = (2, 2, r), r ;::: 3, then we 
only have to assume instead of the condition (iv) the weaker and more 
natural one 

(iv') If ai, = ai2 for some i 1 , i 2 E {1, 2, 3}, then the Frobenius 
potential F is invariant under the permutation of parameters 
tid and ti 2 ,j (j = 1, ... , ai, ~ 1). 
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The proof of Theorem 18 is done by solving the WDVV equations 
together with the above conditions. Write the Frobenius potential re­
stricted to { h = 0} as 

Define the length Ia I of a multi-index a= (a1,1, ... , a3,a3 -d by lal ·­

a1,1 + · · · + a3,ae-1· We show the uniqueness of the solution of the 
WDVV equations by induction on the pair (lal, m). 

Theorem 18 enables us to simplify the proofs given by Milanov­
Tseng [19] and Rossi [20] and to generalize them to the case XA ::;; 0. 

Corollary 19 ([18], [30]). We have an isomorphism of Frobenius 
manifolds 

(36) 

Proof. We check that both constructions satisfy the conditions in 
Theorem 18. 

For MlP'1, we can easily show the conditions (See Section 4 of [17] for 

details). We can choose a Q-basis of H~rb(lP'1, Q) whose dual coordinates 
satisfy the conditions (i) and (ii). The condition (iii) is clearly satisfied 

by the definition of the genus zero potential F~~. The condition (iv) 
is satisfied since the image of degree zero orbifold map with marked 
points on orbifold points on the source must be one of orbifold points 
on the target lP'1. The condition ( v) follows from the description of the 
orbifold cohomology ring. The condition (vi) follows from the fact that 
the corresponding Gromov-Witten invariant is one, that is, the fact that 
a degree one map fixing three orbifold points is necessarily the identity. 

On the other hand, for MJA,(A, we can show the conditions by the 
careful study of the behavior of the Jacobian ring and the residue pairing 
at the limit et,,A --+ 0. Here, we shall explain the outline of the proof. 
The detail is given in [18] for the case XA > 0 and will be given in [30] 
for the case XA ::;; 0 . 

Since the Jacobian ideal of FA is given by 

( 7) /c(1) -1 G(2) -1 G(3) -1 ) 3 \ A - 81-'A X2X3, A - 81-'A X1X3, A - 81-'A X1X2 , 

where 

(38) 
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the Jacobian algebra of FA, a free OMt c -module of rank /JA with an A•>A 
OMJA,,A -bilinear multiplication, can be extended to the limit si"A -+ 0 

by choosing the frame {1,xi(i = 1,2,3,j = 1, ... ,ai -1),s~lx1x2x3}. 
This is the key fact for the Frobenius structure on MJA,(,A. 

The condition (i) is satisfied since we can choose flat coordinates 
t1, t1,1, ... , t3,a3-1, ti"A satisfying the following properties: 

(39) 

• e = a;asl = a;atl and a;ati,j (i = 1, 2, 3,j = 1, ... ai- 1) 
are eigenvectors of the Euler vector field E given by 

• ti,j (i = 1,2,3,j = 1, .. . ai -1) are normalized as 

asi,j ( t ) -- -+ (5 .. u5 ' t1 = t1 1 = .. · = t3 -1 = 0 e ~"A -+ 0 Ot ., ., ~'L JJ ' ,a3 ' ' 
2 ,J 

• The equation (31) hold. 

The condition (iii) follows since Flt1 =o can be extended holomorphi­
cally to si"A = 0, which implies Flt1 =o also can be extended holomor­
phically to et"A = 0 by the equation (31). The condition (iv) is satisfied 
since by putting et"A = 0 in the extended Jacobian algebra we have the 
quotient algebra of C[[s1, s1,1, ... , s3,a3-1]][x1, x2, x3] by the ideal 

(40) (xlx2,X2X3,X3X1,X1G~)- x2G~),x2G~)- X3G~)) 

again by the equation (31). By the property of flat coordinates (39), we 
have exactly the ([>algebra in the condition (v) after putting h = t 1,1 = 
· · · = t3,a3-l = 0. 

We can show that the restriction of [(A] E Op (see [24] for the defini­
tion of Op ), to the subvariety of MJA,(,A defined by an ideal generated by 
s1 = s1,1 = · · · = s3,a3-1 = 0 is given by [e-t~"Au(et"A )dx1 1\ dx2 1\ dx3] 
due to the homogeneity condition and the normalization (32) for the 
primitive form, where u(et"A) is a convergent power series in et"A of de­
gree zero such that u(O) = 1. Note here that si"A = et~"As(et"A) on the 
subvariety, where s(et"A) is again a convergent power series in et"A of 
degree zero such that s(O) = 1. Therefore, a verification of the condition 
(ii) can be reduced to the calculation of the following 
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for ¢(x1,Xz,x3) E {1,xi(i = 1,2,3,j = 1, ... ,ai -1),e-t~'Ax 1 x2x3 }, 
which turns out to be non-zero only if ¢(x1,x2,x3) = e-t,Ax1x2x3. By 
the property of flat coordinates (39) together with the relations (37) in 
which we put 81 = 81,1 = · · · = 83,a3 -1 = 0, we have the condition (ii). 

Note that the coefficient of the term et"A (if a 1 = a2 = a3 = 
1), t3,1et"A (if 1 = a1 = a2 < a3), tz,1t3,1et"A (if 1 = a1 < a 2 ), 

t1,1 t2,1 t3,1 et"A (if a1 2': 2) is given by the limit 

l. ( -t a3 F I ) "f > 2 lm e I'A a a a 1 a1 _ , 
e'I'A -+0 t1,1 t2,1 t3,1 t1 =ft l=···=t3 a _ 1 =0 

' • 3 

which is always reduced to the calculation of the limit of the reidue 

(42) e'~~m-+0 (e-t"A ·e-zt,AResc3xiC*/IC* [x 1 x2;;:x~;Ad~2f:dx3]), 
ax1 axz ax3 

where we use that g{.~ =Xi, (i = 1, 2, 3) and the equations (31), (37) 
and (39). We obtain the condition (vi). Q.E.D. 

We also have the following uniqueness theorem, which may be known 
for experts. We refer to Theorem 2.1 of [9] and Proposition 5.2 of [26] 
for the relevant statements. 

Theorem 20 ([30]). A Frobenius manifold of rank J.L and of di­
mension one with the following e and E is uniquely determined by the 
intersection form I : 

(43) 
a a 3 ai-l ai - j a a 

e= ~' E=tr~ + L L --ti,j~ +XA~· ut1 ut1 . . ai uti J. ut, 
2=1 J=l , "" 

Proof. We use the following relation between the product o and 
the intersection form I : 
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Lemma 21. Denote by r~ the contravariant component of the Levi­
Civita connection for the intersection form I. Then, one has 

(44) 

where dj is a rational number defined by E( tj) 
-.;;;-'f.l ia jbC 
L...a,b=l T/ T/ kab · 

Proof. See Lemma 3.4 of [8] and apply d = 1. Q.E.D. 

One sees that C~j can be reconstructed from the intersection form 
if dj # 0. Since d = 1, dj = 0 if and only if j = f-i· However, we have 

(45) 
f.l 

C if.l "'"""' ia f.lbC s:i k = ~ T/ T/ kab = uk 
a,b=l 

(Kronecker's delta). 

Therefore, Cijk and hence the Frobenius potential F can be uniquely 
reconstructed from the intersection form. Q.E.D. 

By Theorem 20, it is now possible to give an isomorphism of Frobe­
nius manifolds between MwA and MJA,(A : 

Corollary 22 ([30]). Assume that XA > 0. We have an isomor­
phism of Frobenius manifolds 

(46) 

Proof. We only have to calculate the intersection form for MJA,(A 
and hav:_ to identify it with the one for MWA. 

Let fJA be the complexified Cartan subalgebra of the loop Lie algebra 
of type A. Note that, by the results in Section 3, the Milnor lattice of 
fA is isomorphic to the affine root lattice in ~A:= Homc(~A, C). 

Lemma 23. Denote by i5 E fJ:4 the generator of the imaginary root. 
Then, one has the isomorphism of affine spaces 

(47) 

which is compatible with the action of the affine Weyl group WA on both 
sides, where the action on the LHS is defined by (see (24)) 

f.lA-1 

(48) h c-+ w(h) + L miaj, mi E Z, 
i=l 

and the one on the RHS is the natural one. 
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Proof Some elementary calculations yield the statement. Q.E.D. 

Therefore, by identifying 8 and the 2-cycle 'Yo in the Milnor fiber, we 
see that lJA can be identified as the period domain of the period mapping 

(49) 

Moreover, there is a formula of intersection numbers for cycles in the 
Milnor fiber: · 

Lemma 24. One has 

= (ai,a'j), i,j = 1, ... ,J-LA -1, 

where we identified simple roots ai, aj E f) A_ with the corresponding ho­
mology classes. 

Proof See Theorem 3.4 in [22] (((~-k- 1 ) must be ((n-k-1) in the 
reference). Q.E.D. 

By this Lemma and the identification ( 49), a part of the intersection 
form If A ,(A for M !A ,(A can be calculated as 

Recall that the coordinates xJ.LA and tJ.LA on MwA are related by tJ.LA = 
(2n;=T)xJ.LA. By Proposition 2 in Section 5.4 of [22], it is easy to check 
that 

( 1 ( 1 -) dt/-LA ) (52) IfA,(A (2n;=T)2 d a; (A ' (2n;=T) = 0, 

i = 1, ... , /-LA - 1, 

where tJ.LA denotes the J-LA-th flat coordinate on MJA,(A. 
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It is also easy to see from the definition of the intersection form that 

(53) 

This completes the proof of Corollary 22 . Q.E.D. 
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