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Chapter 4
The Second Main Theorem, the Eigenvector
Theorem, and Related Results

Introduction

In this chapter, we shall be mainly concerned with operators on Hilbert space, and
especially with self-adjoint operators. We will assume that our operators are, in
some natural sense, “effectively determined”. (The precise definition of this term is
given in Section 1.) All of the standard operators of analysis and physics are
effectively determined. However, we should emphasize that when an operator is
called “effectively determined”, this designation applies only to the operator itself,
and not to the quantities derived from it, such as its eigenvalues, eigenvectors, or
spectrum.

We shall address the question: Which of the quantities associated with an “effec-
tively determined” operator are computable? For example, are the eigenvalues
computable? What about the sequence of eigenvalues? We shall see that the answer
is “yes” for individual eigenvalues but “no” for the sequence of eigenvalues. More
precisely, these statements hold for (bounded or unbounded) self-adjoint operators
and for bounded normal operators.

Here we recall some distinctions set down in Chapter 0. When we assert, as we
have done for self-adjoint operators, that the individual eigenvalues are computable
but the sequence of eigenvalues need not be, we mean the following. For any fixed
eigenvalue, we can program a computer to compute it. However, we might need a
different program for each eigenvalue—i.e. there may be no master program which
gives, for each n, the n-th eigenvalue.

One might ask whether the above results for self-adjoint operators can be ex-
tended to the case of a bounded linear operator on a Banach space. The answer is
“no”, even for non-normal operators on Hilbert space. There exists an effectively
determined bounded non-normal operator on Hilbert space which has a non-
computable eigenvalue.

Let us return to self-adjoint operators, for which, as we have seen, the individual
eigenvalues are computable. We can ask the same question for the eigenvectors.
The answer is quite different. Even for an effectively determined compact self-
adjoint operator, the eigenvectors associated with the eigenvalue A = 0 need not be
computable.
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Here we should dispose of a triviality. Of course, for any operator, some of the
eigenvectors are noncomputable—as we can see simply by taking a computable
eigenvector and multiplying it by a noncomputable real. When we say that the
eigenvectors associated with 4 = 0 are not computable, we mean that none of them
are computable.

This contrast between the computability of eigenvalues and eigenvectors can be
given a physical interpretation. In quantum mechanics the eigenvalues are closely
related to quantities actually measured—e.g. to the lines in the spectrum. By
contrast, the eigenvectors are associated with the underlying state of the system.
Our results show that the eigenvalues ae computable, whereas the eigenvectors need
not be.

Besides the eigenvalues and eigenvectors, we can ask similar questions about the
spectrum. (For the definition of “eigenvalue” and “spectrum” see Section 1.) Again
we are mainly concerned with the self-adjoint case. We shall show that there exists
a computable sequence of real numbers which belong to the spectrum and whose
closure coincides with the spectrum.

We now give a brief account of the sections in this chapter.

Section 1 contains the precise definition of “effectively determined” operator. It
also gives a brief review of the notions of “self-adjointness”, “spectrum” and “eigen-
values” for bounded and unbounded operators.

Section 2 contains the Second Main Theorem, together with an investigation of
several of its corollaries. The Second Main Theorem incorporates all of the results
mentioned above for the spectra and eigenvalues of effectively determined (bounded
or unbounded) self-adjoint operators. This theorem is best-possible, as we will
eventually prove by suitable examples (Chapter 5, Section 8).

The proof of the Second Main Theorem is long and complicated, and it is deferred
until Chapter 5.

Section 3 deals with discontinuities in the behavior of eigenvalues. For example,
arbitrarily small perturbations of a self-adjoint operator can cause eigenvalues to
abruptly disappear, while other eigenvalues—in quite different locations—are be-
ing suddenly created. Such discontinuities are frequently correlated with noncom-
putability. However, that is not the case here. Thus Section 3 (discontinuities in the
eigenvalues) provides a counterpoint to Section 2 (computability of the eigenvalues).

Section 4 gives the example, promised above, of an effectively determined
bounded non-normal operator with a noncomputable eigenvalue.

Sections 5 and 6 give the Eigenvector Theorem, together with its proof. This
theorem asserts, as mentioned above, that there exists an effectively determined
compact self-adjoint operator such that none of the eigenvectors corresponding to
A = 0 are computable. The proof of the Eigenvector Theorem is somewhat indirect.
It begins, in Section 5, with a construction based on an ad-hoc (i.e. “artificial”)
computability structure. (Cf. Chapter 2, Section 7.) Then in Section 6 we show how
to translate this ad-hoc construction into one involving the “natural” intrinsic
computability structure of L2[0, 1].

Section 7 ties up some loose ends, and also, for the first time in this chapter, deals
with Banach spaces other than Hilbert space. This section contains two main results.
First it gives a proof of the Effective Independence Lemma, which asserts that, from
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any effective generating set {e,}, we can extract a linearly independent effective
generating subset. This lemma plays a role in our proof of the Eigenvector Theorem.
While the result is hardly surprising, its proof is not quite so easy as might be
supposed.

Second, we address the question: Are all effectively separable computability
structures on a Banach space X related via (not necessarily computable) isometries?
The answer turns out to be “yes” for Hilbert space, but “no” for Banach spaces in
general. The “yes” part is also a step on the way to the Eigenvector Theorem
(Lemma 8, below), while the “no” part is established by a counterexample given at
the end of Section 7.

1. Basic Notions for Unbounded Operators, Effectively
Determined Operators

Throughout most of this chapter, the underlying Banach space will be an effectively
separable Hilbert space H. The inner product of two vectors x, y € H is denoted by
(x, y).

We recall from Chapter 3 the notion of a closed unbounded operator. An operator
T: H - H is called closed if T has a closed graph. In general, the domain of T is not
H, but a dense linear subspace 2(T) of H. Thus in order to defined T we must first
specify the domain 2(T) and then describe the action of T on this domain.

We now define the adjoint T* of T. In order to motivate what follows, it is useful
to begin with the familiar case of bounded operators. Let T: H — H be a bounded
linear operator on H. Then, as is well known, the adjoint operator T* is defined by

(Tx, y) = (x, T*y) for all x, ye H.

The definition of the adjoint for unbounded T is a natural extension of this. We
must define the domain 2(T*) and the action of T* on this domain.

Definition (first variant). Let T: H —» H be a closed operator with domain 2(T).
a) A vector y belongs to the domain 2(T*) of T* if there exists a vector z such that:

(Tx, y) = (x, 2) for all x € 9(T).
b) When such a z exists, we define T*y to be z.

Note. Thus we have the identity (Tx, y) = (x, T*y), just as in the bounded case.

It is well known (see e.g. Riesz, Sz.-Nagy [1955]) that T* is well-defined, closed,
and that its domain 2(T*) is dense in H.

‘We have preferred the above definition of T* because it shows clearly the
connection with the familiar bounded case. However, for serious work, an equiva-
lent definition based on graphs turns out to be more powerful. First we recall that
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the graph of T consists of all pairs {x, Tx) with x € (T). [Here we write { , ) for
ordered pairs to avoid confusion with the inner product ( , ).] Now the second
equivalent definition is:

Definition (second variant). Let T: H — H be a closed operator, and let G be the
graph of T'in H x H. Let G* be the orthogonal complement of G in H x H. Then:
a) A vector y belongs to the domain 2(T*) if there exists a vector z such that the
pair {z, y> € G*.
b) In this case, we define T*y to be —z.

The proof of equivalence of the two preceding definitions is a routine exercise (cf.
Riesz, Sz.-Nagy [1955]). The “—” in part (b) of the second definition is not a
misprint. It occurs because of formal manipulations involving the inner product on
H x H.

We now come to the basic:

Definition. A closed operator T: H - H (bounded or unbounded) is said to be
self-adjoint if it coincides with its adjoint, i.e. if T = T*.

In the unbounded case, it is important to stress that two operators are considered
to be “equal” if and only if they have the same graph. As we recall from Chapter 3,
an unbounded closed operator T; may possess a proper extension T,: this means
that the domain 2(T;) & 2(T,), although T, coincides with T, on their common
domain of definition.

The most important operators of analysis and physics—and, in particular, the
so-called “observables” of quantum mechanics—are either self-adjoint or possess
self-adjoint extensions. Throughout the remainder of this book, unless stated other-
wise, we shall be concerned with (bounded or unbounded) operators which are
self-adjoint.

There is one minor exception. In the bounded case, we shall sometimes consider
normal operators. A bounded operator ! H — H is said to be normal if it commutes
with its adjoint, i.e. if T*T = TT*. Normal operators possess many of the same
properties as self-adjoint operators. In particular, the Second Main Theorem also
holds for bounded normal operators, as we shall prove in Section 6 of Chapter S.

Eigenvalues and spectrum

The structure of a bounded or unbounded self-adjoint operator is determined to a
substantial degree by the eigenvalues and spectrum of that operator.

Definition (spectrum). Let T be a closed operator (bounded or unbounded). A
number A belongs to the spectrum of T if the operator (T — A) does not have
a bounded inverse.

We observe that, for 4 not to be in spectrum (T'), the inverse (T — 4)~! must be
bounded, whether T itself is bounded or not.
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It is well known (cf. Riesz, Sz.-Nagy [1955]) that the spectrum is a closed set, and
that when T is self-adjoint, the spectrum is real. Hence, for self-adjoint T, the inverse
(T — A)~!exists and is bounded for all = o + if with § # 0;in particular, (T — i)™*
exists. In addition, for self-adjoint T, the spectrum is a bounded set if and only if T
is bounded.

Definition (eigenvalues). A number A is called an eigenvalue of T if there exists
a nonzero vector x (the corresponding eigenvector) such that Tx = Ax.

The eigenvalues form a subset of the spectrum, which in general is a proper subset.
Points of the spectrum which are not eigenvalues are commonly said to belong to
“the continuous spectrum”.

The eigenvalues and continuous spectrum have a direct physical significance in
quantum mechanics. For example, when the emissions from a light source are
observed in the spectroscope, the eigenvalues are closely related to the appearance
of “bright lines”, whereas the continuous spectrum is reflected in the presence of
continuous bands of light.

Effectively determined operators

Up to now, there has been no mention within this section of computability. We have
simply set down some standard facts from functional analysis. Now we must define
what it means for an operator to “act effectively”. We shall call such operators
effectively determined.

Recall that, by assumption, the space H is effectively separable. This means that
there is a computability structure defined on H, and that H has an effective
generating set {e,}—i.e. a computable sequence {e,} whose linear span is dense
in H. (See Chapter 2.)

Operators map vectors into vectors. Thus to “determine” an operator means to
know, in some effective manner, how the operator acts on computable vectors and
computable sequences of vectors. In the unbounded case, we need to know one thing
more. We have seen that, to define an unbounded operator, we really need to know
its graph. Thus we should expect the definition of an “effectively determined”
unbounded operator to involve an effective specification of the graph.

Since the graph is contained within H x H, we must first define “computability”
for the cartesian product. The definition is obvious. A sequence of points {x,, y,> €
H x H is called computable if {x,} and {y,} are computable in H.

Definition (Effectively determined operator). A closed operator T: H — H is effectively
determined if there is a computable sequence {e, } in H such that the pairs {{e,, Te,)}
form an effective generating set for the graph of T.

We recall that, by the definition of “effective generating set”, this means that
{<e,, Te,»} is computable in H x H, and that the linear span of {{e,, Te,»} is dense
in the graph of T. In particular, this implies that {e,} and {Te,} are computable
and that the span of {e, } is dense in H. Thus, as a corollary of the above definition,
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{e,} is also an effective generating set for H. The converse of this corollary is false,
however. When the operator T is unbounded, the density of (linear span of {e,}) in
H does not imply that {<e,, Te,>} spans a dense subset of the graph.

The following may help to explain what could go wrong. We saw in Chapter 3,
Section 1 that a closed operator T; can have a proper closed extension T,, where
2T,) & 2(T,). Suppose we are really interested in the extended operator T,.
Suppose, however, that we choose an effective generating set {e,} contained within
the smaller domain 2(T;). Now 2(T,) is dense in 9(T,), since it is dense in H. Thus
{e,} is a perfectly good effective generating set for H. But on H x H, the pairs
{ey, Te,) span at most the graph of T;. For they lie within the graph of T}, and
this graph is closed. Thus {<e,, Te,>} cannot approach those points on graph (T)
which lie outside of graph (T;).

Of course, these difficulties can only occur for unbounded operators. Consider,
by contrast, a bounded operator T. Then T is continuous, and the convergence in
H of {e,} (or linear combinations thereof) automatically implies convergence of
the pairs {<e,, Te,>}.

In summary, a bounded operator T is effectively determined if and only if it maps
an effective generating set {e,} for H onto a computable sequence {Te, }.

As mentioned above, all of the standard operators of analysis and physics are
effectively determined. The most interesting of these are unbounded.

2. The Second Main Theorem and Some of Its Corollaries

We recall that H denotes an effectively separable Hilbert space—i.e. a Hilbert space
with a computability structure for which there is an effective generating set {e, }.

Second Main Theorem. Let T: H— H be an effectively determined (bounded or
unbounded) self-adjoint operator. Then there exists a computable sequence of real
numbers {1,} and a recursively enumerable set A of natural numbers such that:

i) Each A, € spectrum (T), and the spectrum of T coincides with the closure of {4,}.

ii) The set of eigenvalues of T coincides with the set {A,: n € N — A}. In particular,
each eigenvalue of T is computable.

iii) Conversely every set which is the closure of {A,} as in (i) above occurs as the
spectrum of an effectively determined self-adjoint operator.

iv) Likewise, every set {A,:ne€ N — A} as in (ii) above occurs as the set of eigen-
values of some effectively determined self-adjoint operator T. If the set {A,} is bounded,
then T can be chosen to be bounded.

Note. Concerning the boundedness of T In (iii), where {4,} determines the entire
spectrum, the boundedness of {4,} implies the boundedness of T—for, as is well
known (Riesz, Sz.-Nagy [1955]), the spectral norm of a self-adjoint operator coin-
cides with its norm. However, in (iv), where {4,} gives only the set of eigenvalues
(and not the entire spectrum), the boundedness of T must be considered separately.
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The proof of this theorem is long and complicated. It is deferred until Chapter 5.
In fact, it forms the entire content of Chapter 5. We turn now to some consequences
of the Second Main Theorem.

As stated in (ii) above, the individual eigenvalues of T are computable. However,
the sequence of eigenvalues need not be, as we now show.

Theorem 1 (The sequence of eigenvalues). There exists an effectively determined
bounded self-adjoint operator T: H — H whose sequence of eigenvalues is not
computable.

Proof. We use the counterexample asserted in (iv) above. (For its details, see
Chapter 5, Section 8.) Let {4,} be the computable sequence 4, = 27", and let 4 be
any recursively enumerable non recursive set of integers. Then by (iv) there exists an
effectively determined bounded self-adjoint operator T whose eigenvalues coincide
with the set {1,: n e N — A}. But now any effective listing of these 4, would give
an effective listing of the corresponding set of n’s, i.e. an effective listing of the
complement of A. Since 4 is not recursive, this is impossible. [

For the special case of compact operators, the phenomenon exhibited in Theorem 1
cannot occur. Namely, as a consequence of (i) above, we have:

Theorem 2 (Compact operators). Let T: H - H be an effectively determined compact
self-adjoint operator. Then the set of eigenvalues of T forms a computable sequence
of real numbers.

Proof. 1t is well known (Riesz, Sz.-Nagy [1955]) that, if T is compact, the spectrum
of T consists of isolated eigenvalues A # 0 together with {0} as their only possible
limit point. Now take the sequence {4,} given by (i). Since the eigenvalues A # 0 are
isolated, and {/,} is dense in the spectrum, it follows that every eigenvalue A # 0
equals A, for some n.

We now consider the value 4 = 0, which may or may not be an eigenvalue. To
deal with this, we first extract the computable subsequence {4} of all 4, #0,
and then include or exclude the value A = 0 according as it is an eigenvalue or
not. [J

Just as the negative result (iv) gave information about the sequence of eigenvalues,
the negative result (iii) gives information about the operator norm.

Theorem 3 (The operator norm). There exists an effectively determined bounded
self-adjoint operator T: H — H whose norm is not a computable real.

Proof. We recall that the “norm” of an operator T is defined to be sup {|| Tx||/||x|:
x # 0}. We shall also use the “spectral norm” defined as sup {|4|: 4 € spectrum (T)}.
ft is well known (Riesz, Sz.-Nagy [1955], Halmos [1951]) that for self-adjoint
operators, the norm and the spectral norm coincide.



130 4. The Second Main Theorem, the Eigenvector Theorem, and Related Results

Now let a: N> N be a one to one recursive function listing a recursively
enumerable non recursive set 4. Let

=3 27,
kZO

Then {4,} is a computable monotone sequence converging noneffectively to a non-
computable real number o (cf. Chapter 0, Sections 1 and 2).

Let T be the operator, promised in (iii) above, whose spectrum is the closure of {4,}.
Then the spectral norm of T (= the norm of T) is sup {4,} = a, a noncomputable
real. []

3. Creation and Destruction of Eigenvalues

It is a well-known fact that eigenvalues of a self-adjoint operator can be instantane-
ously created and destroyed—that is, their behavior can be highly discontinuous.
Such discontinuities often lead to noncomputability. Eigenvalues furnish an exception
to this rule. For, as this section will show, we have discontinuity. By contrast, the
key theorem of the last section asserts that the eigenvalues are computable.

What do we mean here by discontinuity? We mean that there is a one-parameter
family T, of bounded self-adjoint operators, such that T, varies continuously with ¢,
but the behavior of the eigenvalues is discontinuous.

What do we mean when we say that T, “varies continuously with £”? We mean
that we have continuity in the sense of uniform convergence on the unit ball, i.e.
in the operator norm defined by | T|| = sup {|| Tx|: ||x|| < 1}. Thus to say that
T, — T as ¢ > 0 means that the operator norm || T, — T|| — 0. This is a very strong
condition: in fact the operator norm topology is the strongest of the topologies
commonly employed for operators.

Theorem 4 (Creation and destruction of eigenvalues). There exists a one parameter
family {T.} of bounded self-adjoint operators on a separable Hilbert space H such
that:

i) T, varies continuously with ¢ in terms of the operator norm topology on {T}.

il) For ¢ = 0, the operator T, has the unique eigenvalue A = 0, and this eigenvalue
is of multiplicity one.

ili) For all ¢ # 0 and sufficiently close to zero, (a) T, has no eigenvalue near zero,
(b) T, has an eigenvalue near each of the points + 1, and (c) all eigenvalues are of
multiplicity one.

Proof. Let H be the direct sum of L?[—1,1] and an element § of norm one
generating a 1-dimensional Hilbert space (6). Thus d is orthogonal to L2[—1, 1].
We denote functions in L2[ — 1, 1] by the letters f, g, h, ... . We define the operator
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T, on H by:
LL/)] = xf(x) + E'J_llf(x) dx -9,
T.[6] =&-1 (a constant function on [—1, 1]).

It is easy to verify that T, is self-adjoint. Also, we see at once that T, varies
continuously with ¢ in terms of the operator norm.

Now for ¢ = 0, T has the eigenvalue 0 with eigenvector .

We shall show that for all sufficiently small ¢ # 0, T, has an eigenvalue of
multiplicity one located near each of the points A = + 1, and no eigenvalue near 0.
Thus the eigenvalue 0 is destroyed, whereas A near +1 are created.

Take ¢ # 0. Now any eigenvector of T, must involve §. Hence, multiplying by
a scalar, we may assume that the eigenvector has the form f(x) + J. Let A be the
corresponding eigenvalue, so that

LLf(x) + 6] = ALf(x) + 4].

Recalling the definition of T, and equating the L?[—1, 1] and (§) components,
we obtain:

xf(x) + & = A (x),
8-fl f(x)dx = A

But the first equation gives

Jx) = —¢flx = A),

and from the second equation we have

We now focus our attention on the last two equations. We must determine
the values of A which satisfy these equations, and for which the associated
f(x)e L[ —1, 1]. All values A € [—1, 1] are ruled out, since the function f(x) =
—¢/(x — A)is not L? on [—1, 1]. Thus we need examine only A > 1 and 1 < —1.
Let us consider 4 > 1; the other case is similar. For 1 > 1, the function f(x) is L on
[—1, 1], and so we need only ask whether or not the above equations are satisfied.
We claim that, for each ¢ # 0, there is a unique 4 > 1 which satisfies the last
displayed equation above. Furthermore, 1] 1 as ¢ » 0. To see this, we rewrite this

equation as
odx -4
-1 X — l B 82 ’
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Fix any ¢ # 0. Then as 1] 1, the integral above decreases to —oo, whereas the
fraction increases to —1/¢2. Hence, by the intermediate value theorem, there is
a unique solution .. [

4. A Non-normal Operator with a Noncomputable
Eigenvalue

In the Second Main Theorem and its extensions we assert that the eigenvalues of
an effectively determined self-adjoint (or normal) operator are computable. Since
the proof (cf. Chapter 5) uses the spectral theorem, the result is closely tied to the
assumed self-adjointness/normality of the operator. This restriction is necessary as
we now show.

The following theorem is proved for the Hilbert space H = L?[0, 1] with its
standard computability structure. However, as we will show later (Lemma 8, Section
6), the result could be transferred to any effectively separable Hilbert space.

Theorem 5 (Noncomputable eigenvalues). There exists an effectively determined
bounded operator T: H — H (not self-adjoint or normal) which has a noncomputable
real number o as an eigenvalue.

Proof. Let a: N - N be a one to one recursive function which enumerates a re-
cursively enumerable non recursive set 4. Let H = L?[0, 1], and let {e,} be a
computable orthonormal basis for H.

To define T, it suffices to give the value of T(e,) for all n. We define, for each n:

n n—1
T(e,) = ( y 4—a<k>> e, + 2740 Y 27abg,
k=0 k=0

Now we show that T'is bounded. Write T = T, + T,, where T; and T, correspond
respectively to the first and second terms in the above expression for T(e,). Then T,
is a bounded self-adjoint operator: in terms of the basis {e,}, it corresponds to

a diagonal matrix with the bounded sequence of eigenvalues {Z 4- “""} For T, we
reason as follows. The vectors Z 27", are bounded in norm by ) 27® < 2.

Hence for each n, | T,(e,)| <2-2° """. Take an arbitrary vector x:

Since {e,} is an orthonormal basis, the norm || x|| is just the /2-norm of the sequence
{c.}. Now

ITx] < ZO leall Treall <2 3 ley]-277.
n= n=0
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Since {27%"} is an I?-sequence, it follows from the Schwarz inequality (for sequences)
that T, is bounded. Hence T = T; + T, is bounded.

Now we show that T has a noncomputable eigenvalue. Namely, we show that
the vector

00

Y 279,

is an eigenvector with the eigenvalue
¥
a= ) 4790,
k=0

First we note the identity:

1§ o] - (5, o) (5 7o0e).
k=0 k=0 k=0

[This identity follows by a straightforward induction on n, using the definition of
T(e,) given above. Of course, this identity is also the motivation for our definition
of T(e,).]

Letting n — oo, we deduce that

T|: i 2_"("’ek] = <i 4“"'”)-(% 2_“(’"ek>.
K=0 k=0 k=0

Finally, the eigenvalue « = )" 47® is not a computable real. [
0

Note. These last few steps show why it is essential that the operator T be non-normal.
For the above construction involves a sequence of eigenvectors {Z 27 """e}
all very close together and convergmg to Z 27%M¢,. These eigenvectors have the

slightly different eigenvalues Z 4-® Wlthanormal operator, distinct eigenvalues
k=0

would force the vectors to be orthogonal and not close together.

5. The Eigenvector Theorem

In this and the following section we will prove:

Theorem 6 (The Eigenvector Theorem). Let H = L2[0, 1] with its intrinsic comput-
ability structure. There exists an effectively determined compact self-adjoint operator
T: H — H with the following properties.
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(1) The number A = 0 is an eigenvalue of T of multiplicity one (i.e. the space of
eigenvectors corresponding to A = 0 is one dimensional).
(2) None of the eigenvectors corresponding to A = 0 is computable.

As noted in the Introduction to this chapter, the proof is indirect. In this section
we shall prove the following weaker result.

Eigenvector Theorem (preliminary form). There exists an ad hoc computability
structure on H, and an operator T: H — H which is effectively determined in terms of
this ad-hoc structure and such that T is compact, self-adjoint, and satisfies conditions
(1) and (2) above. Furthermore, H is effectively separable in terms of this structure.

In Section 6 we shall show how to translate this preliminary theorem into its
desired final form (Theorem 6 above), involving the (“natural”) intrinsic comput-
ability structure on L2[0, 1].

Remarks. We recall (Chapter 2, Section 7) that an ad hoc computability structure is a
non-intrinsic structure—i.e. a structure that can be regarded as “artificial”—which
nevertheless satisfies the axioms for computability on a Banach space. The proof
of the Eigenvector Theorem provides the main application of ad hoc computability
given in this book. This approach is by no means an exercise in “fancy” technique.
A bit of explanation seems in order.

In the Eigenvector Theorem, we have two objects to deal with: (a) the operator
T, and (b) the computability structure. Obviously, to build such a counterexample,
at least one of these must be somewhat intricate. In the preliminary (ad hoc)
construction, the operator T is very simple, and it is the computability structure
which carries the essential ideas of the counterexample. In Section 6 we reverse field,
showing how any such counterexample can be translated into one involving the
natural computability structure and a complicated operator.

Of course, the final form of the theorem (as completed in Section 6) is the result
we mainly want, since it is the natural computability structure on L?[0, 1] which
is of primary interest. However, in this final form, the operator T becomes so
complicated that its intuitive meaning is lost. It seems that the final form of the
operator would be much harder to discover, ab initio, than the slightly perturbed
computability structure with which we begin this construction.

Proof of the Eigenvector Theorem (preliminary form). We begin by defining the ad
hoc computability structure on H = L2[0, 1]. First we take any one of the standard
computable orthonormal bases {e,} for L2[0, 1]: e.g. let {e,} be the sequence of
functions {e*™™*}, with the integers m = 0, +1, +2, ... mapped onto the natural
numbers n =0, 1, 2, ... in a standard computable way. For convenience, assume
that m = 0 corresponds to n = 0.

Let H, be the closed subspace of H spanned by the vectors {e,, e,, ...}; thus H,
consists of all vectors in H which are orthogonal to e,. The vector e, will play a
special role in our construction, and therefore for typographical clarity we write:

A =e,.
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[We emphasize that there is nothing “exotic” about A; in fact A = e, = ™% is just
the constant function 1.]

Now the computability structure which we shall place on H will coincide with
the natural structure on the subspace H,, but will behave in an “artificial” manner
with respect to the vector A. In this ad hoc structure, the vector A will not be
computable. Here are the details.

Let a: N - N be a recursive function which enumerates a recursively enumerable
non-recursive set A in a one to one manner. We assume that 0 ¢ A. We define
a sequence of positive reals {a,} and a single positive real number 7y by setting:

o, = 279 forn>1,

2
ne

M8

PP=1-Y% «

[}
-

n

It is important to observe that y is not computable. For if it were, then the series
Y a2 would converge effectively, contradicting the fact that A is not recursive.
Now we define the vector

We observe that | f|| = 1.

Remarks. In terms of the natural computability structure on L2[0, 1], the vector f

is not computable (since the coefficient y is not computable). In the ad hoc structure

below, we will declare f to be “computable”. We will declare, further, that the

standard notion of computability holds on H,. This essentially determines the ad

hoc structure. It takes some work, however, to show that this structure satisfies

the axioms for computability on a Banach space. (Cf. Lemmas 1, 2, and 3 below.)
We put an ad hoc computability structure on H by specifying that

{f,e1,e5,€3,...}

is an effective generating set.
Equivalently, a sequence {x,} of vectors in H is ad hoc computable if:

xn = ﬁ'lf + yn’

where { 8,} is a computable sequence of complex numbers, and {y, } is a computable
sequence of vectors (in the standard sense) in Hy,.

As mentioned above, we will prove in Lemma 3 that this definition satisfies the
axioms for a computability structure.

The operator T. We define T by setting:

TA =0,

Te, =27"¢, forn>1.
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Since {A = ey, €;, €,, ...} form an orthonormal basis for H, T is self-adjoint. Since
the sequence 27" — 0, T is compact. Clearly 0 is an eigenvalue of T of multiplicity
one; the corresponding eigenvectors are the scalar multiples of A.

We shall show in Lemma 4 that T is effectively determined in terms of the ad hoc
computability structure which we have defined on H.

We show in Lemma 5 that no nonzero multiple of the eigenvector A is computable
in terms of the ad hoc structure.

By combining Lemmas 3, 4, and 5, we obtain all of the conditions stated in the
preliminary form of the Eigenvector Theorem.

Statement and proof of Lemmas 1-5. We begin by noting that some of these lemmas
are stated in the complete generality of an arbitrary Hilbert space H with a comput-
ability structure. In these cases, obviously, we must use nothing but the axoms for
computability on a Banach space. When H is a specific space (e.g. H = L2[0, 1])
we shall say so.

The following is important, but hardly deserves to be called a lemma. Let H be
any Hilbert space with a computability structure. If {x,} and {y,} are computable
sequences of vectors in H, then the double sequence of inner products {(x,, y,)} is
computable. For

112

(xm ym) = %[”X" + Vm - "xn - ym”2 + i"xn + lymllz - i”xn - lymnz]

The Linear Forms Axiom gives us the computability in H of the double sequences
{X, + ym} and {x, +iy,}. Then the Norm Axiom implies that {(x,, y,)} is
computable. (Of course, to handle the double sequences, we use one of the standard
recursive pairing functions from N x N onto N.)

Lemma 1. Let H be a Hilbert space with an arbitrary computability structure imposed
upon it. Suppose there exists a computable orthonormal basis {e,} for H. Take any
sequence of vectors {x,}, given by

o]
Xp= ) Corl-
k=0

Then the sequence {x,} is computable in H if and only if:
i) the double sequence {c,; } of “Fourier coefficients” is computable, and

ii) the series Y. |cu|? converges effectively in k and n.
k=0

Proof. The “if” part is trivial: the computability of {x,} follows immediately from
the Linear Forms and Limit Axioms. For the “only if”, take a computable sequence
{x,}. As we have seen, the sequence of inner products (x,, ¢;) is computable; this

0
gives (i). To obtain (ii), we use the Norm Axiom. This tells us that [|x,[% = ¥ |cnl?
k=0
k

is a computable sequence of reals. Since the sequences of partial sums ). |c,|* are
i=0
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computable and converge monotonically to a computable sequence of reals, the
convergence is effectivein kand n. [J

The next lemma embodies one of the key steps on the way to proving that the ad
hoc structure on L2[0, 1] satisfies the axioms. The point is that the vector x
considered there is not assumed to be computable. In terms of Lemma 1 above,
x satisfies condition (i) but not necessarily condition (ii).

Lemma 2. Let H be any Hilbert space with a computability structure and with
a computable orthonormal basis {e,} for H. Let {y,} be any computable sequence
of vectors in H. Take any vector x =Y c,e, for which the sequence of “Fourier
coefficients” {c, } is computable (condition (i) of Lemma 1). Then the sequence of inner
products {(x, y,,)} is computable.

Proof. We have not assumed that the series Y |c,|* for ||x||* converges effectively.
However, there exists an integer M which bounds | x||.
Now let the “Fourier expansions” of the y,, be

Ym = Z dpiey.
k=0

Since {y,,} is computable, the double sequence {d,,; } is computable, and the series

Y. |d|* converge effectively in k and m by Lemma 1. Furthermore,
=0

a0

(x’ ym) = Z ckd_mk for all m.

k=0

Since the sequences {c,} and {d,,} are computable, to prove that {(x, y,)} is
computable we have only to show that in the above series the convergence is
effective in k and m.

Q0
Since Y |d,.|* converges effectively, there is a recursive function e(m, N) such
k=0

that

0 ) 1/2 2—N
Y ldml SV for all m, N.

k=e(m,N)

Since the norm of x is dominated by M, the Schwarz inequality implies that

o0

Y ledml<27¥  forallm, N.
k=e(m,N)
@ —
Thus to compute (X, y,,) = Y. Cxdy to within an error of 277, we merely compute
k=0

the first e(m, N) terms of the series. [
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From Lemma 2 we derive:
Lemma 3. The “ad hoc” computability structure defined above on H satisfies the

axioms for computability on a Banach space. Furthermore, this computability structure
is effectively separable.

Proof. Only the Norm Axiom causes any difficulty. Given a computable sequence
{x,} in H, we need to compute {||x,|}. By definition:

Xp = Buf + V>

with {B,} computable in C, and {y,} computable in H,. We recall that
[=7A+ ), oe,
n=1

where {a,} is computable, but the series ) a2 is not effectively convergent, and y is
a noncomputable real adjusted so that || f|| = 1. Then:

1%al1% = 1Bal> + llyall> + 2-Re [Bi(f, yu)].

We know that {8,}, {|8,|*}, and {||y,||*} are computable. Thus it suffices to show
that

{(fs ya)}

is computable. Let g be the projection of f on H,, namely:

oo}
g=>y e,
n=1

Then, since y, € Hy, (f, y,) = (g, y,) for all n. Now g is not computable in H,.
However, the “Fourier coefficients” {«,} of g are computable, and the sequence of
vectors {y,} is computable. Hence, by Lemma 2, the sequence of inner products
{(g, y,)} is computable. [

Lemma 4. In terms of this ad hoc computability structure, T is effectively determined.

Proof. Since T is bounded, it suffices to show that T acts effectively on the generating
set {f, e;, e,,...} for H. We see at once that T acts effectively on the subspace H,
generated by e, e,, ... . Thus all we need to show is that Tf is computable. Now

Tf = Zl 27",e,.
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Since Tf € H,, we can apply Lemma 1. The sequence of “Fourier coefficients”
{27"a,} is computable, and the sum ) 47"« is effectively convergent (being dom-
inated by ) 47"). Hence Tf is computable. []

We recall that the eigenvector of T corresponding to the eigenvalue 0 is A. Then
we have:

Lemma 5. The only constant multiple cA of A which is ad hoc computable in H is the
zero vector.

Proof. We first note that if cA is computable in H, then |c| is a computable real. This
follows from the Norm Axiom: for ||cA|| = |c| must be computable if cA is.

Now suppose cA = fif + y is computable. Then the constant § and the vector y
are computable. Furthermore, f = yA + ) o,e,, where y is the noncomputable real
defined above. Since y € H,, the A-component of ff + y is fy-A. Hence ¢ = By,
|c| = |Bly and |c| is computable ifand only if § =0. [

As noted above, the preliminary Eigenvector Theorem is an immediate con-
sequence of Lemmas 3, 4, and 5.

6. The Eigenvector Theorem, Completed

This section treats two main topics. One, as stated in its heading, is the completion
of the Eigenvector Theorem. The second—and related—topic is ad hoc comput-
ability, as introduced in Chapter 2, Section 7. We prove a number of general results
about ad hoc computability. These results are of independent interest, since they
can be used as tools in a variety of situations. One of these situations is the proof
of the Eigenvector Theorem.

The ad hoc computability results (Lemmas 7 and 8) are given in their most general
form. This entails a bit of extra work. In particular, it requires the inclusion of
Lemma 6, whose slightly complicated proof is deferred until Section 7. We mention
that, for the proof of the Eigenvector Theorem, Lemma 6 could be omitted. But the
most general forms of Lemmas 7 and 8, which apply to an arbitrary computability
structure on a Hilbert space, require Lemma 6.

Although most of the results is this section apply only to Hilbert space, the
following holds for Banach spaces.

Lemma 6 (The Effective Independence Lemma). Let X be an effectively separable
Banach space with an effective generating set {e,}. Then there exists an effective
generating set {f,} for X whose elements are linearly independent over the real or
complex numbers.

As mentioned above, the proof of this lemma is deferred until Section 7.
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Lemma 7. Let H be a Hilbert space with an arbitrary computability structure imposed
upon it. Let {e,} be an effective generating set for H. Then there exists a computable
orthonormal basis {u,} for H.

Proof. By Lemma 6, we can assume without loss of generality that the elements of
{e,} are linearly independent. The rest is easy. Following the standard Gram-
Schmidt process, we write:

Then the vectors v, are orthogonal, and by the Linear Forms Axiom the sequence
{v,} is computable.

[Strictly speaking, the inductive definition of {v,} given above does not fit the
format of the Linear Forms Axiom. Namely, this axiom requires that we have linear
forms in the original computable sequence {e,}. However, we can compute the v,
in terms of the ¢, by means of back-substitution.]

Finally, since the sequence of norms {||v,||} is computable by the Norm Axiom
(and since v, # 0 for all n, by linear independence), we can write

u}l = vn/”vn“a

giving a computable orthonormal sequence {u,}. [

Remarks. Let us illustrate Lemma 7 as it applies to the Eigenvector Theorem. Begin
with the effective generating set { f, e,, e,, ... }, which gave the ad hoc computability
structure defined in Section 5. We recall that {e,, e,, ...} is the standard computable
orthonormal basis for the subspace H,, but that f is an “exotic” element which is
not computable in the standard sense. Now the Gram-Schmidt process begins with
f, giving uy = f (since | f|| = 1). But f is not orthogonal to e,, e,, ..., and so the
Gram-Schmidt process alters e, e,, ..., producing a new orthonormal sequence
{uo, uy, u,, ...}. The sequence {u,} is not computable in the standard structure (for,
as we have already seen, u, = f is not computable in this sense). However, Lemma
7 implies that {u,} is computable in the ad hoc structure. Indeed, this is precisely
the point of Lemma 7.

Now Lemma 8 below shows us how to translate results about the ad hoc
computability structure into corresponding results for the standard structure. Al-
though its proof is easy, it is a very useful result. In particular, it provides the final
step in the proof of the Eigenvector Theorem.

Before turning to the technical details, we begin with a brief discussion of the
content of Lemma 8. This Lemma asserts that, once we fix an orthonormal basis
{u,} which is delared to be computable, the entire computability structure is fixed
via conditions (i) and (ii) below. However, different computability structures can
arise via the choice of different orthonormal bases. A basis which is computable in
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terms of one computability structure might not be computable in terms of another.
An example is the orthonormal basis {u,} above, which is ad hoc computable but
not computable in the standard sense. Indeed, if the basis {1, } were computable in
the standard sense, then by the Effective Density Lemma (Chapter 2, Section 5) the
ad hoc computability structure would be the same as the standard one—which it
clearly is not.

One final comment: Lemma 8 gives a representation theorem for any effectively
separable computability structure on Hilbert space, and thus shows that all such
structures are isomorphic. As we shall show in the next section, the corresponding
statement for Banach spaces is false.

Lemma 8. Consider any effectively separable computability structure—in the axio-
matic sense—on a Hilbert space H. Then this structure has the following form. There
is a computable orthonormal basis {u,} for H, and in terms of this basis: A sequence
of vectors {x,} in H is computable if and only if

i) the double sequence of “Fourier coefficients” {c,.} of the x, in terms of {u,} is
computable, and

Q0
ii) the series Y. |cy|? converges effectively in k and n.
k=0

Proof. Combine Lemma 1 from Section 5 with Lemma 7 above. []

Proof of the Eigenvector Theorem, completed. We combine the preliminary theorem
of Section 5 with Lemma 8. Let T be the operator on the ad hoc space H given in
Section 5. Let uy, uy, u,, ... be the ad hoc computable orthonormal basis for H (so
that the ad hoc computability structure is given via Lemma 8). Let ¢, e, e,, ... be
the standard computable orthonormal basis for L2[0, 1].

Let T be the operator on L2[0, 1] which acts on the basis {e,, e;, ,, ...} in the
same way that T acts on {u, uy, u,, ... }. That is, if

Q0
Tu= Y buu,
k=0

then
Te,= Y buer.
k=0

What must we prove about 7? Here let us recall the essential properties of T, as
proved in Section 5. We showed there that T is compact and self-adjoint, and that
0 is an eigenvalue of T of multiplicity one. We showed further that T is effectively
determined in terms of the ad hoc computability structure on H. Finally we showed
that, in terms of this ad hoc structure, none of the eigenvectors of T corresponding
to 4 = 0 is computable.

We claim that T, acting on the standard computability structure, shares all of the
properties of T listed above. These properties are of two types:
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1) geometric properties—compactness, self-adjointness, the values and multiplic-
ities of the eigenvalues, and
2) computability properties.

For (1), since {#;} and {e,} are both orthonormal bases, the transition from {u,}
to {e,} preserves all of the above mentioned geometric properties. For (2), Lemma 8
quarantees that the transition from {u,} to {e,} maps the ad hoc computability
structure on H onto the natural computability structure on L[0, 1].

Thus T, acting on the standard computability structure, is the operator promised
in the main Eigenvector Theorem. The proof of that theorem is now complete. [

One final question. What does the operator T actually look like? Well, T is just
the operator T expressed in terms of the ad hoc computable orthonormal basis {u }.
The basis {u, } is computed from the sequence {f, e,, e,, ...} via Lemma 7, and the
formula for f, on which this computation depends, is given in Section 5. Beginning
with these observations, an explicit presentation of T can be worked out. However,
its form is rather a mess, and its intuitive meaning is completely hidden.

7. Some Results for Banach Spaces

For the first time in this chapter, we deal with computability structures on an
arbitrary Banach space, rather than a Hilbert space. Our first result is the Effective
Independence Lemma (Lemma 6 in Section 6), whose proof was postponed until
this section. Our second result is a counterexample which shows that, on the Banach
space I, there exist effectively separable ad hoc computability structures which are
not isometric to the standard structure. This contrasts with the situation for Hilbert
space (Lemma 8 in Section 6).

Effective Independence Lemma. Let X be an effectively separable Banach space with
an effective generating set {e,}. Then there exists an effective generating set { f, } for
X whose elements are linearly independent over the real or complex numbers.

Proof of lemma. We begin with the effective generating set {e,}, which we already
have. The sequence {f,} will consist of a subset of {e,}, selected by an effective
process to be linearly independent and have dense linear span in X. We emphasize
that { f,} is not a subsequence of {e, }, since the termsin { f,} may appear in a different
order than they do in {e,}.

Proof sketch. The idea behind the construction of { f,} is roughly as follows. The
construction proceeds by induction. At the g-th stage, suppose we already have the
first (k + 1) elements fo, ..., f, of the desired sequence {f,}. Then we examine in
turn all of the elements ey, ..., e, which do not already belong to the set { fo, ..., fi},
beginning with the e; of smallest index and working upwards. For each e;, we apply
an effective “Test” (to be described below) which terminates in a finite number of
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steps and leads to one of the two conclusions: (a) the set { f,, f, ..., f;, €;} is linearly
independent; (b) the vector e; can be approximated to within a distance <2 % by a
linear combination of f;, ..., f,. As soon as some e; satisfies condition (a), we add e;
to { fo, ..., fi}; that is, we set fi, = e;. In case several ¢; satisfy (a), we select only
one: that with the smallest i. When no e; satisfies (a), we do nothing. Then we go on
to the (g + 1)st stage.

By definition, the sequence { f,} so constructed is linearly independent. And by
condition (b), any e; which is forever omitted from { f,} can be arbitrarily closely
approximated by linear combinations of the f;; hence ¢, lies in the closed linear span
of { f,,}. Thus, since by definition the linear span of {e, } is dense in X, so is the linear
span of { f,}. This completes the proof-sketch.

Details of the proof. We begin by giving a criterion for the linear independence of
any string {z,, ..., z;} of computable vectors in X. This criterion will correspond
to part (a) of the effective “Test” mentioned above.

By definition, the vectors {z,, ..., z,} are linearly dependent if and only if there
exist (real/complex)scalars { f, ..., f }, notall zero,such that §,z, + - + Bz, = 0.
Multiplying through by a constant, we can assume that {f;,..., B} lies in the
domain D between the unit sphere and the sphere of radius 2 in R* or C*. Now we
give a simple recipe for approximating all of the points in D by (dyadic rationals/
dyadic complex rationals).

Form=0,1,2,...,let S, denote the set of all k-tuples {B,, ..., f,} of (rationals/
complex rationals) whose denominators are 2™ and which satisfy

LB + -+ Bl < 4

Then, for each m and k, S, is a finite set, and there is an obvious procedure for
listing S,,, for all m and k, effectively in m and k.

Independence Criterion. The vectors {z, ..., z,.} are linearly independent if and only
if the following condition holds. For some m > 2k:

min {|f1z; + -+ Bezill: {Brs -5 B} € S} > 27" (2ol + - + Nzl

Note. We observe that this criterion involves the evaluation of ||z, + - + Bzl
at only a finite number of points, namely the points in the set S,,,. By the Linear
Forms and Norm Axioms, ||z, + - + B2,/ is computable, effectively in k, the
B:, and z;. Similarly for (||z,| + -** + ||z]).

Proof of criterion. For the “if” part. Suppose that the criterion holds, but that
{zy,..., z,} are linearly dependent. We must derive a contradiction. Since {z, ..., z;}
are dependent, there exists a point {yy, ..., 7} on the sphere of radius 3/2 in R* or
C* (i.e. with |p;]? + = + |7|® = 9/4) such that y,z, + - + .z, = 0. Now for each
7;, there exists a dyadic value f;, with denominator 2™, such that

lyi — Bl <27™
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[Actually, in the real case we can get |y; — f;| < (1/2)27™; and in the complex case
we can get a distance of (ﬁ/Z)Z"".] Thus, since y,z; + -+ + %2, = 0,

k
1Bizy + - + Beziell < Z [y = Bil - llzill < 27™(llzyll + - + llzel)
=1

This contradicts the inequality given in the criterion.

For the “only if” parts. If {z,, ..., z,} are linearly independent, then over the
entire domain D = {1 < |B,|*> + -+ + |B|*> < 4} (without any reference to dyadic
points), the minimum value 9,

0 =min {||fz, + - + Bzill: {By, ..., B} € D}

satisfies 6 > 0.

Now simply take any m large enough so that 27™(||z,|| + -** + ||z/l) < J, and
we see that the criterion does hold, as desired. This proves the validity of the
criterion. []

Construction of {f,}. Now we begin the construction of the sequence {f,}. At this
point we must take pains to work within the axioms for computability on a Banach
space.

We start with the given effective generating set {e,}. Then we sweep out the set
of all finite (rational/complex rational) linear combinations of the e,; this can be
done in an effective way by using one of the standard recursive enumerations of all
finite sequences of integers. By the Linear Forms Axiom, this yields a computable
sequence {p,} in X which consists of all finite (rational/complex rational) linear
combinations of the e,. Then by the Norm Axiom, the sequence of norms {||p,||} is
a computable sequence of reals.

We return now to the inductive definition of the sequence { f, }, as described briefly
in the proof-sketch above. We recall that at stage g we had selected (k + 1) linearly
independent vectors { f,, ..., fi} for { f,}, and that we would then apply a “Test” to
all of the elements e, ..., e, not already in the set { fo, ..., f,}. Here is the Test:

The Test. The test has two parts, (a) and (b), between which we alternate, switching
back and forth until a termination is reached. The test is applied to an element ¢;
from the set e, ..., e,.

Both of the parts (a) and (b) below involve strict inequalities (“>" and “<”
respectively). Hence, IF either of these inequalities holds, a finite amount of calcula-
tion (involving a sufficiently good rational approximation) will suffice to confirm it.
The fact that this procedure halts will be proved below. As we shall see, (a) and (b)
are not mutually exclusive. Indeed, this is why an effective decision procedure is
possible.

Part (a). With reference to the “Independence Criterion” above: For m = 2k, 2k + 1,
2k + 2, ..., compute all of the values ||Byfy + - + B fi + Besr€ll for the finite
set of points {fy, ..., Pi+1} € Sm.i+2. Using rational approximations as discussed
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above, test whether:

min {||fofo + =+ + Befi + Berréill: {Bos - -» Bis1} € Smos2)
> 27" foll + - + ILfell + lleslD-

If this ever happens, for any m, cry “Halt!” and declare that “(a) holds: { f,, ..., fi, €}
are linearly independent.”

Part (b). (This part is disappointingly unsubtle.) Scan through all of the (rational/
complex rational) linear combinations of f;, ..., f, until such a combination
Bofo + -+ + Betx is found for which

lle; — (Bofo + -+ + B Sl <274

If this happens, cry “Halt!” and declare “(b) holds: ¢; can be approximated to within
a distance of 277 by a linear combination of fg, ..., f.”

Proof that “The Test” halts. By hypothesis, the vectors { fo, ..., fi} are linearly
independent. Therefore, either (A) the vectors { fq, ..., f;, €;} are independent, or (B’)
e; is a linear combination of f, ..., f;. By the “Independence Criterion”, (A) is
equivalent to (a) above. Now (B’) is stronger than (b), but it suffices that (B’) implies
(b). Thus either (a) or (b) (or both) holds.

We still have to verify that one of the processes (a) or (b) halts. But this is easy.
Both processes involve strict inequalities, “>" and “ <” respectively. Thus IF either
of the inequalities (a) or (b) is true, a finite amount of calculation will verify it, and
the process will eventually halt. Since at least one of (a) and (b) is true, the process
does halt, as desired. [

Now the rest of the proof is nearly identical to that given in the proof-sketch
above. At stage g, we apply “The Test” to ey, ..., e, (omitting those e; already in
{fos---» fi}). When the first ¢; satisfies part (a) of the test, we add e; to { fo, ..., fi},
setting f,.; = e;. Then we stop stage g. If no e satisfies part (a), we do nothing in
stage q. Then we go on to stage (q + 1).

As explained in the proof-sketch above, the sequence { f,} is linearly independent
and its closed linear span contains {e,}; hence { f,} is dense in X.

Finally we must show that { f,} is computable in X. Now the construction of
{f,} involved a recursive process, depending on the computable sequence of real
numbers {||p,||}. Thus f, has the form f, = e, for a recursive function a: N - N.
By the Composition Property, proved as a consequence of the Axioms in Chapter
2,{f,} is computable. [

A counterexample for Banach spaces

Now that we have illustrated the usefulness of ad hoc computability structures, it
seems natural to pose the following question. Are all such structures related via (not
necessarily computable) isometries? We recall the definition:
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Definition. Let X be a Banach space. A linear transformation U: X — X is called an
isometry if U is onto and distance preserving (i.e. U is onto and |Ux| = |x||).

Of course, if U is an isometry, then U~! exists and is an isometry.

At this point, we dispose of a triviality. Certain non-isometric mappings can give
the same computability structure as an isometric mapping. For example, if U is an
isometry and k > 0 is a computable real, then kU gives the same structure as U.
Obviously such examples add nothing new to our problem, which as precisely
formulated is:

Question. Are all effectively separable ad hoc computability structures #; related to
the standard structure &, in the following way? There exists a (not necessarily
computable) isometry U such that

{fi}eA if and only if f, = Ug, for some {g,} € %,.

All of the ad hoc computability structures which we have used so far have been
based on non-computable isometries. Thus the two examples given in Chapter 2,
Section 7 involved (1) multiplication by a non-computable complex constant ¢ with
[c| =1, and (2) the translation f(x) — f(x + «), where « is a noncomputable real.
Both of these transformations are isometries. The more recondite example in
Sections 5 and 6 involved an ad hoc computability structure on a Hilbert space. We
proved in Lemma 8 above that any ad hoc computability structure on an effectively
separable Hilbert space is isometric to the natural structure.

Suppose, then, that we turn our attention to Banach spaces. Here the situation
is different.

Example. There exist ad hoc structures on I* which are not isometric to the standard
structure.

To give such an example is not trivial. [The difficulty, of course, lies in satisfying
the Norm Axiom. With the isometries—which preserved norms—this was no
problem.] Since this example is used nowhere else in the book, we shall present it
in a rather terse fashion. We remark that some of the steps are similar to those used
in the Preliminary Eigenvector Theorem of Section 5.

Proof. We consider the real Banach space [, and let e, e, . .. deote the unit vectors,
e, =1{0,0,...,0,1,0,...} with a “1” in the n-th place. For typographical clarity we
denote ¢, by A.

As usual, let a: N — N be a one to one recursive function generating a recursively
enumerable nonrecursive set 4. We assume that 0 ¢ 4. Let

o, = 279,
and set

y=1—ia,,.

n=1
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Then y is a noncomputable real. Let

f=yA+ Y o,e,

Then, by definition of y, | f|| = 1.
Let I3 denote the subspace of /! spanned by {e,, e,, ...}.
We define the ad hoc computability structure on I! by specifying that

{f’ €, €3, €3, }

is an effective generating set.
Equivalently, a sequence {x,} of vectors in I* is ad hoc computable if :

Xy = Buf + Yu

where {f,} is a computable sequence of real numbers, and {y,} is a computable
sequence of vectors (in the standard sense) in 1.

Lemma. This is a computability structure.

Proof. The Linear Forms and Limit Axioms are clear. Only the Norm Axiom
requires proof. That is, we must show that {|/x, | } is computable if {x, } is. Fix n, and
consider a single computable vector x. It will be clear that the procedure which
follows is effective in n.

We have:

x=Bf+y,
where B is a computable real number and y is computable in [{.

Lety = {01, 02, ...}, Gie R
Since y is computable in /!, there exists a recursive function e(N) such that

00

Y 16/<2  forall N.

k=e(N)

To compute [|x|| to within 27, we use the following recipe:

Compute oy, &y, ..., Oy
Compute fag + Oy, ..., Botoyy + Oy
Now

Ixll = kzl | By + 6] + 181,

and to within an error of 27V (gotten by dropping the “tail” of {6, }):

0

e(N)
Ixl = Y 1By + 6l + 3, |Blow+ [Bl"y.
k=1 k N)+1

—E(
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The last two terms in the above displayed formula are not computable. However
we claim that their sum
1Bl <)’ + ), “k)
k=e(N)+1
is computable.

To show this, we reason as follows. Firstly, | 8| is computable. We know that

y+zak=1>
k=1

sO
© e(N)
Y+ Y u=1—-Y o O
k=e(M)+1 =1

Lemma. This structure is not isometric to the standard one.

Proof. We recall the definition of an “extremal point” on the closed unit ball B of a
Banach space. (Recall that B = {x: || x| < 1}.) We say that a vector u € B is extremal
if there do not exist distinct vectors v, w € B and a constant ¢, 0 < ¢ < 1, such that
u = cv + (1 — ¢)w. Clearly any isometry preserves these extremal points.

It is well-known and easy to show that the only extremal points in [* are +e,.

Now the standard computability structure on /' has an effective generating set
consisting entirely of extremal points (namely the e,, including A = e,).

Thus, since isometries preserve extremal points, if the ad hoc structure were
isometric to the standard one, the ad hoc structure would also have an effective
generating set consisting entirely to extremal points. We now show that this cannot
happen.

Suppose otherwise. The ad hoc effective generating set must contain some element
z with a nonzero A-component. As we have seen, if z is extremal, then z = + A. On
the other hand z—since it comes from an effective generating set—must be ad hoc
computable. This is impossible in view of the following:

Lemma. The only multiple of A which is ad hoc computable is 0- A.
Proof. Virtually identical to the proof of Lemma 5 in Section 5.  [J

This completes the proof of the previous lemma, and hence also of the main
result. [J





