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For a compact singular variety V, there are several definitions of 
Chern classes, the Mather class, the Schwartz-MacPherson class, the 
Fulton-Johnson class and so forth ([BrSc], [Fl, [FJ], [Ml, [Sell, see also 
[Al], [BLSS], [PP] and [Y] for recent developements). They are in the 
homology of V and, if Vis non-singular, they all reduce to the Poincare 
dual of the Chern class c*(TV) of the tangent bundle TV of V. On 
the other hand, for a coherent sheaf F on V, the ( co homology) Chern 
character ch*(F) or the Chern class c*(F) makes sense if either V is 
non-singular or F is locally free. In this article, we propose a definition 
of the homology Chern character ch*(F) or the Chern class c*(F) for a 
coherent sheaf F on a possibly singular variety V. In this direction, the 
homology Chern character or the Chern class is defined in [Sc2] (see also 
[Kl) using the Nash type modification of V relative to the linear space 
associated to the coherent sheaf F. Also, the homology Todd class T(F) 
is introduced in [BFM] to describe their Riemann-Roch theorem. Our 
class is closely related to the latter. 

The variety V we consider in this article is a local complete inter­
section defined by a section of a holomorphic vector bundle over the 
ambient complex manifold M. If F is a locally free sheaf on V, then 
the class ch*(F) coincides with the image of ch*(F) by the Poincare 
homomorphism H*(V) ----, H*(V). This fact follows from the Riemann­
Roch theorem for the embedding of V into M, which we prove at the 
level of Cech-de Rham cocycles. We also compute the Chern character 
and the Chern class of the tangent sheaf of V when V has only isolated 
singularities. 

In section 1, we discuss characteristic cocycles in the Cech-de Rham 
complex and define local Chern classes and characters in the Cech-de 
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Rham cohomology. We prove a lemma which gives an explicit relation 
between the cocycle for the product of two symmetric series and the 
product of cocycles for these series (Lemma 1.5, also Proposition 1.6), 
which is fundamental in the proof of the Riemann-Roch theorem at the 
cocycle level. In section 2, we describe the Thom class of the variety V 
in Mas above and, in section 3, we prove the Riemann-Roch theorem 
mentioned above (Theorem 3.1, Corollaries 3.4 and 3.5). In section 4, 
we introduce the homology Chern character for a coherent sheaf on V 
(Definition 4.1). For this definition, we only need that V be a local com­
plete intersection. Finally in section 5, we compute the Chern character 
and the Chern class of the tangent sheaf of V (Theorem 5.1). 

I would like to thank J.-P. Brasselet and D. Lehmann for helpful 
conversations. 

§1. Local Chern classes and characters in the Cech-de Rham 
cohomology 

As to the theory of characteristic classes, we use the Chern-Weil 
theory modified to fit in the framework of Cech-de Rham cohomology. 
For the Chern-Weil theory of characteristic classes of vector bundles, we 
refer to [BB], [Bo] and [MS]. For the background on the Cech-de Rham 
cohomology, we refer to [BT]. The integration and characteristic classes 
in this cohomology theory are first studied in [Lel-4]. See also [Su2] 
for these material. They are also briefly summarized in the section 1 of 
[Su3] and we freely use the notation and facts there, except we indicate 
cohomology Chern classes by superscripts in this article. 
(A) Characteristic forms 

Let M be a C00 manifold of dimension m and let (TJli' M)c be the 
complexified cotangent bundle of M. For a C 00 complex vector bundle 
E over M, we denote by AP ( E) the vector space of sections of the bundle 
AP(TJli' Mf © E on M. Recall that a connection 'v for E is a linear map 
A0 (E) ----+ A1(E) satisfying the Leibniz rule. Let K be the curvature of 
'v, which is an element in A2 (End(E)). We set A= (H/21r)K and 
define 

(1.1) 

c*('v) = det(/ + A), 

ch*('v) = tr(eA), 

td('v) = det (/-~-A)· 
Note that I - e-A is divisible by A and the result is invertible so that 



Characteristic classes of coherent sheaves on singular varieties 281 

also makes sense. If we denote by ci (v') the homogeneous piece in c* (v') 
of degree i in the entries of A, it is a closed 2i-form on M and its class 
[ci(v')] in the de Rham cohomology H 2i(M; q is the i-th Chern class 
ci ( E) of E. The class of c* (v') in H* ( M; C) is the total ( cohomology) 
Chern class c*(E) of E. If we set si(v') = tr(Ai), then it is a closed 
2i-form on M. Denoting by r the rank of E, we have 

r 

c*(v') = i + I>i<v) 
i=l 

and 
si(v') 

ch*{v') = r + I:-.1-. 
i~l i. 

The forms ci = ci(v') and si = si(v') are related by Newton's formula : 

{1.2) i - c1i-1 + c2i-2 - • • • + {-l)iici = 0, i ~ 1. 

The class of ch*{v') in H*(M; q is the (cohomology) Chern character 
ch*{E) of E. Each homogeneous piece of td(v') is also closed and the 
class oftd(v') in H*(M;C) is the Todd class td{E) of E. Note that the 
constant term in td{v') is 1 and that td{v') can be expressed as a series 
{in fact a polynomial) in ci(v'). We hare the following fundamental 
formula (HL, III, Corollary 5.4] : 

r 

{1.3) L{-l)ich*{Aiv'v) = td-1(v'). cr(v'), 
i=O 

where y7v denotes the connection for Ev dual to v' and Aiv'v the con­
nection for AiEv induced by y7v_ Here we set A0Ev = M x C (the 
trivial line bundle) and A0v'v = d. See, e.g., (H, Theorem 10.1.1] for 
the above formula in cohomology. 

Lete = }:f=0 (-l)iEi be a virtual bundle and y7• = (v'(q), ... , v<0>) 
a family of connections, each y'(i) being a connection for Ei- We set 

q q 

c*(v'•) = IJ c*(v'(i)t(i) and ch* (v'•) = L(-l)i ch* (v'(i)), 
i=O i=O 

where t:(i) = (-l)i. Ifwe denote by ci = ci(v'•) and si/i! = si(v'•)/i! 
the homogeneous pieces of degree 2i in c* (v'•) and ch* (v'•), respectively, 
they are again related by {1.2). More generally, if cp = cp(c1 , c2, ... ) is 
a series in ci (we call such a series a symmetric series), we set cp(v'•) = 
cp( c1 (v'•), c2 (v'•), ... ) . Then it is a closed form and its class cp( e) in 
the cohomology ring H* ( M; C) is the characteristic class of e with re­
spect to cp. Suppose further that we have two families of connections 
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v'~ = (v'~q), ... , v~0\ v = 0, 1, for e. Then, we have a form <p(v'li, v'i) 
alternating in (v'0, v'i) such that 

(1.4) d<p(v'o, v'i) = <p(v'i) - <p(v'o), 

which shows that the class <p( e) does not depend on the choice of family 
of connections. We recall the construction of <p(v'0, v'i) for later use 
((Bo, p.65], {Su2, Ch.II, (8.2)]). Thus, for each i = 0, ... , q, we consider 
the vector bundle Ei x R. --+ M x R. and let 'y'(i) be the connection for 
it given by 'y'{i) = (1 - t)v'~i) + tv'ii). We set v· = ('v'(q), ... , v<0>). 
Denoting by 1r* the integration along the fibers of the projection 1r : 
M x (0, 1] --+ M, we define <p(v'0, v'i) = 1r*<p(V•). Note that the "higher 
difference forms" for more than two families of connections are con­
structed similarly. 

Now we prove a lemma which will be used in the next paragraph to 
describe explicitly the difference between the cocycle for the product of 
two symmetric series and the product of cocycles for these series. Note 
that <p'I/J(v'•) = <p(v'•)·'I/J(v'•), for symmetric series <p and 1/J and a family 
of connections v·. 

Lemma 1.5. In the above situation, for two symmetric series <p 
and '1/J, we have 

<p'I/J(v'o, v'i) = <p(v'o) · 1/J(v'o, v'i) + <p(v'o, v'i) · 1/J(v'i) - dro1, 

where 

To1 = 1r*(<p(1r*v'o, v·) · d'I/J(1r*v'i, v•n. 

Proof. By definition, the left hand side is equal to 1r*(<p(V•)·'I/J('v'•)) 
and the sum of the first two terms in the right hand side is equal to 

We have 

<p(v·) · 1/J(v·) - (<p(1r*v'o) • 1/J(v·) + <p(v·) • 'I/J(1r*v'i)) 

= d<p(1r*v10, v·). d'I/J(1r*v'i, v·) - 1r*(<p(v'o). 1/J(v'i)). 

If we denote by i the embedding of the boundary {0, 1} of (0, 1] into 
(0, 1] and by 81r the restriction of 7r to {0, 1}, the lemma follows from 
the identities 1r* o 1r* = 0, 
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[Bo, (3.10) Theorem] and 

(a1r)* o i*(<p(1r*vo, v·). d?fa(1r*Vi, v·)) 
= <p(Vo, Vi) · d?j,(Vi, Vi) - <p(Vo, Vo)· d?fa(Vi, Vo) = 0. 

Q.E.D. 

(B) Characteristic cocycles in the Cech-de Rham complex 
Let M be as above. For an open covering U of M, we denote by 

(A*(U), D) the Cech-de Rham complex associated to U [Su2, Ch.lI,3]. 
The complex defines the Cech-de Rham cohomology H*(A*(U)), which 
is canonically isomorphic with the de Rham cohomology H*(M; C). We 
recall this cohomology when U consists of two open sets Uo and U1 (the 
"Mayer-Vietoris situation"). In this case, a cochain a in AP (U) is written 
as 

a= (ao, a1, 0-01), 

where ao and 0-1 are r-forms on Uo and U1, respectively, and 0-01 is an 
(r-1)-form on U01 = UonU1, and the differential D: AP(U)--+ AP+l(U) 
is given by 

Da = (dao, da1, a1 - ao - do-01). 

The Cech-de Rham cohomology is also equipped with the cup product, 
which is defined on the cochain level by assigning to a in AP(U) and r 
in Aq (U) the cochain a ..__, r in AP+q (U) given by 

a..__, r = (ao · ro, a1 · r1, {-l)Pao · ro1 + 0-01 · r1), 

where the product is the exterior product. The cup product is compat­
ible with the usual one in H*(M; C). 

If e = Et=o ( -1) i Ei is a virtual bundle, we take a family of con­
nections v~ = (V~q), ... , v~0)) fore on each u.,, v = o, 1, and for the 
collection v: = (V0, Vi) and a symmetric series <p, we define the cochain 
<p(V:) in A*(U) by 

<p(V:) = (<p(Vo), <p(Vi), <p(Vo, Vi)). 

Then by {1.4), <p(V:) is a cocycle and defines a class (<p(V:)] in H*(A*(U)). 
It does not depend on the choice of the collection of families of con­
nections v: and corresponds to the class <p(e) under the isomorphism 
H*(A*(U)) ~ H*(M; C). 

From Lemma 1.5, we have the following : 

Proposition 1.6. For two symmetric series <p and ?p, we have, in 
A*(U), 
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where 7 = (0, 0, 7o1) with 7o1 a form on U01 as given in Lemma 1.5. 

In the sequel, we use the above formula only for a collection V * = 
(VO, V 1) of connections for a single vector bundle. 
( C) Localization 

In this paper, we consider the following two types of localizations : 
( I ) localization of the top Chern class of a vector bundle by a non­
vanishing section, 
and 
(II) localization of the Chern classes of a virtual bundle by exactness. 

To describe these, let M be as above and let V be a closed set in 
M. Letting U0 = M\ V and U1 a neighborhood of Vin M, we consider 
the covering U = {Uo, Ui} of M. We set 

AP(U, Uo) = { O" E AP(U) I O"o = 0 }. 

Then A*(U, Uo) is a subcomplex of A*(U) and the cohomology it defines 
is canonically isomorphic with the relative cohomology H*(M, M\ V; <C). 
Note that the cup product of a cochain in A*(U) and a cochain in 
A*(U, Uo) is in A*(U, U0 ) and this induces a natural H*(M; <C)-module 
structure on H*(M, M \ V; <C). 

Remark 1. 7. In the situation of Proposition 1.6, if -ip(V:) is in 
A*(U, Uo), i.e., if '¢(V0) = 0, then so is t.p-ip(V:), since t.p-ip(V0) = 
t.p(V0) · '¢(V0). The proposition shows that the class t.p-ip(t) coincides 
with t.p(t) ,._., '¢(t) in H*(M, M \ V; <C), since 7 is also in A*(U, Uo)-

We start with the type (I). Thus let E be a vector bundle of rank 
r over M and s a non-vanishing section of E on U0 . We say that a 
connection V for E is s-trivial if Vs = 0. Recall that, for an s-trivial 
connection V, we have er (V) = 0 (Su2, Ch.II, Proposition 9.1]. Let V 0 

be an s-trivial connection for E on U0 and V 1 an arbitrary connection 
for E on U1. The top Chern class cr(E) of E is represented by the 
cocycle 

er (V *) = (er (Vo), er (V 1), Cr (VO, V 1)) 

in A 2r (U). Since Vo is s-trivial, we have er (VO) = 0 and er (V *) is in 
fact in A2r(U, U0 ). Thus it defines a class in H 2r(M, M \ V; <C), which 
we denote by cr(E, s). It is sent to the class cr(E) by the canonical 
homomorphism 

j*: H 2r(M,M\ V;<C) - H 2r(M;<C). 

It does not depend on the choice of the s-trivial connection VO or on the 
choice of the connection V1. We call cr(E, s) the localization of cr(E) 
with respect to the section s. 
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For the type (II), let 

(1.8) 
ho h1 

0--+Eq--+···--+Eo--+0 

be a complex of C 00 complex vector bundles over M which is exact on 
U0 . Then we will see below that, for each i > 0, there is a canoni­
cal localization ci,(t) in H 2i(M, M \ V; <C) of the Chern class ci(t) in 
H 2i ( M; <C) of the virtual bundle t = I:i=o ( -1) i Ei. 

Following [BB], we say that a family of connections 
v7• = (v'(q), ... , v7(o)) fort is compatible with the sequence (1.8) if, for 
each i = 1, ... , q, the following diagram is commutative : 

A0 (Ei) 
v<•> 

A 1(Ei) -
h;l l l®h, 

A0 (Ei-1) 
v<•-lJ 

A1(Ei-1)--
Note that for a given exact sequence, there is always a family v7• of 
connections compatible with the sequence. We have the following "van­
ishing theorem" [BB, Lemma (4.22)] : 

Lemma 1.9. If v'0 is a family of connections on Uo compatible 
with (1.8), then, for each i > 0, 

ci(v'o) = 0. 

In fact, the above holds for a finite number of families of connections 
v'0,0 , .•. , v';,o on Uo compatible with (1.8), i.e., ci(v'0,0 , ... , v';,0 ) = 0. 
Thus, for a symmetric series <p without constant term, we also have 
<p(v'o o, · · ·, v'; o) = 0. 

Let v'0 be 'a family of connections compatible with (1.8) on Uo and 
v'i an arbitrary family of connections fort= I:f=0 (-l)i Ei on U1. Then 
the class ci(t) is represented by the cocycle 

in A2i(U). By Lemma 1.9, we have ci(v'0) = 0 and thus the cocycle 
is in A2i(U, U0 ) and it defines a class ci,(t) in H 2i(M, M \ V; <C). It is 
sent to ci(t) by the canonical homomorphism j*. It is not difficult to 
see that the class ci, ( t) does not depend on the choice of the family of 
connections v'0 compatible with (1.8) or on the choice of the family of 
connections v'i. 
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If 'P is a symmetric series without constant term, we may also define 
the localized class 'PV ( () of cp( (). In particular, noting that the alternat­
ing sum of the ranks of Ei is zero, if M \ V -/= 0, we have the localized 
Chern character chv(() in the relative cohomology H*(M, M \ V; C), 
which is sent to ch* ( () by the homomorphism j*. It is the class of the 
cocycle 

in A*(U, Uo). 
Let E be another vector bundle over M and 'v a connection for E 

on M. Then its Chern character ch* ( E) is the class of the cocycle 

ch*('v) = (ch*('v), ch*('v), 0) 

in A*(U). The complex 

0 _____. E ® Eq ---+ · · · ---+ E ® E0 ---+ 0 

is exact on Uo and the family 'v ® 'v0 = ('v ® 'v~q), ... , 'v ® 'v~o)) 
of connections is compatible with the above sequence on U0 . We set 
E ® ( = L-i=o ( -1) i E ® Ei and let 'v ® 'vi denote the family 
('v ® 'v~q), ... , 'v ® 'v~0))_ Then ch*(E ® () is the class of the cocycle 

ch*('v ® v:) = (0, ch*('v ® 'vi), ch*('v ® 'vo, 'v ® 'vi)). 

We have 

ch*('v ®'vi)= ch*('v) · ch*('vi), 

ch*('v ® 'vo, 'v ®'vi)= ch*('v) · ch*('vo, 'vi). 

Hence, recalling the definition of the cup product, we have 

(1.10) 

in A*(U, U0 ). In particular, we have 

chv(E ® () = ch*(E) ___, chv((). 

Remark 1.11. The local Chern characters defined as above have all 
the necessary properties and should coincide with the ones in [I]. Hence 
they are in the cohomology H*(M, M \ V; Q) with Q coefficients. Also, 
the local Chern classes above are in the image of H*(M, M \ V; Z) -, 
H*(M, M \ V; q. See also [BFM] for local Chern characters. 
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Now let M be a complex manifold and denote by OM and AM, 
respectively, the sheaves of germs of holomorphic functions and of real 
analytic functions on M. If U is a relatively compact open set in Mand 
if S is a coherent Ou-module, there is a complex of real analytic vector 
bundles on U as (1.8) such that at the sheaf level 

(1.12) 0--+ Au(Eq) --+ · · · --+ Au(Eo) --+ Au 0ou S--+ 0 

is exact [AHl]. We call such a sequence a resolution of S by vector bun­
dles. We define the Chern character ch*(S) of S by ch*(S) = ch*((), 
( = I::;=0(-l)iEi. Then it does not depend on the choice of the resolu­
tion. If we denote by V the support of S, then it is an analytic set in U 
and on U \ V, the sequence (1.8) is exact. Thus we have the localized 
Chern character cht, ( S) in H* (U, U \ V; C). If E is a vector bundle over 
U, the characteristic classes of E 0 S are those of E 0 (. Hence, from 
(1.10), we have 

(1.13) cht,(E 0 S) = ch* (E) ___, cht,(S). 

Note that the above equality also holds if we replace E by a virtual 
bundle over U. 

§2. Thom class 

Let M be a complex manifold of dimension n + k and V a compact 
analytic subvariety (reduced analytic subspace) of pure dimension n in 

M. We denote by i the embedding V <-+ M. If V = LJ~=l Va is the 
irreducible decomposition of V, we set [VJ = I::~=l [Va] in Hn (V; C). 

We define the Thom homomorphism T: HP(V; C)----, 
HP+2k(M, M \ V; <C) by T = A- 1 o P so that we have the commutative 
diagram 

HP(V;C) T HP+2k(M,M\ V;C) -
lp 1lA 

H2n-p(V; C) = H2n-p(V; C), -
where A and P denote, respectively, the Alexander isomorphism and the 
Pioncare homomorphism [Su2, Ch.VI, 4]. Recall that Pis given by the 
cap product with the class [VJ. For the class [1] in H 0 (V; q, we denote 
T([l]) in H 2k(M,M \ V;C) by \J!v, and call it the Thom class of Vin 
M. 

Remark 2.1. In [Br], these homomorphisms are defined in coho­
mology with Z coefficients by a combinatorial method. See [Ab] for a 
related work. 
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Let U be a regular neighborhood of V in M with continuous re­
traction p : U ----+ V. We have, by excision, H*(M, M \ V; q '.::::' 
H*(U, U \ V; q. Note that for a in H*(U; q and r in H*(U, U \ V; q, 
we have 

Hence the Thom homomorphism Tis given, for a class o: in HP(V; C), 
by 

(2.2) T(a) = p*(a)....., \Jlv. 

We define the Gysin homomorphism i* : HP(V; q ----+ HP+2k(M; q by 
i* = j* o T. Note that, if M is compact, we have the commutative 
diagram 

HP(V;C) T HP+Zk(M, M \ V; C) 
j* HP+2k(M;C) - -

lPv 1l A 11PM 
H2n-p(V;C) = H2n-p(V;C) 

i. 
H2n-v(M;C). - -

In this and the subsequent sections, we consider the following two 
cases: 
( i) V is non-singular, 
(ii) Vis a local complete intersection defined by a section (see Definition 
2.3 below). 

First, suppose Vis non-singular and let p: Nv----+ V be the normal 
bundle of Vin M. In this case, P and Tare isomorphisms. We may take 
as U above a tubular neighborhood so that p is C 00 • Then p : U ----+ V 
is isomorphic with p : W ----+ V for a neighborhood W of the zero section 
in Nv, which we identify with V. The bundle p* Nv is also isomorphic 
with p* Nv. Thus we have an isomorphism 

H*(M,M \ V;C) '.::::' H*(Nv,Nv \ V;C). 

The Thom class 'Vv of V corresponds to the Thom class '¥Nv of the 
bundle Nv under this isomorphism and the Thom homomorphism cor­
responds to the Thom isomorphism 

Note that, if we denote by St:;. the diagonal section of the bundle p* Nv 
over Nv, its zero set is V and we have [Su2, Ch.III, Theorem 4.4) 

'VNv = ck(p*Nv,st:;.). 
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Second, recall that a subvariety V of codimension k in M is a local 
complete intersection (abbreviated as LCI) in M if the ideal sheaf Iv in 
CJ M of functions vanishing on V is locally generated by k functions. In 
this case, the normal sheaf Nv = Homov(Iv/It,Ov) is a locally free 
Ov-module, Ov = OM/Iv. We denote by Nv the associated vector 
bundle. 

Definition 2.3. We say that a subvariety V of codimension k in 
M is an LCI defined by a section if there exist a holomorphic vector 
bundle N of rank k over M and a holomorphic section s of N such that 
the local components of s generate Iv. 

Thus a subvariety V in M is an LCI defined by a section if and only 
if there exist a holomorphic vector bundle N over M and a holomorphic 
sections of N such that(*) sis regular [F, B.3] and the analytic subspace 
defined bys is reduced and is equal to V. Furthermore, the condition(*) 
is equivalent to saying that s is generically transverse to the zero section 
and Vis the zero set of s ([Tl, [Lo, Vl.1.6], see also [Su3, Remark 4.10.3]). 
In this case, we have Nv = Nlv- Note that an LCI defined by a section 
is a "strong" local complete intersection in the sense of [LS]. Note also 
that for any hypersurface (k = 1) Vin M, there is a natural line bundle 
N such that V is an LCI defined by a section of N. 

We recall the following theorem, which is proved in [Su2]. See (F, 
§14.1] for the algebraic case. 

Theorem 2.4. Let V be a compact LCI defined by a sections of 
a bundle N over M. Then the localization ck(N, s) in H 2k(M, M\ V; q 
of ck ( N) with respect to s corresponds to [V] under the Alexander duality 
H 2k(M, M \ V; C) ~ H2n(V; C). 

Thus, if V is an LCI defined by a section, Theorem 2.4 shows that 

(2.5) Wv = ck(N, s). 

§3. Riemann-Roch theorem for embeddings 

Let V be a compact subvariety in a complex manifold M, which 
is either of type (i) or (ii) in the previous section. Let U be a regular 
neighborhood of Vin M with a continuous retraction p: U-+ V. In the 
case (ii), suppose V is defined by a section s of a vector bundle N over 
M. In the case (i), (M, V) is C00 diffeomorphic with (Nv, V) and, in 
the latter, V is defined by the diagonal section St:,. of the bundle p* Nv 
over Nv. In what follows we write Nv by M anew and set N = p* Nv 
ands= St:,.. Thus in either case we may express the Thom class Wv as 
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(2.5). In the case (i), we may take as U a tubular neighborhood and we 
may assume that p is the restriction of p to U. 

Let Uo = M \ V and U1 a neighborhood of V as before. Also, let Vo 
be an s-trivial connection for N on Uo and V 1 an arbitrary connection 
for Non U1. We consider the vector bundle N x JR. over U01 x JR. and let V 
be the connection for it given by V = (l-t)Vo+tV1. Let A•vi denote 
the family of connections (Akvi, ... ,A0vi) on Uv, for v = 0, 1. Also 
denote by A•f:;v the family (Akf:;v, ... , A0Vv). Let 1r: U01 x [O, 1] ~ Uo1 
be the projection. Recall that, in A*(U), 

whose class in H*(M;<C) is ch*(.XNv), ANv = I:7=0(-l)iAiNv. 

Theorem 3.1. The cocycle ch*(A•V~) is in A*(U, U0) and is given 
by 

ch*(A·v:) = td-1(V*) ,._, ck(V*) + Dr, 

where T = (O,O,ro1), ro1 = 1r*(td-1(1r*Vo, V) · dck(1r*V1, V)). 

Proof By (1.3), we have 

ch*(A·vt) = td-1(Vo) · ck(Vo) = 0, 

ch*(A·vn = td-1(V1) · ck(V1), 

ch*(A·v;;,A·vn = 7f*ch*(A•f:;V) 

= 1r*(td-1(V) · ck(V)) = (td-1 ,ck)(Vo, V1). 

Hence we see that 

and the theorem follows from Proposition 1.6 (see also Remark 1.7). 
Q.E.D. 

Note that T = 0 when k = 1. 

Remark 3.2. Consider the Koszul complex associated to s [F, B.3]: 

which is exact on Uo = M \ V. It is not difficult to see that the fam­
ily A •Vt is compatible with the sequence (3.3) on U0 . The fact that 
ch*(A•Vt) = 0 also follows from this (cf. Lemma 1.9). 
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Let :F be a coherent Ov-module. The direct image i,F is a coherent 
OM-module, which is simply :F extended by zero on M \ V, and thus 
we have the localized Chern character chi,(i,F) in H*(M, M \ V; C). 

In the case (i), we take a resolution of :F of the form (1.12) on V. 
Then we have ch*(F) = ch*(~), ~ = I:;=0 (-l)iEi. Let y'(i) be a con­
nection for Ei, i = 0, ... , q, and denote by \7F the family of connections 
(p*\7(o), ... , p*\7(q)), for the virtual bundle p*~ over U. 

In the case (ii), we assume that :Fis locally free and thus :F = Ov(F) 
for some vector bundle F over V. Since the classification of continuous 
vector bundles and that of C00 vector bundles coincide over paracompact 
manifolds, we may assume that p* Fis a C 00 vector bundle and let \7F 
be a connection for p* F on U. 

In either case, let ch*(\7{) denote the cocycle 

ch*(\7{) = (ch*(\7F),ch*(\7F),O) 

in A*(U)lu, whose class in H*(U; C) is p* ch*(F). 

Corollary 3.4. In the above situation, we have 

ch*(\7{)__, ch*(A •\7~)= ch*(\7{)'-' td- 1 (\7 * )__,ck(\7 *) + D(ch*(\7{)vr) 

in A*(U, Uo)lu-

Corollary 3.5. Let V be a compact subvariety in M and :F a 
coherent Ov-module. We have the following formulas in either one of 
the cases: 
( i ) V is non-singular, 
(ii) V is an LCI defined by a section and :F is locally free. 

chi,(i,F) 

ch*(i,F) 

T(ch*(:F) __, td- 1(Nv)) 

i*(ch*(F) __, td- 1 (Nv)) 

in H*(M,M\ V;C), 

in H*(M;C). 

Proof. The Koszul complex (3.3) gives a locally free resolution of 
i,Ov: 

If we compute the local class chi,(i,Ov) using this resolution, we see 
that it is represented by ch*(A•\7j). We have, by (1.13), 

chi,(i1F) 

= {ch*(p*~ 0 i,Ov) = ch*(p*~) __, chi,(i10v ), 

ch*(p* F © i,Ov) = ch*(p* F) __, chi,(i,Ov ), 

in the case (i) 

in the case (ii). 
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Recall that either ch*(p*t) or ch*(p* F) is represented by ch*(V'f). Re­
calling also that Niu~ p* Nv and ck(N, s) = Wv (the Thom class), by 
Corollary 3.4, we get 

cht,(i,F) = p*(ch*(F) __.., td- 1(Nv)) ____, Wv. 

By (2.2), we get the first formula. The second follows from the first. 
Q.E.D. 

Remarks 3. 6. l. The equalities in Corollary 3.5 hold in cohomology 
with Q coefficients (cf. Remarks 1.11 and 2.1). 
2. In the case V is non-singular, the formulas are proved in [AH2]. If, 
furthermore, V is algebraic, the second formula in Corollary 3.5 is a 
special case of the Grothendieck-Riemann-Roch theorem [BoSe]. 
3. In [I], a similar formula is proved for the Thom class of a vector 
bundle. Namely, let p : E - X be a complex vector bundle of rank r 
over a topological space X. Then, in our natation, 

chi(>.Ev) = p* td- 1 (E) '--' WE, 

where >.Ev= I:;~=0 (-l)iAip*Ev and WE denotes the Thom class of E. 
When X is a C 00 manifold, this formula can be proved at the level of 
Cech-de Rham cocycles as above; in the situation of Theorem 3.1, simply 
let M = E, V = X (identified with the zero section of E), N = p* E 
ands= Sf:!. and note that WE= cr(p*E,sf:!.). 
4. In the algebraic category, the formulas are proved for a locally free 
Ov-module on an LCI by analyzing the graph construction in [BFM, 3. 
Proposition]. Note that their general Riemann-Roch theorem does not 
directly imply the formulas. 
5. These formulas are also proved at the level of differential forms and 
currents in [HL]. See also [Bi]. 

§4. Homology Chern characters and classes 

Let V be a subvariety of pure codimension k in a complex manifold 
M. Suppose that V is an LCI. Thus the ideal sheaf Iv of functions 
vanishing on V is locally generated by k functions and the normal sheaf 
Nv = 1iomov (Iv /It, Ov) is locally free. We denote by Nv the asso­
ciated vector bundle and let rv = T Mlv - Nv be the virtual tangent 
bundle of V. Note that it does not depend on the embedding i: V <-+ M. 

Definition 4.1. For a coherent Ov-module F, we define the ho­
mology Chern character ch* ( F) by 

ch*(F) = tdNv "A(chv(i,F)). 
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Remarks 4.2. 1. If V is an LCI defined by a section of a vector 
bundle N over M, we may write 

2. The above definition is related to the (homology) Todd class T(:F) of 
:F in [BFM] by 

ch* (:F) = (td-1 'TV) " T(:F). 

In [BFM], T(:F) is defined using an embedding of V, but it is shown that 
T(:F) is independent of the embedding for a projective variety V. Thus 
ch*(:F) is also independent of the embedding in this case. 

The following directly follows from the definition. 

Proposition 4.3. (1) For an exact sequence of coherent Ov-mod­
ules 

0 ---+ :Fq ---+ · · · ---+ :Fo ---+ 0, 

we have 
q 

~)-l)ich*(:Fi) = 0. 
i=0 

(2) For a vector bundle E over V and a coherent Ov-module :F, 

The following is a direct consequence of Corollary 3.5. 

Proposition 4.4. Suppose either V is non-singular or V is de­
fined by a section and :F is locally free. Then we have 

ch*(:F) = ch*(:F) "[V]. 

In particular, for the structure sheaf Ov, 

If ch*(:F) is in the image of the Poincare homomorphism H*(V)-, 
H*(V), we may define the homology Chern class c*(:F) via Newton's 
formula. Namely, suppose 

for some a* in H*(V) and write a* = Ei>O ai /i! with ai in H 2i(V). 
Then we define,* = 1 + Ei2:l ,yi with ,yi in-H2i(V) by 

i ~ 1. 
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If we define the homology Chern class c*(F) of F by 

c*(F) = "/ ,--, [V], 

then it is not difficult to check that the definition does not depend on 
the choice of (]'*. 

Example 4.5. Suppose either V is non-singular or V is defined 
by a section and F is locally free. Then, from Proposition 4.4, 

In particular, 

§5. Characteristic classes of the tangent sheaf 

Let V be an LCI defined by a section of a vector bundle N over a 
complex manifold M. Denoting by OM and Ov the sheaves of holomor­
phic 1-forms on Mand V, respectively, we have the exact sequence 

o-Iv/It-nM®oM Ov -nv -o. 
Let eM = OM(TM) be the tangent sheaf of M. We define the tangent 
sheaf 0v of V by 0v = 1-iomov(Ov,Ov), which is independent of 
the embedding V '-+ M. From the above sequence, we have the exact 
sequence 

0 - ev - eM 0oM Ov -Nv - £xthv(Ov,Ov) - 0. 

Setting£= £xthv (Ov, Ov ), we get, from Propositions 4.3 and 4.4, 

ch*(0v) = ch*(Tv) ,--, [V] + ch*(£). 

If p is an isolated singular point of V, by the Riemann-Roch theorem 
for the embedding p '-+ M, we have ch*(£) = T(V,p)[p], where T(V,p) = 
dim £xthv (Ov, Ov )p is the Tjurina number of V at p. Thus we have 
the following : 

Theorem 5.1. Let V be an LCJ of dimension n (~ 1) defined by 
a section with isolated singularities p 1 , ... , Ps • For the tangent sheaf 0v 
of V, we have 

s 

ch*(ev) = ch*(Tv) ,--, [V] + L T(V,pi) [pi], 
i=l 

s 

c*(ev) = c*(Tv) ,--, [V] + (-1)n+1(n - 1)! L T(V,pi) [pi]-
i=l 
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Note that the class c*(Tv) r--. [VJ coincides with the canonical class 
of [F, Example 4.2.6J, [FJJ in this case. 

Let (V,p) be an isolated complete intersection singularity. If it ad­
mits a good <C*-action in the sense of [Loo, 9.BJ, T(V,p) = µ(V,p), the 
Milnor number of Vat p ([G, 3. Satz], [Loo, (9.10) Proposition]). On the 
other hand, for a variety as in Theorem 5.1, the Schwartz-MacPherson 
class c* (V) of V is given by [Sul J 

s 

c*(V) = c*(Tv) r-. [VJ+ (-l)n+l Lµ(V,Pi) [PiJ· 
i=l 

Hence we have 

Corollary 5.2. Let V be as in Theorem 5.1 with n = 1 or 2. If 
V admits a good <C* -action near each singular point Pi, then 

Remark 5.3. It would be an interesting problem to compare the 
class ch*(F) with the homology Chern character of F as defined in 
[Sc2J. 
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