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Chapter V
Bounded Arithmetic

In the previous chapters we have encountered some weak fragments of arith-
metic. First we have seen that some properties of numbers can be proved
and several concepts can be formalized even in very weak fragments. Often
we have used I X as a base theory where a weaker theory was possible. In
this chapter we shall consider the possibility of formalizing syntax and some
basic combinatorial concepts in weaker fragments. Section 3 will be devoted
to this aim. Let us stress that the reason for trying to formalize certain con-
cepts in weak fragments is not only our curiosity. In fact weak fragments are
often needed in the study of strong theories. Recall the concept of a definable
cut, Chap. III, Sect. 3. Cuts in fragments of PA which are closed under +
and * define interpretations of bounded arithmetic (IZy and some stronger
systems), but usually they do not interpret even IX;. Thus we need weak
fragments in order to understand the theory of cuts.

The second reason, which is perhaps the main reason for this research
into weak fragments, is their close connection to computational complexity.
It is obvious that there is some connection. In X, we have induction for
classes of bounded formulae. It is well-known that bounded formulae define
easily-computable sets; for instance they are computable in linear space. This
is however only a superficial observation. Some deeper connections will be
shown in Chap. IV. It seems that more such relations are yet to be discovered.

Some knowledge of complexity belongs to a general background of all
working mathematicians. Even so, we have decided to include Sect. 2 as
a short introduction in complexity theory, since concepts like the Polynomial
Hierarchy are quite often disregarded in textbooks.

Section 1 has a similar introductory role. We shall survey the most impor-
tant weak fragments and prove some basic results on them. Note that some
results on such theories (especially Q and Iopen) have been proved in Chap. I,
Sect. 1.

The last section, Sect. 5, deals with classical metamathematical questions
in the context of bounded arithmetic: unprovability of consistency, partial
conservativity, interpretability. We will also have to develop some proof theory
in Bounded Arithmetic.
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In the proofs we shall not favor a particular proof technique; we shall
mix proof theory with model theory, since our aim is not the study of one
of these fields, but the study of weak fragments. An exception is Sect. 4,
where we prefer model theory, since the same subject has been treated using
proof theory in another book, [Buss 86, Bounded Arith.]; this section however
contains several results not included in Buss’s book.

This chapter needs very little from the previous chapters and hence can be
read almost independently. It requires only basic acquaintance with fragments
of Peano arithmetic, Chap. I, Sects. 1 and 2. In Sect. 5 we shall work with
definable cuts, thus we need Chap. III, Sect. 3.

1. A Survey of Weak Fragments of Arithmetic

(a) Fragments of Arithmetic

The weakest fragment that we consider in this book is Robinson’s arithmetic
Q. It was defined in Chap. I, Sect. 1. The fragments of arithmetic which use
the language L are extensions of @ by adding a schema of induction for
a restricted class of formulae and, possibly, an axiom saying that a certain
function is total. Though @ proves only very few interesting statements about
numbers, (it does not prove for instance the commutativity of addition), we
shall see that quite strong theories are interpretable in it, (Sect. 5).

Sometimes it is more convenient to start with a stronger theory. Usually
one takes P~ which is just the axiomatization of the nonegative part of the
discretely ordered ring. These axioms are provable in Iopen and they are listed
in Theorem 1.10, Chap. I, where we only have to add

0<z&z<T—.z=0vz=1.

The next step in the hierarchy is Iopen. Several basic properties of natural
numbers are provable already in this theory, see Chap. I, Sect. 1. In spite
of this fact it is a very weak theory. There are models of Iopen in which the
following equations do have solutions

(z+1)%=2(y + 1)%;
(z+1)° +(y+1)% = (2 +1)°;

i.e. the irrationality of /2 and Fermat’s last theorem for exponent 3 are
not provable. Such independence results are possible, because there are re-
cursively defined models of Iopen. It seems that the properties such as the.
property of having recursive models determine the border-line between very
weak fragments and other fragments of arithmetic. I;,pen is an interesting
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object for research. However the methods needed for it are different from
those needed for stronger systems, therefore we shall not consider it here.
Let us only mention here that one can prove independence results also for
some strengthenings of Iopen (as it is defined here). Then it is more conve-
nient to define Iopen to be a ring, not only the nonegative part of it, and add
properties such as normality (which means that it is integrally closed in its
fraction field and which implies that /2 is irrational).

The next natural step in the hierarchy is IXp; let us recall that this is
@ with induction schema for all bounded formulae in language Lg. First we
state two theorems which show that there is an essential difference between
the structure of models of IXy and Iopen, since none of these theorems holds
for Iopen.l The proofs require some facts which will be proved later.

1.1 Theorem. There is no recursive nonstandard model of I.Xy; in fact, in each
nonstandard countable model M of Xy both + s and *ps are not recursive.

Proof. Let A, B a recursively inseparable pair of subsets of N. Let ¢ and
be Xy formulae such that

n€A=NF3yey),
n€ B=NF (y(7,y).

Since A and B are disjoint, we have
N E (Vz,y,2)~(p(z,y) & (2, 2)) -
Hence, for every k,
M ¥ (Vz,y,2 < k)~(¢(2,y) &Y(z, 2)) .

Since this is a Xy formula, by overspill we get some a € M nonstandard such
that (Vz,y,2 < a)~(¢(z,y) & (z,2)) holds in M. Let C be defined by

neC=MEF 3y <a)p(m,y).

Then A C C and CNB = 0. Let C' be an initial segment of C. We shall
code it by an element ¢ of M in such a way that b belongs to C’ iff the b-th
prime divides ¢. Clearly this coding can be expressed by a X formula. Using
a similar overspill argument as above one can show that there isa c € M

which codes the whole C, i.e.

neC=MEpy,]|ec,

1 Let us note that R. Kaye has defined a fragment of arithmetic for which 1.1 holds, but
for which 1.2 fails.
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where py, is the n-th prime. Now assuming that + s is recursive, we can show
that C is recursive: given n, search for r,s € M, r <jps s, such that

MEc=s+s8+---+s+r.
N————

pn times

If r = 0, then p,, divides c, hencen € C. If r # 0, then n ¢ C. Since this
is a contradiction with recursive inseparability of A and B, +js cannot be
recursive. In order to show that *,s is not recursive, code C by 2€. This is
possible, if we take c sufficiently small nonstandard. Then the procedure for
testing n € C will search for u,v € M, u < v such that

MEc=v*v*---%v*u,
N, s’

pn times

and decide according to the truth of u = 1. O

1.2 Theorem. Let M be a countable nonstandard model of IX. Then there
exists a nonstandard initial segment of M which is a model of PA.

Proof. This is Theorem IV.3.39 strengthened form IX; to IXy. Thus one
only needs to check that the proof can be carried out in IXy. We shall use
a different argument. By Theorem IV.3.39, it suffices to prove that every
countable model M F 1Y, has a nonstandard initial segment which is a model
of IX7. We shall construct a semiregular short cut I and apply Theorem
IV.2.16 to deduce that it is a model of IX;. We have to use some properties
of IXZy which will be proved later in Sect. 3 (coding of sequences, definition
of the graph of exponentiation).
Let M be a countable model of IX). Let g(z,y) be defined as follows

9(0,y) = ¢¥;
9(z+1,y) = g¥*(z,y) (y+1iterated Az(g(z,y))).

One can show that g(z,y) = z can be defined by a X formula and the
inductive clauses can be proved in I.Xy. Let d € M be a nonstandard number
such that 22* exists in M. By overspill we can find a nonstandard c such that
g(c,c) exists in M. Take an enumeration fy, f1,... of functions coded in M
whose domain is [0, ¢] such that each function occurs in it infinitely often.
Define a nested sequence of intervals

[ao,g(c,ao)) 2 [al,g(c— lral)) 2...

with ag = c, as follows. Suppose the sequence has been defined up to [a;, g(c—
¢,a;)). Decompose this interval into

[ai,g(c —1— 1,0,,')) U [g(c —i- 1,(1,'),92(0 ol 11“5)) u-..
e Ulg%(c—i—1,8;), 9% (c —i,a;)).
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By the Pigeon Hole Principle (we can use it, since f; is coded in M) one of
the intervals in the subdivision does not intersect the range of f; restricted
to the domain [0, a;). This will be the next interval in the sequence. Let I be
the cut determined by ag,ai,.... The construction ensures that it is a cut
(the successor function occurs infinitely often) it is semiregular (the range of
f; restricted to a; is bounded by a;4; in I), nonstandard (since ¢ € I) and
short (since I < d). o

By the definition of Chap. 0 we allow only variables as the bounds in
formulae of Y. Let f be a function symbol. Extend Lg by f and let us
denote by L‘g the class of bounded formulae in the extended language where
we allow the bounds at the quantifiers to be terms in the eztended language
Lgo(f). Consider the following two theories:

I E(',f (f) + “f is monotone” ;
IXo(f) + “f is monotone” .

In the first one we extend the induction schema of IXy to 2({ formulae,
while in the second one we allow induction only for bounded formulae in
Lo(f) where the bounds at the quantifiers are only variables. We have already
considered a special case with f equal to ezp.

1.3 Proposition. The theories I E{ (f) + “f is monotone” and IXy(f) + “f
is monotone” are equivalent.

This proposition shows that it is not important which bounds are allowed
at bounded quantifiers. The proof is almost identical with the proof of Lemma
1.1.30.

It turns out that the graphs of exponentiation and several other important
functions are definable by Xy formulae. I ¥y does not prove that exponentia-
tion (defined by such a formula) is a total function (see Theorem 1.4 below),
but it does prove the inductive properties of it whenever the values exist.
Thus instead of working in I Xg(ezp) (with the inductive properties for ezp)
we can take Xy with an axiom saying that ezp defined by a Xy formula is
a total function. Then IZo(ezp), and hence IL; "7 (ezp), will be conserva-
tive extensions. (These extensions are conservative in a stronger sense: the
new function symbol is definable in the subtheory.) The same holds for other
monotone functions with Xy definable graphs. This shows that extension of
IX, by an axiom saying that a certain (X definable monotone) function is
total has the same effect as an extension of the language. Hence it is natural
to consider such theories to be versions of the intuitive concept of Bounded
Arithmetic.



272 V. Bounded Arithmetic

It is useful to realize that I Z‘g (f) has a IT{(f) axiomatization: replace the
induction schema by the following version

(V2)((0) & (Vy < z)(p(y) = ¢(S())) — ¢(2))

for Xo(f) formulae and omit the axiom (Q3).

Let us recall some definitions from Chap. III.
(1) |z ="loga(z +1)7
(2) wo(z) = 2z;

Cwipi(z) = 2¢i(Iz1=1) for £ > 0 and wi+1(0) = 0;
(3) (z) =,

2%, = 22y,

Further we consider the following axioms:
(1) 02 =45 (V2)(Fy)(“y = wiza(z)");
(2) Ezp =g5 (Vz)(Jy)(“y =277);
(8) Superezp =45 (Vz)(3y)(“y = 23").
Here we use the quotation marks to denote a Xy formula with the same
meaning. At this point it is not obvious that such formulae exist. This will
be proved in Sect. 3. In I ¥y we can also prove that w;4; grows faster than
w;, 2% grows faster than each w; and 27 grows faster than 2%. Hence if w;y1

is total, then w; must be total too, etc. Thus we get the basic hierarchy of
theories

IXy CIXg+82, CIXo+429 C--- CIXg+Ezxp C IXy + Superezp .

The most basic theorem about such systems of Bounded Arithmetic is the
following one, which is usually referred to as Parikh’s Theorem.

1.4 Theorem. Let 9 be a Z‘({ formula and let = be a H{; -formula. Suppose
that

IZ{(f) + 7 F (Vz)(f(z) < f(z +1)),
IZ{(f) + 7 - (Vo) Fy)v(z, y).

Then for some term ¢(z) of L(f)

IZ{(f) + 7+ (V2)(3y < t(z))$(=,y) -

Proof. Suppose that the conclusion is false for any term t. Let ¢ be a new
constant. Thus for every term ¢, the following theory is consistent

IZ{(f) + 7 + (Fy < t(e)b(e,y).
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Since we can bound any finite set of terms by a single one, (for example
IZ'({(f) F ti(z),...,ta(z) < t1(z) + - - - + tp(x)), the following theory is also
consistent

IS5 (F) + 7+ (Yy < ta(e)) (e, y) + (Vy < ta(e)) (e, y) + -+ ;

here we use an enumeration of all terms of L(f). Let M be a model of this
theory and let K be defined by

K={a€M|MEFa<tyc), for somei}.

Since f is monotone, K is a substructure of M. Since I Z‘({ (f) + ™ has a
II;(f) axiomatization K is a model of it. By the construction we have K F
(Vy)—¥(c,y) which is a contradiction with the assumption of the theorem. O

The theorem can easily be generalized by relaxing the assumptions about
the theory. The essential assumptions are that the theory has a IT (f) axiom-
atization and proves some basic properties of terms. The theorem naturally
transfers to the systems where f is not a function symbol but it is only de-
fined by a bounded formula and an axiom saying that it is a total function
is added.

Let us consider two important examples. For IXy this means that every
Yo definable provably total function is bounded by a polynomial. We shall
code sequences (say of 0’s and 1’s) by binary expansions of numbers; the
length of a sequence z is thus |z|. Hence any provably total function can
increase the length of a sequence only linearly. This prevents us defining
polynomial time computations in I Xy and complicates also the formalization
of other concepts. It can be easily seen that the axiom §2; just captures the
polynomial increase of the lengths. Simple computations yield that for every
term t with we there exists a polynomial p such that

z < t(y) — |z] < p(lyl)

and wvice versa, for every polynomial p there exists a term with wy such that

lz| < p(lyl) = = < t(y).

Hence IX + {21 is a theory in which it is more comfortable to work. In par-
ticular IXg + {2, is stronger than IXy. More generally we have the following
corollary.

1.5 Corollary. Let f and g be X definable monotone functions. Suppose ¢
grows faster than any function definable by a term in L(f) (in the standard
model). Let £2(f), resp. £2(g), be formulae saying that f, resp. g, is a total
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function for some Xy definition of the graph of f, resp. of g. Suppose that
IXy + 02(f) proves that f is monotone. Then IXg + £2(f) does not prove

2(9)-
Proof. Let ¢(z,y) be the Ty definition of f(z) = y and let ¥(z,y) be the

definition of g(z) = y. (Hence e.g. £2(g) is (Vz)(Jy)¥(z, y).) Let 7 be a formula
in Lo(f) defined by

T =gf (V2,y)(e(2,9) = f(z) = ).
Now suppose that IZg + £2(f) does prove £2(g). Then also
IZ{(H)+7+ 29),

since 7 implies 2(f). By Theorem 1.4

IS{(f) + 7+ (Ve)(3y < H(2))(z,y),

for some term in Lg(f). But this is a contradiction with the assumption that
g grows faster than any function definable by a term in Lg(f). 0

1.6 Corollary. The hierarchy
IS0 C IS0+ C ISg+025 C --- C I5g + Ezp C I5g + Superezp
is proper. (]

The sentences which separate the levels of this hierarchy are IIs. We shall
see in Sect. 5 that we can separate Xy + Ezp from I Xy+ 2y, by a IT; sentence
and the same is true for IXy + Superezp and IXy + Ezp. Such separations
remain, however, an open problem for the theories below IXy + Ezp.

*

Now we turn our attention to hierarchies of theories obtained by restricting
the quantifier complexity of the formulae allowed in the schema of induction.

1.7 Definition. (1) Ej is the class of open formulae in Ly;

(2) for n > 0, Ey is the class of bounded formulae in Lg in the prenex
normal form where the first quantifier is 3, there are at most n alternations
of quantifiers and the bounds at the quantifiers are terms in Ly (which must
not contain variables of the current and the following quantifiers).

Example. (3z < a)(Jy < a)(zy =a &z >1&y > 1) is an E; formula.
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The theories IE; are defined in the usual manner: @ plus the induction
schema restricted to E; formulae. Thus IE¢ is just Iopen. There is a big gap
between IEg and IE;. In particular Theorems 1.1 and 1.2 hold for IE; and
there are other reasons to consider IF; to be relatively strong. On the other
hand we are not able to prove that IEq is stronger than IEj; worse than
that, we even do not know whether IE; is weaker than IX),

These questions are connected with difficult open problems in complexity
theory and they are probably very difficult too. We can resolve same of these
problems, if we assume some conjectures about complexity classes. This will
be shown in Sect. 4. We shall use a different hierarchy of theories there.
We shall extend language Lo to a language L2 by adding more function
symbols, we shall use a stronger theory instead of @ and also we modify the
definition of the classes of bounded formulae, (see Sect. 4). In this way we
obtain a straightforward connection between the Polynomial Hierarchy (these
complexity classes will be defined in the following section) and the hierarchy
of bounded formulae.

The language Lo contains a binary function symbol # whose intended in-
terpretation is 2lz*lyl, Other functions of L2 can be bounded by polynomials.
We have the following estimates

z#y Swa(d(c+y)°) +1;
wa(z) < (z#z)t.
Hence each function defined by a term in Lo can be estimated by a function
defined by a term in Lg(w2) and vice versa. Thus if we use this language for
defining a system of bounded arithmetic we should expect that we obtain
something equivalent to I X + §21. This system will be denoted by T5. There
is an equivalent system S9 based on a modified schema of induction S3. The
classes in the hierarchy of bounded formulae in Ly will be denoted by Z'f,
1 =0,1,.... The corresponding fragments will be denoted by Tg and S%. Thus

we have for instance: IE; C T2‘ We shall concentrate on subsystems of T»
and S2; we have mentioned the hierarchy IE; only for sake of completeness.

* %

In the previous part of the book we have encountered several principles
which can be used instead of induction. Let us mention here at least the
most important one: the least number principle. We know that LX; (the
least number principle for ¥; formulae) is equivalent to IX; (induction for
X; formulae). We can expect that a similar situation occurs in Bounded
Arithmetic, if we replace the Arithmetical Hierarchy by the hierarchy of
bounded formulae. For most principles this is really so, for instance induction
and the least number principle are equivalent also for the classes 2? ,fori > 1.

In Bounded Arithmetic we have also some principles whose counterparts
for X; have not been considered, since they are trivially equivalent to induc-
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tion. These are the schema PIND:

©(0) & (Vz)(¢(-2/24) — ¢(z)) — (V2)e(2)

and schema LIND

©(0) & (Vy < lz])(p(y) — »(S(¥))) = ¢(l2]).

The intuitive idea behind these schemata is the following. We can, in a sense,
verify the conclusion ((a) using the inductive property of ¢ in only |a| steps.
Such a verification procedure is thus polynomial in the size of input a, while
it is exponential for the ordinary induction. The schema PIND is used to
define S and its fragments S{;.

Another important schema is the Pigeon Hole Principle, see Chap. I, 2.20.
For higher fragments, the strength of PHP is given by Theorem 1.2.23. If
we consider this principle for Xy formulae, then it is at least as strong as
IXy. Whether it is derivable in I X} is an important open problem. We have
some evidence that Xo-PHP might be stronger than IXy; we can prove some
mathematical results using Xo-PHP which we are not able to derive in 15y
itself. In particular we have

Q + Zo-PHP + (Vz)(3p)(p > z & “p is a prime”),

i.e. Zo-PHP proves that there are infinitely many primes, while we are not
currently able to derive it in IXy. If Xy-PHP is stronger than IXg then a
philosophical question arises: what is a more basic principle, Induction or the
Pigeon Hole Principle?

* ok ok

We have not exhausted all weak fragments that have ever been considered.
You can find more in the literature listed in Bibliographical Remarks and
Further Reading.

2. A Brief Introduction to Complexity Theory

We shall outline some basic concepts of complexity theory. We shall present
a little more than is needed for understanding the following sections, but we
shall prove only those results which are in some sense connected with the
following text. From the point of view of logic, the most interesting subject
in complexity is the quantifier hierarchies such as the Polynomial Hierarchy.
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(a) Time and Space Complexity Classes

There are two basic computational models in complexity theory: Turing
machines and Boolean circuits. Here we consider only the first one, and also
we shall use only one type of it.

By a Turing machine we mean an off-line multitape Turing machine, which
is a finite automaton connected with a finite number of infinite (say in one
direction only) tapes. The automaton is also called a finite control. The tapes
consist of cells on which a symbol of a finite alphabet can be written. The
automaton operates heads on tapes. A head can read and rewrite the symbols
and move to the next cell (left or right). One of the tapes is distinguished as
the input tape; the automaton cannot write on this tape. The automaton has
a distinguished initial state and a subset of final states. A more up-to-date
description would be in terms of a very restricted programming language
(instead of the finite automaton) operating with linear arrays of symbols
(instead of tapes).

A Turing machine is used to define a language (i.e. a set of strings in
a finite alphabet) or a mapping from the set of strings in an alphabet to
another such set. The first type is called an acceptor, the second type is called
a transducer. An acceptor is a Turing machine which has an input tape and
several additional tapes called work tapes, and it has a distinguished subset
of final states called accepting states. A word w is accepted if the machine
reaches the accepting state when started in the initial state with w on the
- beginning of the input tape and with the rest of the tapes blank. The language
accepted by the machine consists of all words accepted by it. A transducer is
a similar device except that it has one more distinguished write-only tape.
It computes a partial function F in an obvious way: to compute F(w), start
with w on the input tape and read F(w) on the output tape when it reaches
a final state.

In one step, the machine reads the tapes, rewrites them, moves the heads
by one cell and changes the state of the finite control. The time of the
computation on w is the number of steps needed to reach an accepting state.
The space is the number of cells used on the work tapes.

At first it may seem that Turing machine time is a very bad approximation
of the time needed by actual computers, because the actions of a Turing
machine are very restricted. It turns out, however, that Turing machines are
quite time efficient due to the fact that they have several tapes. In the case
of the space complexity measure this is even more true and having more than
one work tape is no advantage.

2.1 Definition. Let f : N — N be a function. We say that a language L is
accepted in time (resp. space) f(n), if there exists a Turing machine M which
accepts L and such that for every n and any w, |w| = n, the time (resp.
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space) of M on w is at most f(n). We define

Time(f(n)) = {L | L accepted in time f(n)},
Space(f(n)) = {L | L accepted in space f(n)}.

Note that we do not fix the alphabet on work tapes. Hence if we increase
the size of the alphabets we can obtain a faster and more space efficient
machine. This is the idea behind the following theorem.

2.2 Theorem. (a) For f(n) such that lim f(n)/n = oo and ¢ > 0,
Time(max(n, f(n))) = Time(max(n,cf(n)).

(b) For any f(n) and any ¢ > 0,

Space(f(n)) = Space(cf(n)).

Interesting complexity classes are obtained by taking the unions over
natural classes of bounding functions.

2.3 Definition.
LinTime = | ¢y Time(cn)  (Linear Time)

P = Ucen Time(n®) (Polynomial Time)
E = Jeen Time(c™)

Exp =Uen Time(2™) (Exponential Time)
LogSpace = Space(log n) (Logarithmic Space)
LinSpace = Space(n) (Linear Space)

PSpace = | J ¢y Space(n®)  (Polynomial Space)

Note that by Theorem 2.2 we have LogSpace = |J.cn Space(c.logn) and
LinSpace = | J ¢ Space(c.n).
We have the following trivial inclusions

LinTime C P C EC Exp
LogSpace C LinSpace C PSpace

Below we shall explain why these inclusions are in fact strict. We have also

trivially Time(f(n)) C Space(f(n)), but there is a nontrivial result which
gives more:

2.4 Theorem. For f(n) > n, Time(f(n)) C Space(f(n)/log f(n)).
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In the other direction only the trivial inclusion

Space(f(n)) C U Time(cf (n))
ceEN

is known. (An f(n) space bounded machine cannot compute in time longer
than ¢/("), because it would run into a cycle.) Thus for instance, LogSpace C
P, but it is a famous problem whether the inclusion is strict.

The complexity classes above are defined for languages. We shall talk about
the complexity of subsets of nonnegative integers using the standard binary
coding. We can talk also about the complexity of relations, since we can code
k-tuples of words by single words using an additional symbol for separating
them. Using transducers instead of acceptors we can define corresponding
classes of functions. (Note that there is no simple reduction of a function
class to the corresponding language class.) We shall not need the function
classes corresponding to the classes of languages defined above except for the
function class corresponding to P; it will be denoted by OIf.

Let us mention an alternative notation: the subsets of natural numbers
which belong to LinSpace are also known as Grzegorczyk’s class E2.

(b) Nondeterministic Computations

A nondeterministic Turing machine is a Turing machine in which the finite
automaton is nondeterministic (above we have considered only deterministic
machines). This means that in some states there is more than one possible
action of the machine. Thus there might be many possible computations on
a given input word w. A word w is accepted by a machine if there exists
(at least one) computation leading to an accepting state. When counting the
computation resources needed for a given input word (time and space) we
consider the worst case. Now we can define nondeterministic counterparts of
the deterministic classes. They will be denoted simply by prefixing N. For
example:

NP = U NTime(n°) (Nondeterministic Polynomial Time).
cEN
Nondeterminism adds much power to the computations. We can guess

a solution to a problem and then check its correctness. This suggests the
following, more logical, definition of NP:

L € NP = (3R(z,y) € P)(3p-polynomial)L = {z | (3y, ly| < p(|z|))R(z,y)},

see Theorem 2.11 below.
As an example consider the complexity of the set of composite numbers.
We can guess a proper divisor of a number k and check that it really is a
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divisor of k. This proves that this set is in NP; it is an open problem whether
it is in P.

The most important problem in complexity theory (and one of the most
important problems in contemporary mathematics) is the question whether
P = NP. 1t is a part of a more general problem about the relation of
nondeterministic classes to deterministic ones. We have the following trivial
inclusions

Time(f(n)) € NTime(f(n)) C Space(f(n)),

but for converse simulations we have only exponential bounds. For space
classes the situation is a little different:

2.5 Theorem. NSpace(f(n)) C Space(f(n)?), provided f(n) can be computed
in space f(n). Hence NPSpace = PSpace.

The next natural step is to consider the role of the universal quantifier.
Traditionally this is done by taking complements of the nondeterministic
classes. Thus we introduce another prefix for complexity classes, co, to de-
note the class of the complements of the sets in a given class. (It is superfluous
in connection with deterministic classes, since they are closed under comple-
ments.) The problem whether NP = coNP arises quite often in connection
with problems in logic. It seems likely that the time classes are not closed
under complements. On the other hand, quite surprisingly, a proof has been
found recently showing that nondeterministic space classes are closed under
complements.

2.6 Theorem. coNSpace( f(n)) = NSpace(f(n)), provided f(n) > logsn can
be computed in nondeterministic space f(n).

However, it is still open whether Space(f(n)) = NSpace(f(n)), in particu-
lar whether LogSpace = NLogSpace.

(c) Degrees and NP-completeness

A set (language) A is polynomially reducible to a set B if there exists a
polynomial time computable function F (i.e. F' € OF) such that F~1(B) = A.

Clearly, this relation is a quasiordering, hence defines a structure of degrees.
The smallest degree is P.

2.7 Theorem. There exists the largest degree contained in NP.

The sets in this degree are called NP-complete. Not only do NP-complete
sets exist, but they occur very naturally. There are hundreds of naturally de-

fined NP-complete problems. This fact is important for the P L np problem:
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we know that NP-complete sets are notin P, if P # NP (which is accepted by
most people almost as an axiom). Another consequence is that the statement
“P # NP” is equivalent to a ITs formula.

Examples of NP-compete Problems.

(1) CLIQUE - the set of pairs (G, k) where G is a graph containing a clique
(i.e. a complete subgraph) of size k. (We assume that graphs are suitably
coded as strings in a finite alphabet.) This is a typical NP-complete set,
since it is connected with an optimization problem: find the largest clique
in a given graph. We shall talk about optimization problems at the end of
Sect. 4.

(2) HAMILTONIAN GRAPHS - the set of graphs that contain a cycle
containing all vertices.

(3) The set of triples (a, b, c) of integers a,b,c > 0 such that the equation

(c.1) az’+by=c
is solvable in natural numbers.

The last example shows that there are NP-complete problems expressible
by bounded formulae, since, clearly, we can bound any solution z,y to (c.1)
by c. This sets some limitations on the provability of Matiyasevi¢’s theorem
in weak fragments. Consider the formula

‘P(a7 b, c) =df (Vz,y < c)(am2 +by#c).
By Matiyasevié’s theorem there exists an open formula 1(a, b, ¢, z) such that
N E ¢(a,b,¢) = (F2)(a, b, c,3),

where z = z1,...,2;. Suppose this equivalence was provable in Xy + (2.
Then in particular,

IXo+ 21 F ¢(a,b,c) — (F2)¢(a, b, c,2) .

Hence, by Theorem 1.4, we can add bounds to the variables z with the
following form
|zll1 ceey |2k| < P(|a|’ |b|v lcl)a

where p is a polynomial. Thus ¢(a, b, ¢) would be equivalent to
(32, lzli’ ceey Izkl < p(la’l’ |b|? Icl))'t/)(a, b, c, Z) )

which would prove that ¢(a, b, c) defines a set in NP. It can easily be proved
that if the complement of an NP-complete set is in NP then NP = coNP.
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Hence if NP # coNP, then the bounded formula ¢(a, b, c) is not equivalent
to an existential formula in Xy + £21.
Let us mention only one more result about the degrees.

2.8 Theorem. If P # NP, then the degrees below NP are dense; in particular,
there is a degree strictly between P and NP-complete sets.

(d) Oracle Computations

An oracle Turing machine is a Turing machine with a special tape, called
an oracle tape, and special oracle states. In an oracle state the machine
can perform exactly two actions. Given a set A, an oracle, the machine
computes in the usual manner except when it reaches an oracle state. Then
it- asks whether the current word on the oracle tape belongs to A and acts
according to the answer. Thus if the non-oracle states are deterministic, the
computation is deterministic (provided A is fixed). In order to limit the
amount of information provided by an oracle in the case of linear time
computations, we shall assume that before the next query is asked, the
previous one is erased.

Let C be a complexity class and let A be a set (an oracle). We denote by
C(A) the class defined in the same way as C except that the Turing machines
are augmented with the oracle A. We say that C(A) is C relativized to A.
We can also take a class A of oracles, in particular a complexity class, and

consider
C(A) =g | C).
A€A

Almost all statements about relations between complexity classes relativize,
which means that they remain true if we add an oracle. On the other hand

there is the following result which shows that the P Z np problem cannot

be solved without going deep into the combinatorial structure of polynomial
time computations.

2.9 Theorem. There are oracles A an B such that P(A) = NP(A) and
P(B) # NP(B).

Similar “independence” can be shown for other open problems about
complexity classes.
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(e) The Linear Time Hierarchy and the Polynomial Hierarchy

2.10 Definition.

Z§n =45 LinTime;

Zfin =4 NLinTime(ZH™);

LinH =g |J; Z¥  (Linear Time Hierarchy);

I8 =af P;

A =ap P(ZD);

ZP1 = NP(ZD);

PH =g4¢ ; ZF (Polynomial (Time) Hierarchy);

D’l’ - functions computable in polynomial time;

o? +1 =df 0% (ZF) - functions computable in polynomial time with oracles

[}

from XP.

In particular, we have Z‘{i” = NLinTime and ¥ = NP. As usual we write
T f for coX? and similarly for the classes of the Linear Time Hierarchy. We
have also the same diagram of inclusions as for the Arithmetic Hierarchy, but
it is an open problem whether any of these inclusions is strict, both for the
Polynomial Hierarchy and for the Linear Time Hierarchy.

We shall show that the “logical” definition of NP extends to all classes of
the Polynomial Hierarchy and that there is a similar representation for the
classes of the Linear Time Hierarchy. In order to simplify the formulae, let

us write )
(3""x)<p for (3z, |z| < £(ly1l,- .-, luil))e,

where £(|y1],...,|y;]) is a linear function (with positive coefficients) and
Y1,...,yi are the free variables of ¢. V%" has the dual meaning; 3 and VP
are defined in the same way except that we use polynomials instead of linear
functions.

2.11 Theorem. (a) Z‘,-""‘ is the class of sets defined by formulae of the form
(3 z1) (ViR 2y) ... (Q¥Pz)R(w, 21,22, .., 25)

where R is in LinTime, and @ is 3 if 7 is odd and V if 7 is even.
(b) Z? is the class of sets defined by formulae of the form

(FPz1)(VPz2)...(QPz;)R(w, zq,22,...,2i),

where R is in P and @ is 3 if ¢ is odd and V if ¢ is even.

Proof. We shall sketch a proof of (a), since (b) is similar and, in fact, simpler.
For ¢ = 0 it is trivial. Consider ¢ = 1. Thus we have a nondeterministic Turing
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machine M running in linear time and an oracle for a set in LinTime. We
would like to express the set accepted by the oracle machine by a formula
(3%, )R(w,z1) with R in LinTime. We shall use z1 to code the following
information:

(1) the nondeterministic decisions of the machine M,

(2) the queries asked by the machine, and

(3) the answers of the oracle.

R will be computed by a machine which simulates M deterministically using
r1 and using the subroutine for the oracle. Note that the total time needed
to run the subroutines is linear on the input size, since the sum of the lengths
of the oracle queries is linear.

Consider a general i. We use x; to code the same information. By the
induction assumption, the oracle answers are determined by a formula

(e'l) (alinzll)(vlinxlz rer (Qunx,i—l)R’(w" xlla :L"2, (AR z;—l) .

We need to express that the oracle answers coded by z1 are correct. This
can be done by a conjunction of instances of (e.1) and its negation where
w' runs through the oracle answers. The negations of (e.1) are equivalent to
formulae starting with a universal quantifier, hence their conjunction can be
easily expressed as a single formula of the form

(V"21)(3"08) .. (@™ 2l )R (w" 21,25, 2i1).

The nonnegated instances of the formula (e.l) can also be expressed by
a single formula. Again the trick is that the sum of the lengths of the
oracle queries is linear, hence also the sum of the lengths of the variables
z) can be bounded using a linear function. We omit the details. The converse
implication is easy. 0O

"We shall show that LinH consists of sets definable by X formulae (in the
language Lg; we consider only subsets of natural numbers). Later, in Sect. 4,
we shall show that PH consists of sets definable by bounded formulae in L.
That is why these complexity classes are so important for us. We shall denote
by E{,V the subsets of natural numbers definable by Xy formulae.

2.12 Lemma. LinTime C Z'(],v .

Proof. We shall assume that a suitable coding of sequences can be expressed
using ¥y formulae. This will be done with details in Sect. 3. (Note that our
task in Sect. 3 will be harder, since we shall develop coding of sequences in
the theory IXy.) Furthermore we need the function nuon which counts the

number of ones in a binary expansion of a number. A T formula defining
this function is also constructed in Sect. 3.
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Our goal is to express, by a X formula ¢(w), that a machine M accepts a
word w provided that M runs in linear time. To this end we need to code the
computation of M by a sequence s whose length is linear in the length of w.
This is because the polynomial bound on the size of numbers, as it is in Xy,
imposes a linear bound on their length and vice versa. We code sequences
essentially by bits in binary expansions (see Sect. 3 for details).

Suppose M has k heads. The sequence s will consist of (k + 1)-tuples, one
for each computation step. The first member of the (k+ 1)-tuple will code the
state of M. The remaining members will be pairs, one for each head. They
will code the currently read symbol and the direction in which the head will
move. Clearly the length of (the code of) s is linear in the length of w. The
sequence 3 does not contain information about the positions of heads on tapes
explicitly, but this can be defined from s by a Xy formula. The position of
a head in a computation step is the number of its moves to the right minus
the number of its moves to the left prior to this step. The number of moves
to the right (similarly to the left) is the number of occurrences of the symbol
coding these moves in 8. This can be easily reduced to the function nuon.
Now for a given head and a given computation step (as coded in s), we can
determine using Yy formulae whether the currently read cell has been visited
before, and if it has, then we can determine the last visit.

In order to state that s is an accepting computation, we have to impose
conditions on (k + 2)-tuples

c,c+,a,c2,. c9Ch
where c is en element of s, ¢t is its successor, a is the symbol in the input
word w read in the step corresponding to ¢ and ¢3,...,ci are elements of s
which correspond to the last visits of work heads of the cells read in ¢, (some
of them may be missing if some heads visit some cells for the first time).
Since the automaton of M is finite and all the alphabets are finite, there are
finitely many possibilities for such a (k + 2)-tuple and they can be listed.
Finally, of course, we add that the last state is an accepting state. O

2.13 Lemma. LinH C Z‘(I)V .
Proof. This follows from Lemma 2.12, Theorem 2.11 and the observation
made above that the growth rate of bounds in Theorem 2.11 and those of X

are the same. O

Before showing the converse inclusion, we prove an important result.

(f) Nepomnjaséij’s Theorem

We need to introduce another type of complexity class, classes defined by
simultaneous resource bounds:
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TimeSpace(f(n), g(n)) is the class of sets which can be accepted by Turing
machines running simultaneously in time f(n) and space g(n). Note that this
class is in general smaller than Time( f(n)) N Space(g(n)).

2.14 Theorem. Let ¢ be a rational number, 0 < £ < 1, and let a be a positive
integer. Then TimeSpace(n®,n®) C LinH.

Proof. First we shall sketch an idea of the proof in which we shall assume
that the numbers n® needed in the proof, with a rational, are integers and
that they are computable in time n® (which is not always true).

Let ¢, 0 < € < 1, be given. We shall prove by induction on k that
TimeSpace(nk(l“),n‘ ) C LinH. For k = 1 it is trivial. Suppose it holds
for k. Let M be a Turing machine. We shall call a configuration the complete
description of the machine state in a computation step, i.e. the state of the
finite control, the position of heads, the content of the work tapes; only
the input word is not included. We assume that configurations are naturally
encoded as strings over a finite alphabet. Suppose M runs in space n®. Let an
input word w and two configurations ¢, ca of M be given. Then we can test in
TimeSpace(nk(l"’), n®) whether M will reach ¢ from ¢; in nk(1=¢) steps: just
simulate M. Hence, by the induction hypothesis, this condition on w,c,c
can be tested in LinH. Now let M’ be a machine running in time n("""l)(l‘3
and space n®. To show that M’ accepts a set in LinH we shall simulate M’ by
an oracle nondeterministic Turing machine K running in linear time. Let w
be an input word. First, K constructs nondeterministically nl=e 41 strings.
Then it checks that:

(1) the first string is the initial configuration of M’;

(2) every pair of consecutive strings are configurations of M’ such that M’
can reach the second one from the first one in n*¥(1=¢) steps;

(3) the final string is an accepting configuration.

Here (1) and (3) can be done deterministically in linear time (always assuming
a reasonable coding of configurations). For (2) it will use the oracle shown to
exist above. We need only to show that K runs in linear time. The key idea
of the whole proof is that the total length of the n1~¢ 4 1 configurations is
linear in n. This is because M’ runs in space n®; hence the strings representing
configurations of M’ have lengths linear in n®.

We have omitted several details, but we shall only comment on the one
mentioned above. The problem is how to compute rpk(1=€)3 The point is
that, due to nondeterminism, we do not have to count the number of steps
during the simulation at all. More precisely, in the inductive construction we
need only a relation R(w,c1,¢2) in LinH such that
(1) if M will reach c3 from ¢ in n*(1—¢) steps on input w then R(w, c1, c2),

and
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(2) if R(w,ec1,c2) then M will reach ¢z from ¢; on input w (using possibly
even more than n¥(1=¢) steps).

The simulating machine can guess the intermediate configurations that are
evenly (as much as possible) distributed. O

We shall use this theorem directly only in a very special case (the next
corollary). However the idea of using quantifiers in order to code longer than
linear computations is very useful. We shall use it in Sect. 3 to construct a
Yo definition of the function nuon.

2.15 Corollary. LogSpace C LinH.
Proof. We know that LogSpace C P, but the proof of this fact gives more:

LogSpace C U TimeSpace(nk,log n).
k

Hence, by Theorem 2.14, LogSpace C LinH. a

2.16 Theorem. X definable sets are just the sets in the Linear Time Hierar-
chy, i.e. ZY = LinH.

Proof. By Lemma 2.12, it remains to prove Z'év C LinH. By Theorem 2.11
and since the bounded quantification is in both cases of the same growth
rate, we only need to show that the open arithmetical formulae define sets
in LinH. It can be easily shown that LinH is closed under set operations,
hence the question reduces to atomic formulae. The relations = and < are
easily computable in linear time and so is addition. We do not know whether
multiplication of two numbers is computable in linear time (probably it is
not), but we can show that it is computable in logarithmic space. This can
be proved by analyzing the school algorithm for multiplication. Suppose we
multiply a number of length n with a number of length m in binary. First
we produce m numbers of length at most n +m and then we add them. This
needs space of the order mn. However to add these numbers we do not have
to write them down. We only have to remember the current row and the
column and we can always compute the entry at this place. To remember the
position, we need about log m+log n bits. Furthermore, we have to remember
the carry, which is of length at most logm. Thus the total space needed to
compute the product is logarithmic in the length of the numbers. It is also
easily seen that we do not need to compute the multiplication as an operation;
we only need to compute its graph. Hence, by Corollary 2.15 the graph of
multiplication is in LinH. O
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(g) The Diagonal Method for Separating Complexity Classes

The most important problems in complexity theory can be stated as problems
about separating some complexity classes (which means showing that they
are different). In Bounded Arithmetic the most important problems are also
about separating fragments of Bounded Arithmetic. There are two kinds of
such problems. The first kind concerns fragments defined by restricting the
quantifier complexity of an induction schema. For instance we do not know
whether IE; = IE;y;, S§ = §+1 and T} = T{H. In the problems of the
second kind, the meaning of “separation” is IT; nonconservation. The typical
problem here is whether IXy + {21 is IT; conservative over IXy. For each
fragment of Bounded Arithmetic there is a naturally assigned complexity
class: the class of sets which are definable by formulae for which the induction
schema is provable in the fragment. Thus E(I)V ,1.e. LinH, corresponds to IXy,
PH corresponds to IXg + 21, etc. The separation problems for fragments
and those for the corresponding complexity classes seem to be connected,
though we know very little about it (a connection is shown at the end of
Sect. 4). (Let us note that one can consider different schemas of induction
and different base theories, thus the correspondence between fragments and
complexity classes is not one-to-one.)

Here we would like to discuss a method on which almost all separation
results in complexity rely. It is called diagonalization. Its applicability is
limited; a rule of thumb is that we can separate only complexity classes
defined using bounds to the same resources. The method turns out to be
useless for time-space and determinism-nondeterminism problems. A natural
question to ask now is what corresponds to this method in fragments of
arithmetic. In metamathematics of arithmetic diagonalization is well-known:
it is the essence of Godel’s theorems. It seems that it has similar limitations
in fragments of Bounded Arithmetic. In particular, no fragments have been
separated for which the corresponding problem in complexity theory is open.

We need some technical concepts before stating the basic results which use
diagonalization. A function f is space constructible if there exists a Turing
machine with one work tape which on each standard input of length n (say
a word consisting of n 0’s) uses a space of exactly f(n). A function f is time
constructible if there is a Turing machine which uses a time of exactly f(n) on
each standard input of length n. These concepts are needed to avoid having
possible pathological functions as space or time bounds; the usual bounding
functions are easily shown to be space and time constructible.

2.17 Theorem. (i) Let f and g be space constructible, f(n) > logan and
suppose

liminf f(n)/g(n) =0.
Then
Space(g(n))\Space(f(n)) # 0.
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(ii) Let f and g be time constructible and suppose
liminf f(n)/g(n) =0.

Then
Time(g(n)log; g(n))\ Time(f(n)) # 0.

Thus we have LinTime G P G E G Exp and LogSpace G LinSpace G
PSpace. An interesting consequence of LogSpace g PSpace is that at least

one of the inclusions in the following sequence is strict:
LogSpace C P C NP C PSpace.

But for each of them it is an open problem.

The idea of the proofs of both statements is essentially the same. Take a
suitable coding of Turing machines as strings in an alphabet X'. Let # be a
symbol not in X. Construct a Turing machine M which works as follows. On
each input it will simulate a machine computing the bound g(n) and stop if
the bound is achieved, so M is space (resp. time) bounded by g. If an input
w is a code of a machine K followed by a string of #’s, at the same time
(say, on an extra tape) M will simulate K on w in space (resp. time) limit
g(|w]). If the simulation of K is finished before M runs out of space (resp.
time), then M accepts w iff K does not. This situation must happen for each
K which has a space (resp. time) bound f(n), since the bound g(n) for M is
larger for a sufficiently long w. Thus the language accepted by M is different
from the language accepted by each such K. The reason for g(n)logs g(n)
instead of just g(n) in (ii) is that we have to simulate by M machines with
an arbitrary number of tapes and this is not possible without an increase in
time.

The proof of the corresponding results for nondeterministic classes is more
difficult. The problem is how to arrange that M accepts the input iff K does
not. In the case of nondeterministic space classes we could use the fact that
they are closed under complements (Theorem 2.6), but this cannot be used
in the case of nondeterministic time classes. There is, however, a nice trick
for avoiding this problem. This trick works even in more general situations.

2.18 Theorem. Let C be a class of languages in an alphabet ¥, with 0 € X,
let L be a language in the alphabet X, let r be a mapping assigning a word
in the alphabet X' to each language in C and let z be a mapping from C to
natural numbers. Suppose that for every K € C

(a) r(K) ~0"M) e L=r(K) ¢ K, ,

(b) (V5,0 <j < 2(K))(r(K)~W € L=r(K)~ 0t e K).

Then L ¢ C. (07 denotes the string of j 0s.)
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Proof. Suppose L = K for some K € C. Then
r(K)~0*t e L=r(K)~ 0t e K,

hence by (b),
r(K)eL=r(K)~0& gL,

Thus by (a)
r(K)eL=r(K)¢ K,

which is a contradiction. O

In the usual diagonalization we have only the simple condition r(K) €
L = r(K) ¢ K, which is, however, sometimes more difficult to satisfy than
(a) and (b) above. This is because we can take z to be an exponentially
growing function. Then in order to determine whether r(K) ~ 0#(K ) e L,
we need to decide whether a much smaller word r(K') belongs to K. Theorem
2.18 can be used not only for nondeterministic classes, but also for classes
with a larger quantifier prefix. We shall show only a very special case of such
a theorem.

2.19 Theorem. For every i > 0, Z'}"" G zP.

Proof. Let 1 be given. We shall apply Theorem 2.18 with C = 2}‘". We shall
also use the representation of Z‘f‘" and Zf’ given by Theorem 2.11. Thus
every K € Z"-"'"' is defined by a formula

(g.1) (3 z)(Vi"zy) ... (Q" 2y R(w, 21,29, . .., %;),

where R is in LinTime. The diagonal language L will be defined by a formula
of the form

(3311, |$1| < 'wlz)(vm27 IZZI < |’U)|2) v (in’ Iztl < |w|2)S(w’$1’ T2y.-- ,IL’,’) ’

with S(w,z,22,...,;) computable in time |w|?, for |z1],...,|z;] < |w|?,
by a two tape deterministic Turing machine. We shall use the result that
an f(n) time bounded multitape Turing machine can be simulated by a
cf(n)logy f(n) time-bounded two tape Turing machine, with ¢ a constant.
(We do not need such a good simulation; a simple polynomial simulation is
sufficient, but then |w|* must be replaced by a polynomial of higher degree.)
Thus in order to simulate a linear time Turing machine, we need asymptoti-
cally less than 1}2 time. _

Let K € I be defined by a formula (g.1) with £;(|w|),...,%(|w|) as
the implicit linear bounds for the quantifiers. We take r(K) to be a word
which contains a code of the machine computing R and the codes of the
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linear bounds, and moreover assume it is sufficiently long. Namely we want,
for n > |r(K)|,
Lin+1)<n?. . Li(n+1)<n?,

and that a computation of the predicate

lz1] < &1 (Jw]) & ((|z2] < L2(Jw]) = (Jz3]| < €3(Jw]) & (...
... R(w,z1,72,...,%)...),

for |z1],..., ;] < |w|?, |w| > n be possible in time (Jw| — 1)*. Furthermore
we construct r(K) so that it does not contain occurrences of 0. Clearly each
such a K can be computed in exponential time. There is a fixed exponential
bound f(n) such that each such K can be computed within this bound by a
two tape Turing machine for sufficiently long inputs. Again, sufficiently long
means longer than |r(K)|. We define 2(K) = f(|r(K)|).

Now we define the machine M which determines the predicate S. Given
an input (w ~ ¢, 1, 9,...,z;), where the last symbol of w is not 0, M will
compare j and f(|w|). f j > f(|w|) then what it does is not important. If
J = f(|w]), then M will try to interpret w as a code of a machine and linear
bounds which determine a language K defined by a formula of the form (g.1).
Again it is important only to consider the case where w is such a code. Then
M will (deterministically) decide whether w € K. This is possible in time
|w ~ 07)2, since j = f(|w|). M accepts such an input iff w ¢ K. (Thus in
this case z1,...,z; are not used at all.) Clearly this ensures condition (a)
of Theorem 2.18. Now suppose that j < f(|w|). In this case M will also try
to interpret w as a code of a machine and linear bounds, but now it will
compute the predicate

lz1| < &1(lu]) & ((lz2] < La(lu]) — (lz3] < €3(Jul) &(. ..
...R(u,z1,9,...,2§):..),

for u = w ~ 09+, This can be done in time |w ~ 07[%, if w = r(K) (where

K is the language determined by the code w) and |z1],...,|z;| < |w ~ 07 [2.

Hence we have ‘
(3 z1)(V¥z3) ... (Q"z))R(w ~ 09,2y, 29, ..., 2;),

if and only if

(Be1, 21| < [w ~ 0F[2)(Vza, 22| < lw ~ 0F[2).. (Qzi, |2i] < |w ~ 0F|?)

S(w ~0,z1,22,...,7;).

This proves that condition (b) of Theorem 2.18 is satisfied. Thus L is a
language which belongs to PH but not to LinH. O
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We say that LinH (PH resp.) collapses if for some ¢, LinH = Z‘"" (PH=2Zx?
resp. ). This is equivalent to Z'l”‘ II; lin (Zp IT? resp.). We conjecture that
neither LinH nor PH colla,pses and that LinH is a proper subclass of PH. But
we have only the following result.

2.20 Corollary. Either LinH G PH or LinH does not collapse.

Proof. Suppose LinH = Z!*. Then LinH G PH, since, by Theorem 2.19,
Tlin G 2P C PH. o

Let us define Z';f , for f a function, to be the class of sets definable by
formulae of the form

(321, |21] < ef(lw]))(Vo2, |22 < cf(lw])). .. (Qzi, |oi] < ef(Jwl])

R(w’ T1,T2y-. wzi)’

where c is a constant, R(w,z1,z2,...,%;) is computable in time cf(|w|) for
every z1,...,%;, |z1| < cf(lw]),...,|z;] £ c¢f(jw|) and where Q is 3 if ¢ is
odd and V if ¢ is even. Let

TH(f(n)) =45 U Z‘;f (Time Hierarchy f).

The proof of Theorem 2.19 can be generalized to prove a statement similar
to Theorem 2.17 for classes 2{ and 2;'-7 where g grows faster then f for each
fixed 7. For classes TH(f(n)) this is an open problem (as we have mentioned
above we do not know whether LinH = PH). Our last theorem shows that we
can separate PH from slightly subexponential hierarchies. The bound 2-"-
can be further decreased by iterating our method.

2.21 Theorem. For ¢ > 0, PH G TH(2-™"~).

First we shall prove some lemmas. Let L be a language and suppose that

0 is not in the alphabet of L; let f be a function such that f(n) > n for all
n. We define

L{f] =4 {w ~ of (lwh)=|w] |weL}.

2.22 Lemma. Let f,g be time constructible functions.

(a) ¥ f(n) > g(n) for n > ng, then for every i >0, ZY C E‘f
(b) Forevery:i>0,L € Z‘f iff L[f] € Ztin.

Proof. (a) is trivial, (b) follows easily from the definition of Ef and from the
characterization of X/ (Theorem 2.11(a)). O
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2.23 Lemma, Let f,g be time constructible functions; let g be growing faster
than every polynomial. Suppose TH(gf(n)) = PH. Then TH(ff(n)) C PH.

Proof. Let the assumption of the lemma be satisfied. Let L € TH(ff(n)).
Using Lemma 2.22 (b) we get first L[f f(n)] € LinH and then L[f] € TH(f).
Since TH(gf(n)) = PH, we get L[f] € PH. Using Lemma 2.22(b) again we
have L[pf(n)] € LinH for some polynomial p. Hence L € TH(pf(n)). Since g
grows faster than any polynomial we have

TH(pf(n)) € TH(gf(n)) = PH.
Hence L € PH. O

Proof of Theorem 22.1. Let € > 0 be given. Let

f(n) =277,
g(n) = 2(1_103271.:)2 .

Suppose PH = TH(2-"*-). Then we have
PH C TH(gf(n)) € TH(2"™*) = PH,

since it can be easily computed that gf(n) grows faster than any polynomial
but is smaller than 2-"°~. Thus TH(gf(n)) = PH. By Lemma 2.23 we have
TH(ff(n)) C PH. We have the following inclusions:

PH C Exp G Time (22‘”' ) CTH (22"" ) C TH(ff(n)) C PH,

where £/2 > ¢’ > 0. The first inclusion is a natural simulation, the second
one follows from Theorem 2.17(ii), the third one is trivial and the fourth
one follows from a simple computation and Lemma 2.22(a). Thus we get a
contradiction.

*

We have defined several complexity classes, only a few of which will be
mentioned in the following sections. The larger variety should help the reader
to understand better the environment in which we are working, if we consider
weak fragments. This short survey, however, cannot replace a textbook on
such a broad subject.
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3. Exponentiation, Coding Sequences
and Formalization of Syntaz in IX,

(a) Introduction

In this chapter we shall present some basic constructions available in IXy.
First we want to show that it is not necessary to add the relation z¥ = z to
IX}, since it is definable there. To this end we have to develop the theory of
sequences a little. Once we have the exponentiation relation we will be able to
define a more efficient way of coding sequences. The second important task
is to describe a formalization of syntax in IXy. A formalization of syntax
in IX; has been presented in Chap. I, Sect. 1(b). However I X, is a much
weaker theory and it is not always possible to use classical techniques here.
Usually formalization is very tedious work and the reader can find very few
interesting ideas there. We cannot skip this part completely however as we
have to persuade the reader that such a formalization is possible in a theory
which at first looks very weak. Therefore we have decided on a compromise:
instead of describing a particular formalization we develop some tools which
can be easily applied to most standard situations. Clearly the reader of this
book is not looking for formulae, but he is interested in ideas and techniques.
In this section we shall consider only combinatorial problems related to the
formalization of syntax. More about the formalization will be presented in
Sect. 5.

The weaker the theory the more difficult it is to prove theorems. This
applies to coding and formalization as well. Many concepts can be more
easily handled in I X + £2; than in IX). Since much research is going on in
IXy + {21 (or equivalent theories) it is worthwhile mentioning these simpler
formalizations.

Much of our intuition about natural numbers relies on exponentiation.
Thus in order to persuade the reader about the possibility of a suitable for-
malization of (some of)) the usual reasoning on numbers in I Xy, we prove the
properties of exponentiation in great detail. After introducing the exponen-
tiation we shall use more sketchy arguments.

Besides exponentiation we shall define one more important Yy-definable
function: “the number of ones in the binary expansion”. With these two
concepts in hand, formalization of syntax will proceed quite smoothly.

The last subsection presents a general theorem which can be applied to
formalize various syntactical concepts in IXy.

In some estimates we shall use explicit numerals. The reason is that these
numbers are easily computable and small.
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(b) Sets and Sequences

Since IXy contains Iopen, we know, by Chap. I, Sect. 1, that we can prove
some elementary number theoretical facts. In order to be able to interpret
other combinatorial objects, we need to formalize the concept of the sequence.
Our task would not be so difficult, if we could start with the exponentiation
relation in our language. But so far we do not know that this relation has
a suitable definition in IXy. An obvious requirement is that the defining
formulae of the concepts be X, otherwise we cannot use I Xy. Therefore we
cannot use the usual definition of the exponentiation relation in IX;, which
is not bounded.

Our approach is similar to that of [Nelson 86]. It is based on the observation
that it is possible to talk about the digits in the binary expansion of a number,
though (at first) we are not able to define that the digit in question is the i-th
digit. The point is that we can define that a number is a power of 2 and then
we can index the digits of a number by powers of 2. Namely, the i-th digit will
have index 2¢. Then, clearly, we can easily talk about the relative position of
digits. To code a sequence of numbers we shall use a pair of numbers. The
first number will be the number determined by the concatenation of binary
expansions of the numbers to be coded. The second one will be a binary code
of the markers which determine beginnings and ends of the coded numbers.
In fact we code sequences of arbitrary 0-1 words in such a way, but we shall
use this possibility only after we define the exponentiation relation.

Let us consider an example. Suppose we want to code a sequence of 0-1
words

0011, 101, 010.

Then we take two numbers whose binary expansion is the following

11101010,
10001001001 .

The first one is the concatenation of the words above (where we have to
omit the first two 0’s) and the second one is a sequence of markers which
determines the partition. If this pair is considered to be a code of a sequence
of numbers then it will code (3,5,2).

Now we proceed formally in I.X)y.

3.1 Definition (z is a power of 2).
Pow(z) = (Vp < z)(Prime(p)&p |z > p=2)&z > 1.

The relations being a prime and p divides = used in this definition are
easily definable by Xy formulae. The following is also easy to prove.
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3.2 Lemma (I1X)).

(i) Pou(I);

(i) z>T1 — (Pow(z) = (Jy)(z = 2y & Pow(y)));

(iii) Pow(z)& Pow(y) = Pow(zy)&(z |yVy|z);

(iv) Pow(z)& Pow(y)& (v + 1)z = Ru+ 1)y =z =y;
(v) Pow(z)& Pow(y)& zz = y — Pow(2);

(vi) z >0 — (Qy)(z <y < 2z & Pouw(y)).

The last lemma allows us to define:

3.3 Definition (y is the least power of 2 larger than z).

lpw(z) = y = min{y;y < 2z + 1&z < y & Pouw(y)}.

3.4 Lemma (IX)).
@) pw@=T;
(i) z>0— lpw(z) < 2. a

After we define the exponentiation and the length function |z, it will be
clear that lpw(z) = 2/%|. Recall that we have a pairing function defined, say,
by

(u,v) = 1/2((u + v)? + 3u +v),
see 1.1.18.

3.5 Definition (p is a sequence).

Seq(p) = (Fu,v < p)(p = (u,v) &2 | v& lpw(u) < v).

Here u is the sequence of 0-1 words of length at least 1 and v is the
sequence of markers. At present we are not able to define the i-th element in
the list, but we can easily define that a number occurs in it.

3.6 Definition.
z € (u,v) = (Jy, ¥’ < v)(Fu1,v1 < y)(Juz, vz < v)(Pow(y) & Pow(y')
&y >2&zx <y &u=ugy'y+ zy+uy
&v =02y +y'y+y+v).

Now we shall prove only the most basic properties of this coding, since
we do not need more for defining and proving properties of exponentiation.
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We show that the empty set has a code and that we can always add another
element (number) in the sequence.

3.7 Lemma (IX)).
(i) (Ve)(not = € (0,1));

(i) (Vp,z)(Seq(p) —
— (3¢ < (2 + 1)?)(Seq(9) & (Vz)(z € ¢ = (z € pV T = 2)))).

Proof. (i) is trivial. (ii) Let p be a sequence, p = (u,v). Let k = max(2, lpw(2)).
Define

u =uk+2z,
v =vk+T1,
q=(u’7v,)'

Suppose u > 0. Then we have
v <ux2(z+1)+2<3(z + Du,
vV <vx2(z+1)+T1<3(z+ Dv.
Since the pairing function is a quadratic polynomial, we have
¢ <9z +T1)%.

We leave to the reader to prove this bound for u = 0. Now we are going to
prove Seq(q). It is clear that v’ is odd. To prove lpw(u') < v, recall that we
have z < lpw(z) < k and u < lpw(u) by definition and lpw(u) < v by the
assumption that Seg(p). Thus

v <uk+k <lpw(u)k <vk <.
Since Pow(lpw(u)k), we have
Ipw(u') < lpw(u)k <o,

thus Seg(p).

To show z € g put y = 1, ¥ = k, v; = u; = 0. The verification of the
inequalities is straightforward then.

Now assume z € p. We want to show z € ¢. Let y,y',u,v1,u9,v9 be
witnesses of z being in p. Then

v = ugy'yk + zyk + urk + 2z,
v = 2voy'yk + y'yk +yk + 1k +T.

Thus the witnesses for z being in ¢ are respectively

yk, ¢, wk+z, vik+1, uy, vs.



298 V. Bounded Arithmetic
We only have to check that
uik+z < yk

and _
v1k+1 <yk.

The inequalities are derived as follows
uk+z<wuk+k=(un1 +T)k5yk,
and similarly the second one.
Now assume ¢ € q. We want to show £ € p or ¢ = 2. Let us use
¥,y ,u1,v1,u2,vy for witnesses of z being in g. We consider two cases.
‘Case 1, v1 = 0. Since v is odd and y' is even, y must be odd. As Pow(y),
we have y = 1. Thus
vk =09 —T=2vy +4 = (2ve + 1)y,
hence, since v is odd, k = y'. Then
uk+z=u =usk+z+u,
but uy =0, sinceu; <y =1,and z < y' =k, z < k. Thus z = z by the

uniqueness of the remainder (see 1.1.15(4)).
Case 2, vy > 0. Then we have

vk=v' —T=Qvey' +¢ + Dy +v; - 1.

Since v1 — I < y, it is not possible that y | k. As y is a power of 2, we have
k |y, (by Lemma 3.2 (iii)). Hence k | (v; — I). Thus we have

v =2voy'yk™ +y'yk™ + (vy - T)E7T,

which is not a formula in the language of arithmetic, but clearly can be
expressed by such a formula. Similarly we have

uk =ugy'y +zy +u; — 2.
Since z < k and k | y, it must be z < u;. Thus we can write
u=ugyyk +zyk~l + (u1 — z)k_1 .

All the inequalities for new witnesses follow immediately from the inequalities
for the original witnesses. Thus z € p. O
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(c) The Exponentiation Relation

Our aim is to construct a Xy formula Ezp(z,y,2) and to prove in IXy the
following formulae:

(c.1) Ezp(z,0,2) =2 =1;

(c.2) Ezp(z,y +1,2) = (Jv)(Ezp(z,y,v) &z = vz).

Before starting the construction of the formula, let us observe that (c.1)
and (c.2) imply some natural properties of Ezp.

3.8 Lemma (IEO)-

(1) Ezp(mvﬁ, 70_) =mh = Tc',

(ii) Ezp(z,y,z) & Ezp(z,y,7') = 2 =2;

(iii) Ezp(z,y,2z)&v <y — (Jw < 2)Ezp(z, v, w).

Proof. (i) ~ follows from (c.1),(c.2) and a similar fact for multiplication.

(ii) We would like to prove it by induction over y. We can use = as a
parameter, but what to do with z and 2’? The way out is to take the following
formula instead of (ii):

(Va,2' < v)(Bap(a,y,2) & Bap(a,9,2') — 2 = '),
and we can use v as a parameter of the induction.

(iii) is quite similar. 0

The problem with the natural definition which uses recursion is that the
size of the sequence that codes the course of values cannot be bounded by a
polynomial, which is a necessary requirement for a X formula. To overcome
this difficulty we shall use sequences in which elements grow faster and hence
they are shorter. The trick is to use the recursion on (binary) notation instead
of the ordinary recursion.

Example. Let y = 1101 in binary; then we compute

=1, zl=2z =22z, 2'0=(22x2)?, 210! = ((2%%2)?)2xz.

First we define an auxiliary formula (this is similar but not the same
formula as in 1.1.49).
3.9 Definition.
Ezseq(z,s) = Seq(s) & (1,0) € s & (Vy,z < 3)[(z,y) € s =
= (z=T&y=0)V(y>0&EFv,w < s)((y =20 & z = w?
&(w,v) €8)V(y=2v+T1& 2z = wlz & (w,v) € )))].
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3.10 Lemma (I1X)).

z > 2& Ezseq(z, )& (2,y) € s — (2,y) < 422.

Proof. Using induction on y we get y < z and z > 1. Then an easy computa-
tion gives _
(2,9) < (2,2) <22%. O

© 3.11 Lemma (1).

(Vz,s)(Vz,y < 8)(3t < gﬁzw)(z > 2& Ezseq(z,s) & (z,y) € s —
— Ezseq(z,t) & (z,y) €1).

Proof. The sequence with a single element (1,0) has number 30. Further we
need the inequality

(%) 218 >9(2z* 4+ 1), for z > 2.

We prove the lemma by induction over y with z and s as parameters. If
y = 0, then z = 1, hence if the sequence t consists of a single element (1,0),
we have t < 30216, Now assume that y' > 0 and for every z < s there exists
a t satisfying the condition. We want to find ¢ for y’' and some 2’ such that
(#',y') € s. By the definition of Exseq there exists (z,y) € s such that either

(i) Z=22andy =2y,

or

(i) 2’ =22z andy =2y + 1.

By the induction assumption we have some t for (z,y). By Lemma 3.7 we
can extend t to t' by adding (2/,y') to it and so that

t <Ot((<,y") +1)2.
Clearly t satisfies Ezseq(z, s). By lemma 3.10, we have
¢ <Bt(A(')2 + 1),
If z=1then y =0, hence y’ =1, 2/ = z > 2, and we have, by (),
¥ <930+ (3(")* + 1)% < 30(<')S.
If z > 2, then in case (i) we have, by (x),

' <9%3021% « (221 + 1) < 30,52 = 30()19,
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and in case (ii) we have

t' < 930216 (2122 4+ 1) < 30232216 = 30(2")16. a

Now we are ready to define the exponentiation.

3.12 Definition.

Ezp(z,y,2)=(2=1&y=0)V(z<1&z=z&y >0)
V (3s < 30218)(Ezseq(z,s) & (2,y) € s).

We have written the formula so that it is bounded, however Lemma 3.11
permits us to drop the bound at the existential quantifier, which will be
useful below. It is easy to check that the formula satisfies (c.1). To prove
(c.2) we first derive the recurrent formulae which correspond to the recursion
on notation and then derive (c.2) from them.

3.13 Lemma.

(c.3) Ezp(z,y,z) — Ezp(z,2y,2%) & Ezp(z, 2y + 1, 2%z);
(c4) Eep(2,24,2) — (Ju < 2)(w? = & Bap(z,y, 0);
(c.5) Ezp(z,2y+1,z) = (Fw < z)(w?z = 2 & Ezp(z,y, w)).

Proof. (c.3) The lemma is trivial for z < 1 or y = 0. Suppose z > 1,
y > 0 and Ezp(z,y,z). Let s be a witnessing sequence for Ezp(z,y,2) i.e.
Ezseq(z,s) and (z,y) € s. By Lemma 3.7, we can extend this sequence
to s (s2 respectively) by adding another element (22,2y) ((22z,2y + 1)
respectively). Then we have Ezseq(z, s;), for ¢ = 1,2. Now we do not have to
worry about the size of s; and s9, since, by Lemma 3.12, we can replace s1
and s9 by suitably bounded ones.

(c.4) Again we can assume z > 1, y > 0. Let s be a witness for
Ezp(z,2y, z). Then by definition of Ezseq we have some w such that z = w?
and (w,y) € s. Again Lemma 3.12 takes care of the size of s. The proof of
(c.5) is quite similar. O

3.14 Lemma (IX)).
Ezp(z,y+1,2) = (v < z)(Ezp(2,y,v) &z = vz).

Observe that by Lemma 3.8 (ii) this is equivalent to (c.2).
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Proof. Suppose that the formula is not true for some z,y and z. By X, we
can assume that it holds for every y' < y and every 2’ < 2. Consider two
cases:
(i) y is even, say y = 2p. Then, by (c.4) and (c.3),
Ezp(z,y +1,2) = (Bw < 2)(wkz = 2 & Ezp(z, p, w))
= (3w < 2)(Ezp(z,2p, w?) &wie = 2).
Thus taking v = w? we get a contradiction.
(ii) y s odd, say y = 2p + 1. Then, similarly,
Ezp(z,y + 1, z) = Ezp(a:,§(p + T)a z)
= (3w < 2)(w? = 2 & Ezp(z,p + T, w)).
Now by the induction assumption this is equivalent to
(Fw,u £ 2)(Ezp(z,p,u)&uzr =w &w? =2z);
again by Lemma 3.7, we get
(Bw,u < 2)(Ezp(z,2p + 1,u’z) &uz = w& w? = 2);
The contradiction is obtained now by taking v = u?z. O

Now we can sum up what we have proved.

3.15 Theorem. The clauses (c.1) and (c.2) are provable in IXp for the Xy
formula of Definition 3.13. O

One can derive from (c.1) and (c.2) other natural properties of exponen-
tiation in I Xy such as, for instance,

Ezp(z,y1,21) & Ezp(z,y2, 22) = Eop(z,y1 + y2,2122);
Ezp(z,v1,2) & Ezp(z,y2,w) — Ezp(z,y192,w);
Pow(z) = (Ay)Ezp(2,y,2).
Thus it is natural to ask whether the clauses (c.1) and (c.2) are sufficient for
deriving all the other properties or we have to use sometimes also the explicit

definition of the exponentiation relation. The answer is given by the following
easy theorem.

3.16 Theorem. Let E be a new ternary relation symbol. Let IXo(E) be
the theory IX, with the induction schema extended to bounded formulae
containing E and with additional axioms

(c.1) E(z,0,2) =2=1;

(c.2) E(z,y+1,z) = (Iv)(E(z,y,v) &z = vz).
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Then IXy(E) proves
E(z,y,2) = Ezp(z,y,2).

Thus whatever we can prove about the exponentiation in IXy, it can be
derived from (c.1) and (c.2) (using the fact that it is defined by a bounded
formula).

Proéf. By induction over y we prove the following formula in I.Xy(E):
(Vz < u)(E(z,y,2) = Ezp(z,y,2)). o

Let us note that what we have described is not the only possible approach.
- In fact it is even possible to find a ¥y formula for exponentiation which does
not use any concept of coding sequences, based on the representation of the
power z¥ in the form

g¥ =(z -1z -1v+y]+1,
for some v, see [Pudldk 83, A definition].

(d) Developing I.Xy + 24

For a moment we shall digress to IXy + §21. Recall that the theory I Xy +
is the theory in the language Lo with the following axioms

Q+ 1%+

where 27 is
(Vz)(3y)(y =w2(z))-

Let us note that often another function w(z) = z!?| is used instead of ws.

The function wy can be expressed using the exponentiation and the length
functions as follows. dlelmti-1)

wa(z) = 2%

Thus formula y = wz(z) is just an abbreviation which uses the definition of
exponentiation and the length function. Hence in order to able to state §2;
we must first construct a definition of exponentiation. If we want to work
only in Xy + £2; and do not need the definition of exponentiation in I Z‘o,
we can use a simpler definition of exponentiation.

3.17 Definition.
Ezpi(z,y,2)=(z=0&2=0)V(z=1&2=1)
V (33)[Seq(s) & (z,y) € s& (Vv < 8)((v,0) € s=v =1)
& (Vi < y)(Vw < s)((w,i +1) € s = (v < 8)((v,7) € s&w = vz))).
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Here the defining formula is not bounded. One can show that s can be
bounded by a polynomial in wy(z), and that there is no better bound. This
has the following effect. If, for instance, we define the length function, which
we need for the axiom 21, by

lzl1 = y = (32)(Bap1 (2,9, 2) &z + 1< 2 < 2(z + 1)),

then already the statement

(Vz2)(3y)(y = Izl1)

implies £2;. (Of course, this would be an awkward way to define I X + (21.)
The bound to the size of s in Ezp,(z,y,2) can be proved in IXy + £2;.
Since induction for formulae with such a bound is also provable in IXy + §2;
(Proposition 1.3), Ezp(z,y,2) is equivalent to Ezp(z,y,z), (and to any
bounded definition satisfying the inductive clauses).

The simplified definition of exponentiation in IXg + £2; does not save
us much work, since we still have to prove a lot of things. But for further
concepts {21 helps very much. Most of the syntactical concepts are naturally
defined by recursion. The natural way to formalize definitions by recursion
is to state that there exists a sequence (or a set) that codes the preceding
values of the function. (This is called the course of values definition.) These
sequences are usually of polynomial length, which is just captured by 2. To
get around with sequences of linear length requires additional tricks. We shall
mention simpler definitions of the function number of ones and the property
being a term in IXy + 2 in subsections (e) and (g).

(e) The Number of Ones in a Binary Expansion

We need another important Xy definable function, the number of occurrences
of 1 in the binary expansion of a number z. We shall denote this function
by nuon(z). As nuon(z) < z, the function is provably total in IXg. Using
complexity considerations, it is easy to show that nuon is Xy definable, since
it is computable in LogSpace. However, again, we need a X definition which
captures its properties in I Xy, thus we have to define it explicitly.

The basic properties of nuon(z) are the following:

(e.1) nuon(0) =0;
(e.2) nuon(2z) = nuon(z);
(e.3) nuon(2z + 1) = nuon(z) + 1.

Again, one can easily show in I X that any two Xy definitions satisfying the
clauses above are equivalent.
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Our next goal is to define nuon(z) by a Xy formula and prove (e.1-3) in
IXy. We shall proceed faster than in the previous section. From now on we
shall use the usual notation for exponentiation instead of Ezp(z,y,z). Thus
if z¥ is used in a formula without any comment, it means that the existence
of this number is somehow guaranteed.

3.18 Definition.
Q) sgm(z,s,j) =y = (Iz1,22 < z)(z = 12 + y2 + 2o & 9 < 2¢
&y <2~ fori<j,
otherwise 0;
(i) bit(z,:) = sgm(z,i,i + 1);
(iii) |z| = min{y | z < 2¥}.

Here sgm(z,1,j) is the part of z between the i-th and (j — 1)-th digit;
bit(z,1) is the i-th dyadic digit of = (see 1.1.31); || is the length of the
binary representation of z. (The length function has been defined before,
formula (iii) gives an explicit definition of it in terms of the exponentiation.)
We leave to the reader to check that formula (ii) is equivalent to a Xy formula
and that 2/%| has the same meaning as lpw(z).

3.19 Definition.
Nuonseg(s,z,y) = Seq(s) & (Vz < s)((2,0) € s =2 =0)&(y,|z|) € s&
& (Vi < |z|)(Vz < 8)((2,i + 1) € s = (v < 8)((v,2) € s
&z = v + bit(z,1))).

3.20 Lemma. There exists an absolute constant K such that Xy proves
2le exists — (Is < 2K*21*)(3y < z) Nuonseq(s,z,y).
(The antecedent should be written more precisely as

(3z)Ezp(2, [:clz,z).

Proof. The formal proof in IXy would be similar to the proof of Lemma
3.11. Here we only check the size of s in the standard model. The sequence s
contains |z| elements of the form (z,1) where z <1 < |z|. Thus its length is
at most

K+ |z| * ||z]| < K *|z|2. ]

3.21 Lemma (1Xy).

Nuonseq(s,z,y) & Nuonseq(t1,2z,y1) = y1 = y;
Nuonseq(s,z,y) & Nuonseq(ts,2z + 1,y2) = y2 =y + 1.
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Proof. Using induction over i = 0, ..., |z| show that

(z,i+T) €t = (2,1) € s;
(2,i+1)eta=(2,i +1) € s. m]

In IXg + 121 we can define nuon(z) =y by
nuoni(z) = y = (Is)Nuonseg(s, z,y),

since by Lemma 3.20 we know that s can be bounded by a function which is
total in X + 27, (the subscript is used to distinguish different formulae).
Then we can use Lemma 3.21 to prove clauses (e.1-e.3). Unfortunately we
cannot use this formula in I X as there is no polynomial bound to such an s.
We have to use a more complicated construction. The idea is similar to that
of Nepomnja3éij presented in Sect. 1 of this chapter. Namely, we cut = into
segments z; such that on each segment z; we can use nuoni(z;), because the
witnessing sequences are bounded by a polynomial in in z (i.e. the pieces are
small enough). Then nuon(z) is computed as the sum of the values nuoni(x;).
We need the following function, whose graph is Xy definable in I Xy:

If(z)=0 ifz=0,

= |z®| otherwise.

3.22 Definition. Let nuon(0) = 0 and, for z > 0, let

nuon(z) = y = (3t)[Seq(t) & (Vz < t)[(2,0) €t = 2 =10
&(Vi <z)(If(Q) < |z| <UfG+T1) > (y,i + 1) € t)
&(Vi <z)(Vz <)[If(i) < |z] = ((2,i + 1) €t
=(Fv <t)((vyi) €t&
& z = v + nuony(sgm(z, If (i), 1f (i + 1)))))]] .

In order to show that this formula is Xy over IX; we have to find a
polynomial bound for ¢ and for the sequences s in nuonj. First observe that,
for a sufficiently large constant c,

|z

P> ek Jif] 2 ol

~ il

Thus we need only those 7’s which are smaller than this bound. Now we have
to estimate

sgm(z,1f(2), 1f (i +1)).
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The length of this number is bounded by If(i+1)—If(7). Using the inequality
a < 28l < 24, for a > 0, we get, for i > 0,

2|(i+1)"+1| 2(i + 1)i+1
<

ol(i+1) 4 |—|i] _ __ :
olé| it

=2(i+ 1)1+ %)",

which tends to 2e(i + 1) as i — oo. Thus we have, for some constants ¢, ¢’
and z > 0,

(e.d) sgm(z, 1f (5), 1f i + 1)) < 2UGHD=IFG) < ol (D=1

<c(z+1)<c"|{ :l

Now, by Lemma 3.20, nuony(sgm(z,f(:),l1f(i + 1))) is witnessed by a se-
quence s such that

s < oKlsam@IF OGP < oK1 iS5 < oK'la]

for some constant K', which is a bound polynomial in z. The sequence %
consists of cﬂ%h elements. The elements have form (z,7) with

i< et z < |z|,
T

thus the length of (z,1) is linear in ||z||. Hence the length of t is linear in |z|,
l.e. t is bounded by a polynomial in z.

The proof above has been done in the standard model. The proof in IXy
would be more complicated, but very similar to the proof of Lemma 3.11. We
sketch briefly this argument.

First we can estimate in IX)

(1+1/5)% <1+ 2k/i + 22 /42,

for k < i, hence we get (1+1/i)' <5 and we can use (e.4). Secondly we need
to estimate elements (z,7) of the sequence ¢ for |i| < |z|. This is done by
showing that nuoni(a) < |a|, whenever defined (by induction on the length
of a), from which we get (2,¢) < p(|z|) for some polynomial p. For a given z
take the largest j such that |j7| < |z|. By induction over j we show that the
sequence ¢ can be bounded by ¢(3*) for a suitable polynomial which we shall
specify later. Suppose that such a bound holds for j and let = be such that
J+1is the maximal such that |(j +1)7+!| < |z|. Let 2’ = sgm(z,0, ;7). Thus
we have some ¢ for z/ with ¢’ < ¢(j7). To obtain ¢ for z, we only need to add
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an element (z,j + 1) to t. Since (2,5 + 1) < p(|z’|) and j + 1 is about rl%h,
we have, for a suitable polynomial r, (2,j + 1) < r(j). Thus, by Lemma 3.7

t <t 9(r(5) + 1) < g(57) #r'(4) -
The induction can now be completed, if we ensure that
o) +7'() < oG+ 1Y),

which can be done by taking polynomial ¢ sufficiently large with respect to r'.
Thus we have shown:

3.23 Lemma. In IX the formula defining nuon(z) = y is equivalent to a Xy
formula. O

Remark. There are, of course, other possible ways to divide the binary ex-
pansion of  for the definition of nuon. The reasons why we have chosen the
partition determined by the function {f(¢) are the following:

(1) it does not depend on z, hence we can easily use induction;

(2) it grows smoothly, (while e.g. i * |i| makes big jumps).

3.24 Lemma.

(i) The formula nuon(z) = y defines a function in 1X,.
(if) The formula nuon(z) = y satisfies (e.1-e.3) provably in IXg.

Proof. The proof of (i) is omitted. The proof of (e.1) follows from the defini-
tion. To prove (e.2) and (e.3) we would like to simulate the proof of Lemma
3.21. Now we cannot code the sequence of the values of nuon(z’) for all ini-
tial segments z’ of z by a number, but we can define these values by a X
formula. Namely, let ¢ be a witness of nuon(z) = y, let k < |z| + 1. Then the
value z = nuon(z') for the initial segment z' of z of length k is defined by

o2, byt ) = (3, 0)([#°] < b < 1+ 1) & (v,) € ¢
& z = v + nuonq(sgm(z, |z‘|, k))).

Similarly as above one can show that ¢ is X in IX. Nové let ' be a witness

for nuon(2z) = y'. Since, by Lemma 3.21, nuonq(2a) = nuoni(a), we have,
by induction on k,

o(z,k,t,z) = (2, k,t', 2z).

But we have also
‘P(z’ lzl + l’tvm) =z=y,

oz, 22l 20) = 2 = o/,
hence y = y'. The proof of (e.3) is similar. O
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3.25 Lemma.
nuon(z2¥! + y) = nuon(z) + nuon(y).

Proof. First we show that

22121 4 9y = 2(22 4 y)
2212 4 2y +1 =2(z2l¥ 4+ ) + 1,

and then use (e.1-e.3) and induction PIND (which is derivable from the
ordinary induction, see Sect. 4) over y. O

Also here there is an alternative way to define the concept nuon. This
was suggested by S. Buss, (unpublished). The idea is to count ones in the
straightforward way as in nuon; except that we include in the sequence of
Nuonseq only the bits which have been changed. Thus e.g. the following
sequence

1,10,10,11,100,101,101,110,111, 1000,
will be replaced by

1,10, ,1,100,1, ,10,1,1000.

Then we need at most 2n bits to count up to the number n (plus bits needed
to separate the members of the sequence).

(f) Coding Sequences

Using the function nuon we are now able to define a very efficient coding,
which is close to the information theoretical lower bound. Before defining
nuon we were able to say that an element = belongs to a sequence and that
an element z precedes an element y in sequence s. Now we can define that =
is the i-th element of s.

3.26 Definition.
(s); = = if (Gu,v < 5)(3y,y’ < v)(Jur,v1 < y)(3uz,v2 < v)(Seq(s)
& s = (u,v) & Pouw(y) & Pow(y ) &y > 2&z < ¢/
&u=ugy'y+zy+ur&v=v2'y+y'y+y+v
& i = nuon(vy)).
= 0 otherwise.

Thus (8); = z is defined by the same formula as z € s (Definition 3.6) except
that we have added the condition ¢ = nuon(v;). The meaning of this condition
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is clear: ¢ is the number of markers before the beginning of the occurrence
of z in u. Next we define the length of a sequence and concatenation of two
sequences.

3.27 Definition.
(1) Ih(s) = nuon(v) — 1, if Seq(s) & (Ju < 8)s = (u,v)

= 0 otherwise.
(ii) For s,t such that Seq(s), Seq(t), s = (u,v) and t = (u/,v")

g ~t= (ull,vll) ,
where
o = o'olvl-1 +u,

o = (vl _ 1)2|u|—1 +v;

otherwise we set s ~t = 0.

Note that these functions are defined by Xy formulae. We shall state the

most important properties of concatenation. The role of the empty sequence
is played by (1,0).

3.28 Lemma (IXy). For all z,y, z such that Seq(z), Seq(y) and Seq(z)
i) d,0)~z=z~(1,0)=gz;

(il) z~y=z~2—>y=z;

(i)y~z=z~2 > y=uz;

(iV)z~@y~2)=(z~y)~ 2z

(v) Ih(T,0)=0, Ih(z ~y)=Ih(z)+ Ih(y).

Proof. The proofs are just tedious verifications. Therefore we prove only (ii)
to illustrate the proof technique.

Let 2 = (u(z),o(2)), ¥ = (u(¥) o), = = (u(e), o(e)). Suppose = ~y =

(v(z) — 1)2PWI=1 4 y(y) = (v(z) — 1)2PEN1 4 y(2).

Since the function a — 219/~1 is nondecreasing, we have v(y) = v(z). Further
we have

u(z)2PWI=1 4 y(y) = u(2)2PDI- ().
Since, by the definition of Seq, |u(y)] < |v(y)|, |u(2)] < |v(z)| and since

v(y) = v(2), we have u(y) = u(z) by the lemma about division with reminder
Theorem 1.1.10 (6). O

Since z,y — = ~ y is a total function in IXy, it must be bounded by a
polynomial in z,y. We shall state an explicit bound now. The proof is just
an easy computation,
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3.29 Proposition (IXg). s ~t < 64st.

The maximal element of a sequence s is trivially definable by a Xy formula,
it will be denoted by max(s). We shall use max(s) and lh(s) to write down
an explicit bound to the size of ¢t which codes the same sequence of numbers
as s. We cannot bound s itself, since numbers in s can be represented by
0-1 sequences with many 0’s before the first 1. This is a drawback of our
definition. » '

3.30 Proposition.

Seq(s) — (3t)(Seq(t) & Ih(t) = Ih(s)& (Y0 < i < Th())((£); = (s);)
&|t] < (2] max(s)| +4) * Ih(s) +2).

Proof. By induction on j, j = lh(s), lh(s) — 1,...,0, we shall prove the
following formula
(3H)(Seat) & Ih(2) = Ih(s) — § & (0 < i < Ih(s) = )(t)i = ();j43)
& |t| < (2| max(s)| + 4) * (Ih(s) - j) + 2).

For j = lh(s) put t = (0,1) = 1. Suppose it is true for 0 < j < lh(s), i.e.
we have some t’ for j. Then let ¢ be ¢’ extended by (s)j—1 as described in
the proof of Lemma 3.7. It is not difficult to check that (t); = (t');—1 for
i=1,...,lh(s) — j, and (t)o = (8);j—1. Hence (t); = (8)j—14i. Further we
have

t <9t'((s)j—1 +1)? < 9t'(max(s) + 1)2.

An easy computation gives us
t| < 4+ |t'| + 2| max(s)| < (2| max(s)| + 4)(Ih(s) —j + 1) + 2.
Thus the formula is proved. Taking j = 0 we obtain our proposition. O

Suppose a finite sequence of numbers is defined by a ¥y formula. In
IXy + Ezp such a sequence always has a code. When does it have a code
in IXy, i.e. which comprehension principles hold in IX? The answer is that
there is only one essential restriction: the length of the code must be linear

in the parameters. We state an example of a replacement schema which is
valid in IXj.

3.31 Proposition. For every Xy formula ¢(z,y) I Xy proves

(Vz < u)(Jy < v)p(2,y) & (32)(2 = (v + 2)*) —
— (3s)(Ih(s) = u & (Vz < u)(p(,()2) & (s)z < v)).

Proof. By induction on u; similar to the proof of Proposition 3.30. O
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(g) Syntactical Concepts

We shall use natural representation of syntactical objects as particular se-
quences (words) in a finite alphabet. Since we have concatenation, we do
not have problems with the properties which can be derived form definitions
based on rudimentary formulae. Recall that = is a part of y is defined by

zCpy=(Gu,vy)y=u~z~v),

which is a Ty formula. (Rudimentary formulae are the formulae in the lan-
guage {=, ~} with bounded quantifiers of the form 3z Cp y and Vz Cp y.)
Thus, for instance, once we have the concept of a formula, we can define the
concept of being a subformula and prove its properties. Similarly there are
no problems with defining that a variable does (not) occur in a formula etc.

What is not quite obvious is that we can define the concept of terms and
formulae by Xy formulae. Actually, it is sufficient to define only terms, since
terms are essentially trees and other syntactical concepts can be represented
as particular labelled trees with some additional properties (these properties
usually defined by rudimentary formulae).

We shall consider a simplified situation: We have four symbols, a variable

v, brackets (,), and a binary operation symbol o. Then the terms are the
smallest set satisfying:

(1) visa term;
(2) if s and t are terms, then (sot) is a term.

A formula Term(z) defining the concept of terms must satisfy the following
clauses:
(81) Term(v);
(82) Term(z)& Term(y) = Term(( ~z ~0o~y ~));
(83) Term(z) = =vV (3p,q)(Term(p) & Term(q)

Zz=(~p~o~g~)).

The first two express formally (1) and (2), (g.3) corresponds to the clause

that “Term is the smallest set satisfying (1) and (2)”. In fact we can prove

that any two Yo formulae satisfying (g.1-3) are equivalent in I.X)y. It is exactly
the same situation as with exponentiation and function nuon of subsection

() '
In IXy + 21 we can use the following simple definition:
Termq(z) = (3Is)(Seq(s) &z € s&(Vy € s)(y=vV(Ip,q)(pEs&qgeEs
&y=(~p~o~qg~))).

From now on we agree to omit the sign for concatenation whenever there
is no danger of confusion. The proof of (g.1-3) for Term1 in IXy + {2, is easy.



3. Exponentiation, Coding Sequences and Formalization of Syntax in I Xy 313

Our approach in I X will be based on counting brackets. The occurrences
of brackets (or other symbols) can be easily coded by occurrences of ones
in the binary expansion of a number. Thus we can again use function nuon.
Since this transformation is easy, we shall use less formal descriptions of
formulae.

3.32 Definition. (well-bracketing, sub-well-bracketing, term)

(i) WB(z) = (1) the number of “(” in z equals to the number of “)” in z;
(2) the number of “)” in each proper initial segment of z is
less than the number of “(” in it;

(3) z is nonempty.
(ii) SubWB(z,y) = WB(z)& WB(y) &=z Cp y.
(1ii) Term(x) = WB(z) & (Vy)(SubWB(y,z) -y =V
V (3p, 9)(Sub WB(p, z) & SubWB(g,z) &y = (p © q)))-

3.33 Lemma. WB(z), SubWB(z,y) and Term(z) are Xy over IX).

Proof. These formulas use Xy defined predicates and functions (for counting
brackets use the function nuon); the quantification can be made bounded. O

3.34 Lemma. I X proves (g.1-3) for the definition of Term(z) above.

Proof. (g.1) is obvious. To prove (g.2), assume Term(z) and Term(y) and let
z = (z o y). The condition WB(z) is easy. Let u be a sub-well-bracketing of
z. Clearly it is now sufficient to show that u is either a part of z or a part
of y or u equals to z. If u is not a part of = nor a part of y, it must contain
the first occurrence of “(” or the occurrence of o between = and y or the last
occurrence of “)”.

(1) Suppose u contains the first occurrence of “(”, then it must contain
also the last occurrence of “)”, otherwise condition (1) of WB(u) would be
violated.

(2) The case with the last occurrence of “)” is symmetric.

(3) Suppose u contains o between z and y. Then u is not v, hence it
contains an end segment of z or an initial segment of y. In the first case
it must contain the first occurrence of “(” and in the second case it must
contain the last occurrence of “)”, since otherwise condition (2) of WB(u)
would be violated. Hence again u = z and condition (g.2) is proved.

Now we prove (g.3). Suppose Term(z). If z = v, then there is nothing
to prove. If not, then z = (p o ¢) for some p, ¢ such that SubWB(p, z) and
SubWB(g,z). To prove that p and ¢ are terms, we have to check that each
sub-well-bracketing y of p or of ¢ has the required form. But each such y is
also a sub-well-bracketing of z, hence by definition it must have this form.

0
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Note that we can think of WB as a definition of arbitrary finite trees and
Term as a definition of finite binary trees. The last property of terms that
we prove is sometimes called unique readability.

3.35 Lemma (1X)).

Term(z) & Term(y) & Term(p) & Term(q) & (z o y) =(p 0 q) —
—z=p&y=gq.

Proof. Assume the antecedent is true. Then p and ¢ are sub-well-bracketings
of (z o y). It follows now from the proof of Lemma 3.34 that neither p nor ¢
can contain the occurrence of o between r and y. Hence the only possibility
is that z = p and y = q. O

Now we consider substitution. We have defined terms in a very restricted
language; the following proposition holds for terms in the usual general sense.

3.36 Proposition. The relations the term u is the result of substituting s for
all (some, respectively) occurrences of the variable v in t are Xy definable.

Proof. We need to express that t is of the form
p~vVapr V.. Pp-1 ™V 7 P,

where v does not occur (may occur, respectively) in pi,p2,...,Pn, and u is
of the form

Pl S/ Pp2 S/~ ... Dnp S Dn.

This can be done by introducing two 0-1 sequences wj, wy such that wy marks
occurrences of v in ¢ and we marks occurrences of s in u (not necessarily all).
Then we state that the word between the :-th and i + 1-st marked occurrence
of v in t is equal to the word between the :-th and i 4+ 1-st marked occurrence
of s in u. To express that an occurrence is the i-th one we use, of course, our
function nuon. O

Since the definition of substitution is quite straightforward, the usual
properties are easily provable in IXy and we shall not present them here.
In IXy + 21 we can define the total ternary operation

t,v,s — t(v/s),

where #(v/s) stands for the result of substituting s for all occurrences of
variable v. This is because we can bound the length of t(v/s):

|t(v/s)| < const x |t| * |s|.
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Since the bound is, essentially, the best possible and it is not linear, this
function is not total in IXy. This causes some problems, when we develop
metamathematics in JXy. For example, we cannot replace occurrences of a
variable by a term in a proof.

The purpose of this section is to study combinatorial concepts needed for
formalization. It should be clear by now that these concepts are quite simple
and can be handled in IXjy, unless they are functions growing more than
polynomially. In the next section we prove a general theorem which covers
some standard cases.

Let us consider the concept of a proof as an example. Suppose we for-
malize proofs as sequences of formulae. Then we need to write down that
each element of the sequence is a formula which follows from the preceding
ones by a rule. The relation that a rule defines on formulae, is usually con-
structed from notions whose definability and properties have been shown in
IXy (concatenation, substitution, occurrence etc.). On the other hand the
provability predicate which we obtain in this way does not have the basic
closure properties in IX. This is because it is a ¥y concept.

(h) Formalizations Based on Context-Free Grammars

After working for some time in a formal system one gets a feeling, usually
quite a clear one, of what can be formalized. Repeating the same tricks in
formalizations again and again becomes boring. Then comes a dream: to prove
a general theorem which would take care of all situations. Usually it remains
only a dream, because if we want to state a comprehensible and memorable
theorem, we have to give up a lot of its possible applications. We are going
to state and prove a theorem which is such a compromise.

We shall use the concept of a context-free grammar. A grammar is de-
termined by two alphabets and rewriting rules. A rewriting rule is a pair of
words (u,v). By an application of the rule (u,v) to a word w we mean the
replacement of an occurrence of u in w by v. The rules can be applied in
arbitrary order to arbitrary occurrences of subwords. One of the alphabets
consists of so called nonterminal symbols the other consists of terminal sym-
bols. We are interested in the words which consist of terminal symbols only
and which can be derived from a specified initial nonterminal symbol using
rewriting rules. This is the language determined by the grammar. A contezt-
free grammar is a grammar in which the first word of the rewriting rule is
always a single symbol. In context-free grammars we can interpret nontermi-
nal symbols as concepts (e.g. “noun”, “verb” in natural languages, or “term”,
“procedure” in programming languages). The rules can be thought of as a
kind of inductive clauses, which determine the structure of the words in the
language. We know that it is important to have proofs of inductive clauses
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in IXj. This is exactly what our theorem will do. Examples will be shown at
the end of the section.

Let us state a formal definition of context-free grammars and introduce the
standard notation. A contezt-free grammar is a quadruple G = (N, T, P, Sp),
where N and T are finite sets, NNT =0, So € N, P C N x (NUT)*, where
* denotes nonempty words in a given alphabet. (The standard definition also
allows the derivation of empty words, but it would cause us some technical
complications, therefore we consider only languages without empty words; the
results that we shall prove do not depend on this restriction.) The elements
of N (T respectively) are called nonterminal symbols (terminal symbols,
respectively), Sp is the initial nonterminal symbol, P is a set of rewriting
rules. Let u,w € (N UT)T; we shall write

u=w,

(oru 2 w to indicate which grammar we are using), if there are A € N and

v € (NUT)" such that A occurs in u, (4,v) € P and w results from u by
replacing an occurrence of A by v. The relation = denotes the transitive
closure of =>. Thus u = w means that u = w or u can be rewritten to w
by applications of the rules of the grammar. Note that the rewriting process
is nondeterministic: we can choose rules and occurrences of letters. The set
of all words w € T such that Sy = w is the language generated by G.
The languages generated by context-free grammars are called contezt-free
languages.

We shall add another unessential restriction that there is no rule of the
form (A, B) € P with A, B € N. In order to simplify notation, we shall omit
the sign for concatenation in the rest of this section.

Our aim is to formalize the property of being derivable from A; this is the
meaning of ¢ 4(w) below.

3.37 Theorem. Let G be a context-free grammar. Then one can construct a
family of Xy formulae ¢4 for A € N with the following property: If

A= winBjwiBiy ... Bin,~1Win,, i=1,...,k,

are all the rules of G with A on the left side and w;y,w;,...,wi,, € T,
Bi1, Bia, ..., Bin,—1 € N, then I Xy proves

k
(81) va@) =\ (Gn)...Gyni-1)(¢B,¥)& ... &op,,,_,(¥)

i=1

&z = winy1wiys ... Yn,~1Win,) ,

(where we admit n; = 1).
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Proof. Let a context-free grammar G = (N, T, P, Sy) be given. We consider
an auxiliary grammar G = (N, T, P, Sp) defined by adding a new terminal A
for each nonterminal A € N of G and two new terminal symbols [,], and by
replacing each rule of G

Az w

by »
A= Alw],

(A[w] is the concatenation of A,[,w and ].) The idea behind this is that G
codes the syntactical trees of derivations in G.

The words w € (N UT)* which are derivable from some A in G can be
defined by the following clauses:

(1) w is a well-bracketing with respect to [ and ];

(2) w is of the form Afu] for some A € N;

(3) each occurrence of | is preceded by some A, for A € N;
(4) if

(8-2) Alw; By [v1]wy ... wp—1Bn—1[vn-1]wn]
is a sub-well-bracketing of w, then

(g:3) A = w1Bjwy... wa—1Bp_1wn,

with wq,...,w, € T*, By,...,Bp—1 €N.
We know that such clauses are expressible by a Xy formula, so we have a Xy

formula ¢(z) which defines words derivable in G. Moreover the following is
provable in IX)y:

(5) ¢(z) — z is of the form (g.2) for some rule (g.3);

(6) w(Bi[n1])& ...o(Bn-1[vn-1]) = ¢(Alw1B1[v1]ws. ..
cee wn—lg.n—l[vn—l]wn])a
for each rule (g.3) of G.

Condition (5) follows immediately from (1), (2) and (4); (6) can be proved
in the same way as Lemma 3.34.

Next we need the function which maps words of (N U T)* on words of
(N UT)* so that it only omits the letters which do not belong to NU T
(* denotes the set of all words, including the empty word). A Xy definition
of this function can be constructed using the same idea as we used for
substitution. (In fact this function is the substitution of empty words for
each A, A € N and for each bracket [ and ].) Let us denote this function by
Forget(z). It is provable in I Xy that Forget is a homomorphism of the free
semigroup (N UT)* into (N UT)*. In particular, it is provable in I X that:
(7) Forget(Afun Ba[o1]ws ... wp—1Bn-1[vn_1]wn])

= wy Forget(B1[v1])wz ... wp—1 Forget(Bn—1[vn-1])wn.
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Recall that we do not allow rules of the form (A, B), for A,B € N. Thus in
(g.3) either n > 3 or at least one w; is nonempty. This together with (7) can
be used to show in IXy that:
(8) ¢(z) — lh(z) < 7 * Ih(Forget(z)),
which implies a polynomial bound to z in terms of Forget(z).

Now we can define our formulae ¢ 4:

(9) pa(z) = (3y)(z = Forget(Ay) & p(4y))-

Hence by (8) these formulae are Xy over IXg. The rest of the proof is easy.
To prove (g.1), first suppose @ 4(z) in IXy. Then, by (9), for some y and A,
z = Forget(Ay) and ¢(Ay). By (5), Ay is of the form (g.2). Hence by (7)

T =w1yiw2... Wn-1Yn-1Wn,

Where
y; = Forget(B;[v;]), i=1,...,n—1.

Thus, by definition (9), ¢p,(y;) for ¢ = 1,...,n — 1. To prove the converse
implication, suppose that

T=wWyiw2... Wn-1Yn-1Wn,

and
e(B1ln)) & ... ¢(Bn-1lyn-1]),

for some rule (g.3). Applying (9) and (7) we get £ = Forget(Ay), for Ay of
the form (g.2). Then, by (6), we have also ¢(Ay), thus ¢ 4(z) holds true. O

3.38 Corollary. 4 = w iff ¢ A(w) is true. Hence context-free languages are
in Z{V.

Proof. By induction on the length of w. (Repeated application of (g.1) pro-
duces a syntactical analysis of w.) a

This corollary is only a by-product. The meaning of the theorem is that
it not only produces a Xy formula, but also it gives inductive clauses which
determine the concept in I X in a similar way as (c.1-2) determine exponen-
tiation and (e.1-3) determine function nuon.

As our first example, we consider the definition of numerals. We cannot
use

S"(0) =S5S5...5(0),

n times

in IXy, since the code of such an expression is exponential in n, thus IXy
does not prove that S™(0) exists for every n. In I Xy we use dyadic numerals
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which are defined by

0=0, T=S(6)’
n=1+0)*®), 2n+1=1+1)*@+1, forn>0.

Using a context-free grammar G we first formalize positive numerals. G has
one nonterminal Sg, terminals 1,+,*,(,) and rules

So=>T|(T+T)*(So) | (T+T1)*(So0)+1,

(this is the standard way of writing three rules at once). Let g (z) be the
formula given by Theorem 3.37. Then I Xy proves

ps,(z) =z =TV (Fy)(ps,(¥) &z =‘T+1)*(v))
V(E(es, W) &z ="T+D () +1),
where we use ‘...’ to denote a string of characters. Hence, if we define
Num(z) =z =0V pg,(z),

then Num(z) satisfies natural clauses which determine this concept. The
value val(z) of a numeral z is easily X definable, since the binary expansion
of val(7) is encoded in 7. Thus the function num(z), the z-th numeral, is
also Xy definable, namely by

num(z) =y = Num(y) & val(y) =z.

In logic we usually reduce the definition of such a concept to terms and
thus we do not have to use the full generality of Theorem 3.37. Therefore
our second example will be the so called Polish notation, which is notation
without brackets, thus we cannot reduce it directly to the concept of terms.
Let us define variable-free formulae in the language consisting of 0, 1 -
constants, add, mult — binary operations, = — a binary predicate, non —
a unary connective, et, vel — binary connectives. The grammar will have two
nonterminals Sy, 51, the rules are

So = =51.51 | nonSy | et SpSy | velSpSo ,
S1=0 | 1 | add$1S; | multS; Sy .
The meaning of Sp is “formula”, the meaning of S; is “term”. Theorem 3.37

gives us a X formula defining variable-free formulae such that the inductive
clauses (given by the rewriting rules) are provable in I.X,.

*

We have developed several tools for defining syntactical concepts in I.X).
Their application to the definition of terms and formulae in the full language
of arithmetic, to the definition of proofs etc. is quite routine now, so we can
end this section here.
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4. Witnessing Functions

(a) Introduction

Suppose a sound theory T proves a sentence (Vz)(Jy)p(z,y). If T is weak
and ¢ is simple, then we have some additional information on the functions
which witness the existential quantifier in this sentence, i.e. functions f for
which we have (Vz)p(z, f(z)). A classical result says that if T is IX; and ¢
is bounded, then there is such an f which is primitive recursive, see Theorem
IV.3.6. Parikh [Parikh 71] has noted that f is linear time computable if T is
IX and ¢ is bounded. Buss [Buss 86, Bounded Arith.] has defined a theory
S2 (a conservative extension of I Xy + £21), fragments S} and subsets Z’? of
bounded formulae in the extended language. His theorems characterize the
classes of functions in the polynomial hierarchy using the above phenomenon.
In particular, if ¢ is a Z‘{’ formula and T is S%, then f is polynomial time
computable. The converse of this special case is also true: if f is polynomial-
time computable, then there exists a Z’i’ formula which defines f and for
which it is provable in S% that f is total.

We start this section with the definitions of these classes of formulae and
fragments of bounded arithmetic. The next step will be positive results about
definability of functions of certain complexity in these fragments. It turns out
that this is quite important information about the fragments. For instance,
knowing that T2" defines functions of Elf 10 for ¢ > 1, it is easy to prove Buss’
theorem for T§. The main part is subsection (d) where witnessing theorems of
Buss and of Kraji¢ek and Takeuti are proved. In subsection (e) we shall show
a reduction of the problem of finite axiomatizability of bounded arithmetic
to the problem of collapsing the polynomial time hierarchy.

Since the fragments of bounded arithmetic have been extensively studied in
[Buss 86, Bounded Arith.], we concentrate on results and proofs not included
in that book. In particular, as Buss uses proof theory, we shall give proofs
of the witnessing theorems based on model theory. We shall refer to Buss’s
book for basic facts provable in these fragments; however the readers with
some training in bounded arithmetic, for example those who have worked

through Sect. 3, should be able to make their own proofs without consulting
that book.

(b) Fragments of Bounded Arithmetic

We shall extend the usual language of arithmetic Lo by adding two unary

function symbols |z| and Lz /2., and one binary operation z # y. The intended
interpretation of |z| is
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|z] = Togg(z + 1) = the length of the binary expansion of
z if £ > 0, otherwise 0,

i.e. the same as in Sect. 3. Here "y denotes the least integer z > y; Lya
denotes the integer part of y, thus the interpretation of Lz /2. is clear. The
intended interpretation of the smash function is

z #y = 2/#*I¥l = the power of 2 whose binary expansion has
length |z|* |y| + 1.

Observe that the set of the lengths of numbers in a sound arithmetical theory
containing the smash function is closed under multiplication, hence under any
polynomial increase (for standard polynomials). This is important, since it
enables us to formalize many standard constructions, in particular polynomial
time computations. We shall denote this extension of Ly by L. In this section
we shall work in the language Ly and in an extension L of Lo.

Now we recall the basic system of open axioms for the extended language.
It is called simply BASIC and it plays a similar role to @ in the usual

language.

4.1 Definition. BASIC is the following theory:
(1) ySz—y< Sz

(2) = # Sz;

(8) 0<u

4) s<y&z#y=Sz<y;

(3) e #0022 #0;

(6) y<zVz<y

(1) z<y&y<z—z=y;

(8) z<y&y<z—oz<y

(9) 01=0; _ ~
(10) z # 0 — [2z| = S(|2|) & |S(2z)| = S(|=);
(1) 1] =1;

(12)z <y — |z| < |yl;
(13) |z # yl = S(|=| * |y]);
(14)0#y=1, _ ~
(15)z #0 — 1# (2z) =2(1 #2) & 1#(S(2z)) = 2(1 # z);
(16)zH#y=y#z;

A7) |zl =yl s #z=y#2;

(18) x| = |u| + |v] = z#y = (u#y) * (v#y);

(19)z <z +y; o o

(20)z <y&z #y — S(2z) < 2y & S(2z) # 2y;

@) z+y=y+z;

22)z+0=uz;

(28)z + Sy = S(z +y);
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(24)(z+y)+z=z+(y+2)
(28)z+y<z+z=y<z

(26)z x0 =0;

(27) z *(Sy) = zy + =;

(28) zy = yz;

(29) z(y + 2) = 2y + z2;

(B0)z 21— (sy<zz=y<z)

(31)z #£0 = |z| = S(|.z/2.]);

By=1rz/2.= 2y =2V S2y) ==z),

where T and 2 are numerals as defined in Sect. 3.

This system is probably not quite optimal. One can play with it in order
to find a shorter or nicer system. For instance, if we redefine

|z| = "oga(z +1)7 -1 ifz>0,
0 otherwise,

then z#y = 2l#*¥l becomes associative and distributive with respect to
multiplication, hence one would obtain a more homogeneous axiomatic sys-
tem for such functions. We shall not do it here, as we want to concentrate on
more interesting questions.

We shall use the bounded quantifiers (Vz < 7) and (3= < 7); note that
T is a term in the language L2, not just in Lo (not containing «, of course).
Moreover we also need the so-called sharply bounded quantifiers. They have
the form

(Vz < |r]) and (32 < |7)),

i.e. the outermost function in the bounding term is the length function. Their
relation to ordinary bounded quantifiers in bounded arithmetic is similar to
the relation of bounded quantifiers to unbounded quantifiers in PA. The
classes Z'b and IT; b of bounded formulae are defined as follows.

4.2 Definition.
(1) H b= Z' consist of formulae with sharply bounded quantifiers only;
2 z; +1 a.nd m? 41 ave the least sets satisfying
(a) zb,ﬂb C Xl and 2P, ME C ITY, 5
(b) ae X +1 =>((Fz<1)a€ Z’+1, (Vz < |7])a€ ZH_I,
a€ H+1 = (Vo < m)a € I}, (3-"3 Slaell
(¢) a,B€ 2:+1 =>a&B,aVpfeX z+1’
a /3617,_,_1 #a&ﬂ,aVﬂEHH_l,
d) a€ ,_,_l,ﬂe 1=>-v,3,,3—>a€£'+1,

a€ll},, BEST +1=>—|ﬂ,,3—»aeﬂf+1

HEY
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(3) aisin Ai? with respect to a theory T, if a is equivalent to a Z’f’ formula
and a H‘!’ formula in T'.

4) 2'8(2'1’) is defined as the closure of Z‘f’ under connectives and sharply
bounded quantification; note that this class is sometimes denoted also
by Sy NI,

Later on we shall see that, for : > 1, Ez’ (resp. Hf’) formulae define just
the sets in Z’f-’ (resp. II‘P ). The most important formalizations of induction
for bounded formulae are the usual schema of induction and the following
ones. :

4.3 Definition.
(1) PIND(a(z)) is the formula

a(0) & (Vz)(( 2 /22) = a(2)). — (Vz)o(z) ;
(2) LIND(a(z)) is the formula
a(0) & (Vy < |z])(e(y) = a(S(¥)))- — e(lz]);
(3) LMIN (a(z)) is the formula
(3z)a(z) = &(0) V (3z)(a(z) & (Vy < L/21)(ma(2)));

(4) PINDI’ (LINDI', LMINT, respectively) is the schema (or the set)
PIND(a(z)) (LIND(a(z)), LMIN (a(z)), respectively) for a(z) € I'.

Here we assume that a(z) may contain other free variables, which are
called parameters. We have written LIND in the form which contains only
one additional quantifier and this quantifier is sharply bounded. Thus if « is
A}, then LIND(a(z)) is also A?; if a(z) is in [T U 52, then LIND(a(z)) is
z(zh).

0\<g

Now we are ready to define the hierarchy of subtheories of bounded arith-

metic.

4.4 Definition.

(1) Fori >0, S§is BASIC + PINDX?.
(2) Fori>0, T} is BASIC + IZ}.

(3) Spis U;S3; Tz is Ui T3

The most important fragment of Sp is S%. It serves as a basic theory
modulo which results on fragments of S2 are proved. Its role is similar to
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the role of IX; in PA. In particular we shall show in the next subsection
that all polynomial time computable functions are definable and provably
total in S}. As for weaker fragments: 59 is too weak (it does not prove the
existence of the predecessor, see [Takeuti, Sharply Bounded)); the strength of
T° is not quite known. We shall not repeat the formalization of elementary
mathematlca.l concepts in S'2 which has been done in [Buss 86, Bounded
Arith.]. One can use some techniques from Sect. 3, mainly those which were
mentioned in connection with Xy + £2;. (Those which reduced the size of
the quantified numbers by using more quantifiers are useless for S3, since we
need E‘i’ definitions.) Here we briefly mention a definition of coding in Sj.
First we re-define Pow(z) (z is a power of 2) by an open formula in Ly:

Pow(z) =2z =z #1.

In order to see that this works, we shall show in BASIC that Pow satisfies
the following recursive condition:

Pow(z) — (z =1V (Jy < z)(z =2y & Pou(y))).

One can easily show = Pow(0). Suppose z > 1. Then, by axiom (32) of
BASIC,z =2y orz = S(2y), for y = Lz/2, and y > 0. By the definition
of Pow and (15), we have 2z = z # 1 = 2(y # 1), hence (by (1), (6), (7) and-
(30)) we have z = y # 1. Since y > 0, we get from (15) that z is even. Hence
we must have the first possibility z = 2y (BASIC proves that S(2u) # 2v).
Thus 2y =z =y #1, i.e. Pow(y).

Now we can re-define bit(z,¢) (the i-th digit of z) by a Z‘b formula:

bit(z,i) = 2= 2 < 1& Ty, up < z)(Fg <y)(Pouw(y) &|y| =1
&z =2ugy+2y+uy), ifi>0,
= 0 otherwise.

Since the decomposition above is unique (see Theorem 1.1.30), we have also

a IT? definition:

bit(z,1) = z = (Vw < 1)(Vy,ug < z)(Vug < y)(Pow(y) & |y| =i
&z =2ugy+wy+u 2w=2),ifi>0,
=0 otherwise.

Thus we have a Ab definition of bit in S’l Similarly we can define function
sgm, (see 3.18). The function bit codes 0-1 sequences. If we want to code
arbitrary sequences, we can proceed as follows. A sequence will be a triple
p = (u,v,w) (more precisely ((u,v),w), thus every number is a sequence),
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where u is the code of the sequence, v is its mazimal element and w is the
length of the sequence, i.e.

max(p) = v,

lh(p)=w.

The function the i-th element of p is defined by

(p)i =z =z < v&(Vj < |v|)(bit(z, ) = bit(u,iv + j)), if i < w,
(p); = 0 otherwise.

Hence all these functions are A}. Finally we observe that we can bound u by
lu] < |v|w.
Thus for some term bound we have

(a.1) p < bound(max(p), 2

4.5 Proposition.
(1) Fori>1, S =S} + PINDII} = S} + LINDX? = S} + LINDIT}.
(2) Fori>1,Ti=S}+Im}.

Proof. We shall show only S = S% + LINDZ‘?; the proofs of the remaining
equivalences are the same as for fragments of PA, see Theorem 1.2.4.

First we shall derive LIND £? in S}. Let ¢(z) be Z?. Let ¢(z) be ¢(|z]).
Then by (10) and (32) of BASIC, the inductive clause of LIND(¢(x))

¢(z) = ¢(5(2))

implies the inductive clause of PIND(v(z))

P(y/24) = $(y) -

Thus LIND Z? is reduced to PINDX?.

Now we shall derive PINDE? in S} + LINDZ':’. Let ¢(z) be a X?
formula for which we want to prove PIND. Thus we assume ¢(0) and
(Vz)(¢(cz/24) — @(z)). Let msp(z,y) be the number whose binary rep-
resentation consists of the first y digits of = (and, say, it is z if y > |z|). This
function has a A% definition in S} (use the function sgm). The idea of the
proof is to show, using LIND, that all end segments of = satisfy ¢, hence
also z itself satisfies ¢. Formally, we apply LIND to ¢(msp(z,y)) with y as
the induction variable and z as a parameter. Thus PIND(¢(z)) is reduced to
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LIN{)(T(Ir;wp(z,y))) since msp(z,0) = 0, umsp(z, S(y))/22 = msp(z,y) a.nd
msp(z,|z|) ==

4.6 Theorem. For : > 1, S% F IA?.
Proof. Recall the meaning of I Ai-’: for every a € Z'? and g € Il ,b

(Va)(a(z) = B(z)) — I(a(2)).

The idea of the proof is the following. The schema of induction tells us that we
cannot define a proper subset of numbers which contains 0 and is closed under
the successor. The schema PIND implies that there is no subset of numbers
containing 0 and closed under the successor and the function 2x. We already
know (Theorem I1.3.5) that for every cut we can define a subcut closed under
addition, hence also closed under 2z. We shall use this construction to reduce
induction to PIND. There is a small technical complication, since we have to
use only bounded formulae, while the original construction uses unbounded
quantifiers.
Let a and 8 be given. Put

'!l’(y, a) =df (V.'D < a)(a(x) - ﬂ(mm(z +9, a))) .

Thus 1 is Hf. Working in S}, assume a(z) = f(z), «(0) and (Vz)(a(z) —
a(S(z))). Furthermore assume that a(a) fails for some a. We have (0, a)
trivially and ¥(y,a) — ¥(S(y),a), since (Vr)(a(z) — a(S(z))). We shall
prove ¥(y,a) — ¥(2y, a). Assume ¥(y, a) and a(z) for some z < a. By ¥(y, a)
we have a(min(z + y,a)). Thus z + y < a, since ~a(a). Hence a(z + y, a).
Applying ¥ (y, a) once again (with z+y instead of z) we get a(min(z+2y, a)).
Hence we have 9¥(y,a) — 9(2y,a). Since

z=2z/2,Vz=_8(2z/2)),

the formula
(Vy)(¥(y, a) — $(S(y), a) & 9(2y, a))
implies
(Vy)(¥(Ly/24,a) = ¥(y, a)).
Hence using PIND(y) we get 1(a, a). Since a(0), this implies a(a). We have

derived a(a) from its negation, hence it must be true. Thus we have shown
induction for a. O

Note that, for i > 2, a weaker versxon of this theorem can be derived
also from Corollary 4.28 below using the X° +1 conservativity of S""1 over T'
(Corollary 4.34).
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4.7 Theorem.
(1) Fori>0, Sy CTjC Sitt;
(2) S2 =T and they are conservative extensions of I Xy + §2;.

Proof. (1) To prove the first inclusion, observe that T§ trivially proves
’ LINDZ? and apply Theorem 4.5(1). The second inclusion is a corollary of
Theorem 4.6.

(2) The equivalence of theories Sy and T follows from (1) of the preceding
proposition. In order to show that I X+ {2 is contained in So we have only to
prove axiom £2; in Sy, which follows easily from the bound we(z) < (z # z)*.

Let us prove the conservativity of Sg over I X+ £2;. We already know that
Lz/2, and |z| are definable in I Xy + £2;. As we have a T definition of the
exponentiation relation, we can define the graph of the function z #y. This
function is provably total in I Xy+ 21, because of the bound z # y < wa(z+y).
The axioms of BASIC are easy too. To prove induction for bounded formulae
in language Lo in IXg + {21, recall that by Proposition 1.3 we can eliminate
terms as bounds in the formulae used in induction. Then we use the definitions
of the new operations to translate the formulae into the language Lo and
apply IX). O

4.8 Theorem. (a) For i > 1, and o(u,z) € Z§(Z?),
Si F Bw)(Vz < |y])(aly,z) = bit(w,z + 1) =T).
(b) For i > 1, S - LIND(Z§(Z%)).

Note that (a) is a version of the 28(2,1’) comprehension schema in S}
where we use bit(w, ) as a convenient coding of 0-1 sequences.

Proof. (a) Consider a more general schema for a € Z§(Z?):

(b.1) SiF (Fw)(Ve1 < 1)) .. (Vo < lynl)(a(u, 1, .., 2n)
= bit(w, T + (21, (22,...,2n))) = 1).

We should show that (b.1) holds for & € X? and that the set of formulae
a satisfying (b.1) is closed under boolean operations and sharply bounded
quantifications.

Suppose a € 2? . Take the formula f#(z,u) defined by

Aw)(Jw] < ly1| * ly2| * ... * lyn| & nuon(w) = 2z
&(V:L'] < |y1|) ‘e (V$n < lyn|)(b't(W,T+ (.'B]_, (32, cee va’ﬂ))) =1-

— a(u,z1,...,2%n))).
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Let us work in S;. This formula is true for z = 0 and fails for z = |y | * |y2| *
-+ % |yn| + 1, since nuon(w) < |w|. Since & is ¥, nuon is A8 and we can
bound w, say by y1 #y2 #...# yn, the formula g is also 25’. Hence we can

use LINDH}’ to find the smallest z for which 8(z,u) fails. Then take w such
that B(z — 1,w). If

z—=1=ly|*lyal* - *[ynl,
then all bits of w are 1, hence we have (b.1) for this w. Now suppose that
z= 1<yl *lyzl* - *lynl|.

If (b.1) were not true for this w, then we could add another 1 in the binary
representation of w which codes an instance of a(u,z1,z3,...,zys). But this
would contradict the condition that z — 1 is the last parameter for which
B(z — 1,w) is true. Hence w codes exactly the set determined by a.

The case of propositional connectives and sharply bounded quantifiers is
easy. .

(b) follows immediately from (a). O

In Bounded Arithmetic there is a counterpart of the collection aziom for
Peano Arithmetic, see 1.2.1. We shall call it the bounded collection aziom.
Sometimes it is also called replacement aziom.

4.9 Definition. (i) BB(a(z,y)) bounded collection is the following formula
(Vo < [t)(Fy < s)a(z, y). = (Fw)(Vz < [H)(w)e < s&a(z, (w)e)) -
(ii) BBT is the schema BB(a) for a € I'.

Using (a.1) above, we can bound the variable w in the bounded collection
axiom; thus it has the following form (equivalent in S} ):

(Vz < [t))(Ty < s)a(z,y). —
= (Fw < 7(s,1))(Vz < t)(w)e < s& a(z, (w)e)),

where 7 is a suitable term (7(s,t) = bound(s, 21tH+1)),
4.10 Theorem. For 7 > 1, S{, - BBZ'?.
Proof. Let a(z,y) be a Z:-’ formula. Assume

(Vz < [t)(3y < s)e(z, ).

Then we obtain

(Fw < (s, 1))(Vz < [t (w)e < s&a(z, (w),))
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by
LIND((Fw < 7(s,1))(Vz < |2)((w), < s&a(z,(w),))),

where the induction variable is z. The formula is Z’? , since coding is A'l’. We
use the elementary facts that the empty sequence has a code, each sequence
can be extended by an arbitrary element and the estimate of the size of a
sequence. 0

Note that the implication converse to that above is already provable in S1
(using only the fact that (w); is a definable function in S}). The bounded
form of the bounded collection axiom enables us to interchange sharply
bounded quantifiers with bounded quantifiers. However we cannot push inside
all sharply bounded quantifiers without extending the language, since the
coding function is not defined by a term in Lj. Therefore we need to extend
the language.

4.11 Definition. (i) The language L2 augmented with the blnary operation
(z)z, will be denoted by Lg; the corresponding classes 2' II etc. will be

denoted by £%, IT%, etc.
(ii) We say tha,t a formula is strict£? if it is of the form

3z, < t1)(Vz2 < t2)...(Qz; < t;)p,
where Q is 3 if 7 is odd and V if ¢ is even, and ¢ is sharply bounded.

We shall not introduce new notation for theories obtained by extending
the language and adding the definition of the coding relation. It will always
be clear from the context which theory we mean.

4.12 Corollary. For 1 > 1, every Z’s’ formula is equivalent to a .stn'ctf)i-’

formula, provably in S} (augmented with the definition of (z).).

Proof. We can shift all sharply bounded quantifiers beyond bounded (but
not sharply) quantifiers using the bounded collection schema. Successive
quantifiers of the same kind can be merged using the coding function. O

4.13 Corollary. For i > 1 and a(z,y) in b
53 F Qw)(Vz < )Ty < )z, y) = (w)z < s&a(z, (w)2))]-

(This is sometimes called strong replacement.)

Proof. Let a(z,y) in Z'? be given. By Theorem 4.8, we can code the set of z’s
such that (Jy < s)a(z,y) using some v and formula bit(v,z) = 1. Now take
a/(z,y) to be

a(z,y) V bit(v,z) =0
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Then we have (Vz < [t/)(Jy < s)o/(z,y), hence we can apply bounded col-
lection; the sequence w given by it satisfies the clause of the theorem. a

(c) Definability of Turing Machine Computations
in Fragments of Bounded Arithmetic

Recall that for: > 1, Elp denotes the set of functions computable in polyno-
mial time using oracles for 1 sets; in particular, (1} are just the polynomial
time computable functlons, since Z'p oracles are superfluous. In this subsec-
tion we shall show that functions from Dp have suitable definitions in 52 ,and
the same holds for Df and T"'l, if £ > 1. This means that for functions from
O we have Af 41 definitions in the corresponding theories and that basic
properties of the functions are provable in these theories. We shall only show
that the defining formulae have appropriate complexity and that they de-
fine total functions. Other properties follow from the construction and their
proofs are omitted.

We shall consider deterministic Turing machines, possibly with oracles.
Let an oracle Turing machine M be given, let e be the code of it, let A be
an oracle. We formalize the computation of M on input a as two sequences
w and ¢, where (w); is the instantaneous description of the state of M, the
position of the heads and the content of the tapes, and (q); is the query
asked in step .1 The computation is determined by a constant firstq (let us

set it equal to 0) and five functions firstw, neztwg, nextwi, neztqq, neztq, as
follows:

(w)o = firstw(a), (q)o = firsiq;
(w)it1 = neztwo((w);, (9)i), (@)i+1 = neztgo((w)i,(9)i), if ()i ¢ 4;
(w)it1 = neztwy((w);, (9)i), (@)i+1 = nextqy((w)i,(¢)i), if(g)i € A.

We can think of (w); as a sequence which encodes the current situation on the
tapes and encodes the state of M. Then the functions above are only local
transformatxons of these sequences; hence it is not difficult to write down
A definitions for them using our Al definition of coding. If the oracle A is
deﬁned by a formula ¢(z), we thus get a formula

Comp p1 o(z)(w, ¢, a)

expressing that (w,q) s a computation of M on input a. If M is a machine
without an oracle, we shall write simply Comp ps(w, a). We shall assume that

1 W.l.o.g. we can assume that M asks a query in each computation step; if it does not
need information it asks some default fixed query.
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(w); = (w);41 iff M stops in the i-th step. Thus computations of length n
exist for every n, and we have a simple condition for testing the termination.
Furthermore we shall assume that this (w); is the output of M. We shall
identify oracles with their defining formulae; thus we shall talk about Z‘f’
oracles instead of Zf oracles.

4.14 Lemma.

(i) Compps(w,a)is A} in S3.

(i) If p(z) is Ef’, i 2 1, then Comp g ,(z)(w,q,0) is 28(2?).
(iii) There exists a term o such that

S Comp pg () (w, 9, @) = w,q < o(a, Th(w)).

Proof. (i) and (ii). We have
Compar(w, a) = (w)o = firstw(a) & (Vi < Ih(w) = 1)((w)is1 = nestw((w))),
and

Comp pt, () (W, ¢, 0) = (w)o = firstw(a) & (Vi < Ih(w) — 1)

[(=(9); & ()41 = neztwo((w)i, (0):) & (a)i+1 = neztgo((w)i, (9)i)
V (#(9)i & (w)iv1 = neatwy((w)i, (9)i) & (@)i+1 = neatgy ()i, (9):))]-

We already know that all the functions used in these formulae are All’ defin-
able.

(iii) The length of w and ¢ is polynomial in the number of steps of the
computation and the length of input, whence we get the bound. ]

Now we prove the relation between the classes of formulae Zf’ and the
classes of sets Ef which we have promised. Note, however, that the relation
is not quite direct for ¢ = 0.

4.15 Theorem.
(i) Every set definable by a Z‘g formula is in LogSpace.
(ii) Every set in P is definable by a A% formula.
. . . b
(iii) For i > 1, the sets in X¥ (resp. II?) are just the sets definable by X}
(vesp. IT?) formulae.
(“Definable” means here “definable in the standard model”.)

Proof. (i) All the functions and predicates of the language of Sa are LogSpace
computable and sharply bounded quantification preserves LogSpace compu-
tations.
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(ii) Let X be in P. Let M be a Turing machine which always stops after
p(|a|) steps on input a and outputs 0 iff a belongs to X. Then we can define

X by
(Fw)(Ih(w) < p(lal) & Comp pr(w, a) & (w)p(ja) = 0)

or by
(Vw)(Ih(w) < p(lal) & Comp pr(w,a) = (w)p(jal) =0)-

By Lemma 4.14, the inner parts of the formulae are A’{; by the same lemma
the bound lh(w) < p(|a]) implies that w can be bounded by a term in aq,
hence the formulae are equivalent to Z‘{’ and IT {’ formulae respectively, thus
they are All’.

(iii) By Corollary 4.12 every Z’? formula is equivalent to a strict 2? formula
in the language extended by the coding relation; thus it can be written in the
form

(By1 < t1)(Vy2 < t2)...(Qyi < )P,

where @ is sharply bounded in the extended language and where Q is 3 if ¢
is odd and V if 1 is even. Since the coding relation also belongs to P, formula
& defines a predicate in P. The bounds are just of the order needed for the
definition of Zf’ and the relations y; < ¢; are in P as well. Thus, by Theorem
2.11, each set definable by a Z‘g’ formula is in Z‘f .

To prove the converse let X be in Z’f . Thus X is defined by

v Il < pale) - (Quis lvil < pi(l2))P(=, y15- -5 33) 5

where P is in P. By (ii) we can define P by a Al{ formula. Similarly to above
we can replace the bounds |y;| < p;(|z|) by bounds of the form y; < ¢; for

suitable terms ¢;,...,¢;. Thus we obtain a Z‘f formula defining X. O

4.16 Theorem. (1) Let M be a Turing machine. Then S} proves that for every
input a and every b, there exists a unique computation of M which has |b|

steps. Formally:
@) 53 F (3w)(Comp pr(w, a) & Ih(w) = [b]);
(i) 83+ Comp pr(w,a) & Comp pr(w', a)
& h(w),lh(w') = |b] 2w =w'.

(2) Let i > 1, let M be an oracle Turing machine and let ¢(z) be in b,
Then Tj proves that for every input a and every b, there exists a unique
computation of M with oracle ¢(z) which has |b| steps. Formally:

(@) T3+ (3w, 9)(Compa,p(z)(w, 9, 0) & Ih(w) = [b]);
(ii) T+ Comp s o(z)(w,q,a) & Comppp ,(5)(w',q',a)
&Ih(w), Ih(w)=b| s w=w'&q=4¢".



4. Witnessing Functions 333
Proof. Let M and ¢ be given, ¢ in Z?. Let 9 be defined by

¥Y(w, q,a,b) = lh(w) = |b] + 1 & (w)o = firstw(a) & (¢)o = firstq & (Vj < |b])
[(w)j+1 = neztwo((w);, (9);) & (9)j41 = neztgo((w);, (9);))
V(e((9);) & (w)j+1 = neztwi((w);,(9);)
& (9)j+1 = neztqy ((w);,(9);))] -

The meaning of the formula is that w,q is like a computation in which we
follow the advice of the oracle if its answer is negative, but not always do
we follow it if its answer is positive. This formula is A'{ if i =0, and Eg’ if
¢ > 0. Hence we can prove, using respectively LIND Z‘{’ or LINDZS’ on b, that
for given a, b there exists at least one pair w, ¢ such that ¥ (w, g, a, b). Using
I 25’ we now minimize the number of steps where w and ¢ do not follow the

positive advice. Let ¥ be the Z’f’ formula defined by

¥(u,a,b) = (Jw,q < o(a, [b]))(¥(w, ¢,a,0) & (V5 < [b]) v
[(w)j41 = neztwo((w);,(9)7) & (9)j+1 = neatgo((w);,(9);) —
= bit(u, 18] - ) = 1)),
where o is the term from Lemma 4.14 (iii). For a and b there exists at least
one u satisfying ¥(u, a, b), since for w, ¢ satisfying ¥(w, g, a, b) the existence
of u follows by LINDAI{. By I Z'z!’ we have the least u for which ¥(u,a,b)
holds (this is the place where we use the full strength of T'). Let w, g be the

witnesses of ¥(u,a,b) for this u. We shall show that for this w,q also the
implication complementary to the one in ¢ holds for all j < |b|:

¢((9);) = (w)j+1 = neatw1((w);,(9);) & (9)j+1 = newtqs((w)j, (9);)-
Suppose not, then we have ¢((¢);) and
(w)j+1 = neztwo((w);,(9);) & (9)j+1 = neztgo((w);,(9)7) s
for some j < |b|. Hence bit(u, |b| — j) = 1. Take w’ and ¢’ of length |b| such

that
(') = (w)k & (¢ )k = (@) »

for k=0,...,7,
(w')j41 = nestw((w);,(9);) & (¢')j+1 = neztg1(w);,(9);),
and

(w41 = neztwo((w')k, (¢')k) & (¢ )41 = nestgo((w' )k, (¢')k) 5
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for k = j +1,...,]b| — 2. The existence of such w' and ¢’ is again easily
provable by LINDX?. Let u' be determined by

bit(u' , k) =1, fork=1,...,[b|-j—-1,
bit(w', |b] - j) = 0,
bit(u', k) = bit(u,k), fork=|b|—j+1,...,[d].

Then we have ¥(u', a, b), since u’ corresponds to w’,¢’, but u’ < u, which is
a contradiction. Thus we have shown

CompT,qp(z)(wa g,0)& Ih(w) = [b].
To prove uniqueness we apply I;INDAII> to

(V7 < [pl)((w); = (w"); &(a); = (¢);)- =

4.17 Theorem. ['_'I’l’ functions are definable by formulae which are All’ in S%;
for i > 0, OF 1 functions are definable by formulae which are Ai? 41 in T2i.
Furthermore, for each such formula the corresponding theory proves that the
formula defines a total function.

Proof. Let i > 1. Let f be a Df +1 function defined by an oracle machine M

and a X¥ oracle A. By Theorem 4.15, A can be defined by a Ef formula ¢(z).
Let p(z) be a polynomial time bound for M. Then (similarly as in Theorem
4.15) f(a) = b can be defined by

(Fw, g < o(a, p(la])))(Comp pr (z) () 4, @) & (W)p(jaf) = B)»

or by

(Vw, ¢ < o(a, p(|al)))(Comp pt, 4 (z)(w, 4, @) = (W)p(ja)) =),

where o is the term from Lemma 4.14. Using the same lemma to estimate
the complexity of Comp M o(z) and the existence and uniqueness of the com-
putation (Theorem 4.16) we see that it is a A2 1 definition in T§. For i =0
the proof is similar. The fact that the formulae define total functions in the
corresponding theories follows from Theorem 4.16. 0

In order to be able to use the definitions of functions for other construc-
tions in T, we need more properties of formulae defining the functions. In
particular, we shall use the following properties:
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(1) if ¢(x) is a term and ¢ is the definition of the corresponding O} function,
then #(x) = y is equivalent to 9(x,y) in S};

(2) OF functions are provably closed under composition, i.e. if ¢(x,y) de-
fines f(x) and %;(x,y) define g;(x), then for some definition x(x,y) of

f(91(x),-- -, gn(x)) T} (resp. S}, if i = 1) proves
X(xa y) = (321, ey Zn)(’ll)l(x, 21) &.. .. &1/’71(1, zn) &SO(Z], ceey2n,y y)) )

(3) OF functions are closed under definitions by cases determined by Z'f’_l
formulae (it is clear what is the corresponding formula);
(4) OO functions are closed under bounded recursion.

The last condition can be formalized as follows. Let f(x), g(2, x), k(y,x) be
functions in Dp then the function h(y,x) defined by the following recursion
must also belong to OF:

h(0,x) = f(x),
h(y1 x) = min(g(h('-y/z-'a X), x)7 k(yv x)) .

We require that this schema be provable in Tj .(resp. Sj, if i = 1) for the
defining formulae of f,g and h. To prove these conditions one has only
to check that the proofs in the standard model can be carried out in the
fragments of Bounded Arithmetic. We omit the proofs since they are not
difficult and contain no essentially new ideas.

So far we are able to talk about a single function form some class [F.
Later we shall need formalization of Turing machine computations such that
we can talk about Turing machines and oracles in the theory, i.e. we want
a formula defining the computation which has parameters also for Turing
machines and oracles. In the model theoretical language it means that we
want to consider also nonstandard Turing machines and oracles.

A simple solution is to take a universal Turing machine, which is explicitly
defined and thus has a formalization in S 1 by Theorem 4.17. Then the code
of an arbitrary Turing machine will be the Word which must be written on the
input of the universal one in order to simulate it. A natural universal Turing
machine simulates each machine M in such a way that the running time is
at most polynomially longer than the running time of M. More precisely,
the simulation time is bounded by a polynomial in the original running time
and the size of M. In particular, if M runs in polynomial time so does the
simulation of M.

This was about Turing machines. Oracles can be presented in a similar
fashion. Using a universal Turing machine we can represent every predicate
P(z) in P in the form pg(e, z,t¢(z)) for some fixed A% formula pg. Here e is
the code (the index) of P and ¢, is a suitable term determined by the running
time of a Turing machine for P. This is still not quite what we need, since
the dependence of t. on e is not explicit. Thus we shall make an additional
natural assumption that the predicate with code e is decidable in time n®.
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Then our representation of predicates in P will be of the form
""0(61 x,§|=I ) .

Note that for e standard the existence of —2—|z|e is provable in S%. For the

representation of predicates in Ef’ we have only to add quantifiers. Also there
is no need to use two indices, one for the machine and one for the oracle. We
shall present our conclusions as a theorem.

4.18 Theorem. There are formulae pg,vy € All’, Ui € Ef-’, v; € 28(25’) for
¢ > 1, such that

(i) each predicate which is in P, provably in 521,, can be represented in S%

= . 5l =
as pg(e,z,2"" ), for some numeral €;
(i1) for ¢ > 1 and for every p(z) € Z'f-’ , there exists an e such that
S+ () = pi(E,2,2°);
(iii) for every function f which is polynomial time computable, provably in
S%, the relation f(z) = y can be represented in S% by
(e, z, y,§|zle) , for some numeral €;

(iv) for ¢ > 1 and for every function f which is in E}f 41> provably in T2‘, the
relation f(z) = y can be represented in Tzi by

—|pl€
vi(e,z,y, pid ), for some numeral €.

Let us state (i) more precisely. A predicate P in P is determined by a 0-1
polynomial time computable function f. For this function we have a defining
formula ¢(z,y) which is A} and satisfies some basic conditions in S%. Thus

P(z) is defined by ¢(z,0). The precise statement of (i) is that for some
number e

S} ¢(2,0) = po(%,2,2°7).

The statement (iii) should be understood in the same way.
In order to simplify notation we shall define

{e}i(z) =y =4 u;(e,z,y,?lzle) .

We should keep in mind that it is not a bounded formula. However, if we

prove the existence of —2'|z|=, then we can work with it as if it were a Ai-’ +1
formula.
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(d) Witnessing Functions

In this subsection we shall develop the model theory of fragments of S; and
prove some theorems of the type mentioned at the beginning of this section.
We shall use the fact proved above that Turing machine computations are
definable in fragments of Ss. '

First we shall show that a substructure of a model M of Tzi that is closed
under the functions of Df +1 18 Eﬁ’ elementary in M and is a model of Tz".
The same holds for substructures of models of Szl and the functions of (1.
This is applied to prove witnessing Theorems 4.27 and 4.29 for fragments T2i .
Then we prove a witnessing Theorem 4.32 for fragments S;'H. The theorem
has a stronger conclusion than in the original form used by Buss; it states
that (Vz)p(z, f(z)) is provable in the weaker theory T4, if i > 0. This allows
us to prove immediately the well-known conservation result for such pairs of
theories. As the model-theoretical proof of Theorem 4.27 is rather difficult,
we first prove an auxiliary Theorem 4.31 about extensions of models of S{H.

4.19 Definition. Let M be a structure for the language of Sp, let A C M,
i > 0. Assume that each {e};(z) defines a function in M. The O0F closure of
A is the set

{{e}i(a) |la€ A&ee N}.

We say that A s Df closed if A is its own closure.

We want to use the fact that polynomsial time predicates are absolute in
every D{ closed substructure of M, a model of S%. As we do not have symbols
for all polynomial time predicates in our language, we have to formalize
this statement. Before the next definition let us note that every formula
can be transformed to an equivalent formula which has only &, V and -
as connectives, and all negations occur only at atomic formulae. What is
important is that this transformation preserves the quantifier complexity.
We shall say that such a formula is in negation normal form.

4.20 Definition. Let i > 0, let T be S} if i = 0 and T} otherwise. For a formula

 in negation normal form and a model M E T, we define inductively that ¢

has Df_,_l Skolem functions in M:

(1) every open formula has of 41 Skolem functions in M;

(2) if ¢ and ¢ have OF +1 Skolem functions in M, then Vzyp, ¢ & and oV
have Elf 41 Skolem functions in M; .

(3) if ¢(x,y) has OF, ; Skolem functions in M, then (Jy)p(x,y) has OF,
Skolem functions in M, if for some f in Df +1

M E (V) ((3y)e(x,y) = o(x, f(x))) .

Here f(x) is represented by {€};((z1,(z2,...,2Zn)...)), where e € N and
(zl,...,zn) =X.
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4.21 Lemma. Let T be as above, let M F T, let K C M be EI{.’ 41 closed, and
let ¢(x) have Df_H Skolem functions in M. Then for a € K,

MEp(a)= K F ¢(a).

Proof. By induction on the complexity of ¢. O

4.22 Corollary. If ¢(x) and ~(x) have O0f, ; Skolem functionsin M F T, T
as above, then ¢(x) is absolute for 007 i11 closed substructures of M, i.e. if A
is a 007, closed substructure of M and a is a string of elements of A then

MEp(a) iff AF(a).

The natural definitions of polynomial time computable predicates have D’l’
Skolem functions in M. In particular we shall need that the formula z = (y).
and its negation have 0% Skolem functions in M. Now let P(z) be an a.rbltra.ry
polynomial time computable predicate. Then it can be defined by

(d.1) (@w)(w| < p(lz]) & Comp(w, ) & ()p(a)) = 1)-

It is clear that w and the existentially quantified numbers in Comp can be
computed in polynomial time, thus (d.1) has D’l’ Skolem functions in M.
The same is true for the negation of (d.1), hence (d.1) is absolute. Thus
in our formalization, polynomial time predicates are absolute in the situa-
tion considered above. The same argument works, of course, for polynomial
time computable functions. This enables us to work with polynomial time
computable predicates as if they were present in the language.

4.23 Lemma. Let M be a model of .5'21, let K be a D’l’ closed substructure.
Then

Kk LIND-strict 5% = K & S .

Proof. First we shall show using LIND for strict)_':‘? formulae that in K every
Ef formula is equivalent to a strictﬁ'? one. Thus we will have LINDZ? in K.
This is proved by induction on the number of quantifiers. Several quantifiers of
the same kind are replaced by a single one using the coding relation. A sharply
bounded universal quantifier is excha.nged with the next existential bounded
quantifier using an instance of BB E for which LIND- stnthf’ is sufficient
(see the proof of Theorem 4.10). We must check that the properties of the
coding function that we are using are provable already in LIND-strith’ﬁ-’. We
need the following properties:
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(1) (Vzo...z;)(Fy)(¥)o = zo & ... &(y); = z;), for every j;
@) @s)ih(s) = 0);
3) (Vz,8)(3t)(IR(t) = Ih(s) + 1 & Oine) ==

& (V2 <1h(s))((1)z = (2)2));

((t)in(s) is the last element of the sequence t). Again it is clear that these

formulae have D’l’ Skolem functions in M. Since they are true in M they are
true also in K by Lemma 4.22.
Similarly we shall show that LIND Zf’ implies PINDZ',I? in K. We repeat
the proof of
53+ LINDZ® + PINDS?,

(Proposition 4.5 (1)) where we needed from S} only the following properties
of the function msp:

msp(a,0) =0;
S() < la| — Lmsp(a, 5(b))/2. = msp(a, b);

msp(a, |a) = a.

These formulae are true in M and have D‘; Skolem functions, hence they are
true in K too. O

4.24 Lemma. Let : > 0, let T be S% if 1 =0 and T2i otherwise. Then each
- 2%(2?) formula has 0%, Skolem functions in each M F T.

Proof. We shall use induction on the depth of the formula. For open formulae
the lemma is true by definition. Consider a Z‘f formula of the form

(Fz < #(a))p(a, 2),

where we assume that ¢(a, z) has D€+1 Skolem functions. We apply binary
search using Z'f’ oracle

(Fz)(p <z < g&y(a,2))
to find an z satisfying z < t(a) & ¢(z,a), for a given a. At the beginning we
set p:= 0 and ¢ := t(a). First we ask whether (3z < t(a))p(a, z). If it is not

true, then the output is, say, 0. Otherwise we continue as follows. In each
subsequent step we set either

pi=p, gq:=11/2(p+4g)s, if (Fz)(p<z < 1/2p+q)2&e(a z))
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or
:=.1/2(p+q)s, ¢q:=gq, otherwise.

By Theorem 4.16 the computation of length |t(a)| always exists. In order
to prove its correctness we need only to show that in the j-th step of the
computation the following two conditions are satisfied:

q—p<t@)/2;
(3z)(p <z < q&p(a,x)).

This is proved by induction on j. Once the computation is given, the condition
that we are proving is 2? , hence we need only LINDZ'? . If the formula has
the form

(3z < [H(a)])¢(a, ),

where ¢ is Hf’ , we proceed similarly, but we use thorough search instead of
binary search. The case of the universal bounded quantifier and connectives
&,V is trivial. a

4.25 Corollary. Let T be as above, let M F T, and let K be a Df 41 closed
substructure of M. Then K is ZO(Z'? ) elementary.

Proof. By Lemma 4.21 and Lemma 4.24. 0O

Since LINDX? is a 23(2‘:’) formula, we get that X is a model of Si. But

we can prove more.

4.26 Theorem. Let ¢ > 0, let T be S% if 1 =0 and T2i otherwise. Let K be a
Df +1 closed substructure of some model M of T. Then K is a model of T2i.

Proof.Leti > 0,let M E T, let K C M be Df_H closed. We shall show that for

every a(z,b) in ?, a formula equivalent to I(a(z, b)) (induction for a(z, b))
has I:If +1 Skolem functions, though this is not (known to be equivalent to) a

23(2:’) formula. Then, by Lemma 4.22, I(a(z,b)) must hold in K. We shall
consider the following equivalent formula

-a(0,b) V (3z < a)(a(z,b) & -a(z +1,b)) V a(a,b).

Again we shall use binary search. We start with p := 0 and ¢ := a, and
repeat:

p:=u(p+49)/21s, q:=gq, ifa((p+q)/24,b),
p:=p, q:=.(p+4q)/21, otherwise.
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If o(0,b) and -a(a,b), then this algorithm finds in polynomially many
steps (m the length of numbers a,b) some ¢ such that ¢ < a, a(c,b), and
—a(c+1,b). It uses Z? oracle a(z). The existence of the computation follows
from Theorem 4.17. We must show the correctness of the algorithm, which
means that the value obtained by the computation witnesses the existential
quantifier in the induction instance provably in Té . We want to show that the
following conditions are satisfied in the j-th step of computation:

(1) g—p< 27,
2) a(p,b);
(3) -a(g,b).

We cannot prove by induction that (2) & (3) holds in each step, since this
formula has too large complexity. So we prove (1) and (2) using LIND % and
then we prove separately (3) using LINDH? . O

Note that we are not able to prove the theorem with S% instead of Tzi,
since we are not able to formalize Df +1 functions in S5. As a corollary we

get a version of the theorem of Buss for fragments T2". It will be a corollary
of a stronger result which we shall prove later, but we have to prove it now,
since we shall need it for the proof of the stronger one. Moreover the proof
is much easier then the proof of Buss’s theorem.

4.27 Theorem. Let : > 0, let p(z,y) be II}’ or atrictﬁ'i? 1 and suppose

T3 + (Vz)(Jy)e(z,y).

Then for some f in Df+1

N E (Vz)p(z, f(2)) -

Moreover, if T is S} if i = 0 and T} otherwise, then T F (Vz)p(z, f(z)), i.e.
more precisely, for some e € N,

T+ (Vz)(3y)({e}i+1(2) = y & p(z,v)) .

Proof. Since for every e, T proves that {€};11(z) = y defines a function,
we can use the functional notation. First suppose that ¢ is II By way of
contradiction, suppose that T' does not prove (Vz)p(z, {€}i+1 {z}) for any e.
Then also, for any k, T' does not prove

(2, {0}i41(2) V o(z, {Thira(2)) V- - V (2, {F}ita(2)),
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since otherwise, using ¢(z,y) as an oracle, we could combine these Turing

machines into one producing y for a given z. By compactness, there is a
model M for

T + =¢(c, {0}i+1(c) + (e, {T}ira(e)) + -+,
where c is a new constant. Let K be the closure of {c} under O 41 functions
inM,ie

K ={a€M|(@ee N)ME {&ii(d) = a)}.
Then, for every a € K, M F =¢(c,a). By Corollary 4.25, K is 2? elementary

in M, hence K F (Vy)-y(c,y). By Theorem 4.26, K F Trj, thus Té does not

prove (Vz)(Jy)e(z,y)- . )
Now suppose that ¢(z,y) is strictEf? +1- Then for some IT f formula
¥(z, 20, 21) and some term t, p(z,y) is (321 < t)Y(z,y,21). Hence

(V2)(F)e(2,y) = (V2)(32)¢(z, (2)p (D) & (2,7 < 1)«

By the first part of the proof z can be witnessed by some {€};+1(z), hence y
can be witnessed by ({€}i+1(z))g, which is a 00, ; function. O

4.28 Corollary. Let i > 1, let &(z) be atrictﬁ? 41 in Ti. Then Tj proves
induction for &(z).

Proof. The assumption of the theorem means that &(z) is atrictﬁ? 41 and for
some ¥(x) 3trict)3'£-’ 10 Ti + &(z) = ~¥(z). We can represent & and ¥ by

&(z) = (Fy)e(z,y),
?(z) = 3y)y(z,y),

where ¢, are in IT f . Thus we have

T3 F (Vz)(3y)(e(z, y) V ¥(z,y)) .

By Theorem 4.27 we get some e such that

T3 F ¢z, {€}ir1(2)) V (2, {Eita(2))
hence )
T + &(z) = ¢(z, {e}ir1(2)) -
We have not gained any reduction of complexity, but this was not our aim,
our aim is to witness the induction formula for ¢(z) using a Of 41 function.

Suppose we have $(0) and —~&(a), and we want to construct some z < a
such that &(z) & ~&(z + 1). We shall use binary search in a similar way as in
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Theorem 4.26. We use ¢(z,y) as a II? oracle and {€};,1(z) as a subroutine

in order to ask questions of the form ¢(z, {€}i+1(x)). The computation goes
as follows:

step 0: p:=0, ¢:=a, u:={e}i}1(0), v:={e}i+1(a);
step j#1: 1 i= {Eisa((p + 0)/22);
if o(L(p+q)/22,7) then p:=(p+q)/21, u:=r
else g:=1(p+q)/24, v:=r.

The correctness is proved by LINDII i’ showing that in the j-th step we have
1) ¢-p<27a;
) e(pyu) & (g, v). o

A3dn ,b formula consists of a prefix of existential quantifiers followed by a
H,!’ formula.

4.29 Theorem. Let i > 0, let ¢(z,y,z) be a 3]]!’ formula and suppose

T3 + (Vz)(Jy)(Vz)e(z, ¥, 2) -

Then for some fy,..., fn in Elf_H

(d'l) NFE (VI, 205y zﬂ)(‘P(z’fO(x)’ zo) v ‘P(zv fl(a", z(’)’ Zl) Ve
eV ‘P(z, fn(za ] PR zn—-l), zn)) .

Moreover, this is provable in S, if i = 0, and in Té, ifi>0.

Proof. Let T be S}, if i = 0, and T}, if i > 0, let ¢(,y, z) be a AT formula.
Suppose T does not prove the formula in (d.1) for any choice of fy,..., fn.
Take some enumeration of functions in I'.'lﬂJ 41 such that

(1) the n-th function f, depends on < n arguments;

(2) each f € O0F, ; occurs in the enumeration infinitely many times.

(For instance, {e}i+1(((z1,22),...,Z¢)), where (—,—) is the pairing func-
tion, has this property, assuming natural coding of Turing machines.) By
compactness,

T+ _‘SO(C, fo(c),do) + ﬂ‘P(c’ fl(c’ dO)a dl) + -

where ¢, dg, d1, . . . are new constants, is a consistent theory. Let M be a model
of this theory and let

K = {fo(c), fi(c,do), fo(c,do,dr),...}.
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Since all projections occur in the enumeration and each function occurs in
the enumeration infinitely many times, we have
3) ¢,do,d1,da,... € K,
(4) KisOF 41 Closed.
By (3), we have
Va€ K 3d € K M F ~¢(c,a,d).

Since — is VZ? , using Corollary 4.25 we get
K F (Vy)(32)~¢(c,y,2) - a

Now we would like to strengthen Theorem 4.27 by taking the weaker
assumption S%'H F (Vz)(3y)e(z,y) instead of Ty F (Vz)(3y)p(z,y). The
proof above does not work for S;'H , since we are not able to show that a Elf +1

closed substructure is a model of S%'H. It is worthwhile to realize the reason,
then we shall better understand the forthcoming proofs. Let (Jy < t)y(z,y)
bea Z‘f 41 formula, where ¢ is II f Ina Elf 1 closed substructure the quantifier
Jy can be witnessed by different elements of the form {€};4+1(a). Since e
runs over standard numbers, we can obtain a cut (for instance contained
in some segment [0, b]) for which (Jy < t)¥(z,y) holds, hence the induction
fails. Therefore we shall take closures under some functions with nonstandard
indices.

The basic idea of the proof is the same as above: if (3y)¢(c,y) is not
witnessed by a Df 41 function, we construct a submodel in which it does not
hold. Thus we must be careful when adding {e};11(c) for e nonstandard.
We shall use overspill. If (3y)¢(c,y) is not witnessed by any {e}i+1(c), for e
standard, then this must be also true for all e up to some small nonstandard
r1. Thus we ensure the failure of (3y)¢(c, y) by taking the closure only under
functions with such small indices. However it is not so easy to ensure the
induction.

Now we sketch the idea of the model-theoretic proof of this strengthening.
It is essentially the proof of Wilkie with some changes. Let ¢ > 0, let T be
S% if ¢ = 0 and Ty otherwise. Suppose that for every e € N, T does not
prove ¢(z,{€};11(z)). Take a model M F T with some ¢ € M, such that
M F —p(c,{€}i+1(c)). By overspill this is true also for all e < r1. We shall
construct substructures-consisting of some elements of the form {€};+1(c), for
e < r1, thus we shall have =(Vz)(Jy)¢(z, y) in the substructures. So we have
only to ensure LINDZ? '+1- We shall do it in w steps (we use only countable
models) adding LIND for one formula and one string of parameters at a time.
Let us take the formula ¥(z) = (Jy < t)¢(z,y) considered above, and let a
be already in our substructure K. We want to extend K so that it satisfies
the following instance of LIND Z‘f 1

(d-2) ~Z(0) v (35 < la)(P(5) &~¥(5 + 1)) V ¥(lal).
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We take a suitable rg < rq, and try to find a witness g9 for Jy in ¥(0) of
the form {e}i+1(c), e < ra. If we succeed, we try to find a witness g; for
¥(1) of the form {e};+1((c,(0,90))), € < ry, and so on. The bound rj is
chosen so small that we never construct {e};+1(c) with e > r1. Suppose, for
example, that for some j < |a|, we have found g;, but there is no witness

gj+1 of the form {e};y1((c,(4,95))) for ¥(j 4 I). Then we take the OF,

closure of (¢, (j,9;)) and K in M, and we have (d.2). We repeat this extension
process for other formulae and other parameters. In order to preserve (d.2)
we use a similar argument as we used for —(Vz)(3y)¢(z,y). In our particular
case, ¥(j) is preserved by Ef’ elementary extensions, since it is 31T f , while
-%(j + 1) will be preserved because we shall add only elements of the form
{e}i+1(c), for e < rp. The following key lemma formalizes one step of the
above construction.

4.30 Lemma. Let i > 0, let T be S} if i = 0 and T} otherwise. Let M be a
model of T, K substructure of M, a,b € K, let #(z,y) be strithi-’ +1 and let
¥(y) be strictll ? +1- Suppose that

(1) KisaOF 41 Closure of one element of M;

(2) K is not cofinal in M;

(3) KFEw(b).

Then there exists a substructure K* such that K C K* C M, (1)-(3) holds
for K* and

(4) K*F-2(0,b) v (3j < al)(8(j,b) &~2(j + I, b)) V &(lal, b).

Proof. Let the assumptions be satisfied. Let K be generated by an element
c. Since K is not cofinal in M, there is some d € M such that

z € K= |z| <|d|.

Since every z € K is computed in polynomial time from ¢, and by overspill,
we have

(d.3) |Clro S ld! ,
for some rg nonstandard. Recall that
{e}i+1(2) = y = vira(e, 3,9, 221),

where v;4 is Aﬂ-’+1. By (d.3), we can write {e};+1(z) =y asa Af-’_,_l formula
with an additional parameter d, since

ME viii(e z,y, 2""6) =(Vz <d)(z= olzl* viti(e, z,9,2))
= (32 < d)(z = 21" & viya(e, 2,9, 2)) -
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Let
é(z,b) = (3z < t(z))p(z, 2),

¥(b) = (V2 < 8)y(z2),

where p(z, 2) is IT f and 9¥(z) is Z‘f’; we shall omit the parameters b from now
on. Consider the following formula

(d4) (Ve < |rl)({e}i+1(c) < s = ({e}i+1(2)))-

Since K E ¥, K is )'Jf elementary in M, and every element of K is of the form
{e}i+1(c), for e standard, this formula is true in M, for every r standard. Also
this formula is equivalent to a A? +1 formula in M. Since S’% I A’{ , (Theorem
4.7)and for: > 1, Tzi HI Ai-’ 1 (Corollary 4.28), we can use overspill to deduce
that (d.4) holds in M for some r nonstandard. Let

(d.5) r1 = min(|ro, [Ir[l, |e]) -

Now we construct a Turing machine with an oracle which searches for
the witness of the existential quantifier in condition (4) of the lemma. The
machine works on input ¢ as follows:

1. j:i=-=1; ¢g:=0
2: find the first e < r1 such that

{C},‘.}.l((C, (]’ g))) < t(] + T) &‘P(J + T’ {c}i+1((c’ (]a g)))) )

3:  if such an e does not ezist or j = |a| — 1, then print (j,9);
4: otherwise j:=j+1; g¢:= {e}i+1((c,(5,9))); go to 2 where we define
(~1,0) = 0.

Let eg be the code of this Turing machine. We shall estimate eg. Recall that
it is also the exponent in the time bound of this Turing machine and this
makes this estimate nontrivial. To run some {e};4+1 with e < r; on input ¢
we need at most |c|® < |¢|™ steps. In 2: we do it r1 times. The time needed
to check the Hf’ condition of 2: is a standard polynomial in |c|. (Note that
we have to evaluate also the implicit parameters b, for which we need time a
standard polynomial in |c|.) Finally the cycle given by 4: is repeated |a| + 1
times. Thus the total running time is bounded by

le[™ *ry % p(le]) * (la] + 1),

where p(z) is some standard polynomial. We have r; < |c| and |a| + 1 is also
bounded by some standard polynomial in |c|, since it is an element of K.
Thus we can bound the above expression by |c[2". Since the program of the
Turing machine has standard length, we can bound its code by

e0 < 2rp.
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Suppose the machine prints (j, ¢) on its output. We define K* as follows.
If K F ~¢(0) V &(a), then K = K*, otherwise K* is the O0f 41 closure of

¢ =(¢,(5,9)) = (¢, {eo}i+1(¢)) -

Now we have to check conditions (2)-(4). We shall assume that K F
&(0) & —9(a), hence M E &(0), as K is T} elementary in M.
We have
le*] < Jef?™,

hence the length of each element z of K* is bounded by
|z] < |e|**®, ke N.
Since r, < |rg|, the last expression is bounded by
le]™ < |d|,

thus K* cannot be cofinal in M.
To prove (3), suppose that it fails for K*, which means that for some
e €ENand h = {61},'+1(c*),

K*Eh<s&-y(h).

By Corollary 4.25, K* is Z’f elementary in M, thus this formula holds also in
M. Now c* has been constructed from ¢ using a machine with code eg < 2r;.
Since e; is standard, the Turing machine which runs first ep and then e; hasa
code eg polynomial in r1, hence, by (d.5), e2 < |r|. But this is in contradiction
with (d.4). :

It remains to prove condition (4) for K*. We shall show that

K*Fj < la] &3() & ~8( +T),

where (j,g) is the output of the machine eg. The first inequality is clear,
since the machine stops before reaching |a|. Also &(j) is easy, because, by the
program lines 2: and 4:,

MFEg<t(§)&e(s,g),

hence also in K * by elementariness. By way of contradiction suppose that
K F &(j +1). This means (again using elementariness) that, for some e € N,

ME {e}it1(c") £ t(G + D& (5 +T,{e}is1(c")).

In particular e < r;. Recall that ¢* = (c,(J,¢)), thus the machine should not
stop at j, which is a contradiction. a
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4.31 Theorem. Let 7 > 0, let T be S% if : =0 and T2i otherwise. Let M be
a countable model of T, K a substructure of M, b € K, and let ¥(y) be
strictll f +1- Suppose that

(1) K isa O | closure of one element of M;

(2) K is not cofinal in M;

(3) K Ew(b).

Then there exists a substructure K* such that K C K* C'M and
(4) K*F¥(b);

(5) K*E Sytl.

Proof. We shall construct a countable chain of substructures
K=KoCKi1CKyC---CM,
and strictIl f 1 formulae
¥ ="y, ,P,....

Take some enumeration of atn'ctf)? ; formulae with parameters from M. In
the j-th step, j > 0, we ensure LIND in K for the first formula &(a,b) from
this enumeration for which LIND fails in K;_;, and whose parameters b are
in Kj_j. Suppose we consider

-®(0,b) V (3z < |a|)(®(z,b) & -¥(z + 1,b)) V &(|al,b)
in the j-th step. We apply Lemma 4.30 to K, ¢ and ¥;. Thus we obtain
Kj 1. Then we define ¥;; by
Tjy1 =P &-S(0), if Kjy1F-$(0);
Tiy1 = O &~0(k +T),
if Kjy1 Fk<|a|&®(k)&~P(k+1), forsomek € Kji1;
Y;y1 =V;, otherwise.

Here ¥, is not written in the strictIl f +1 form; however to show that
they are equivalent to such formulae, we need only properties of the coding
relation that are expressible by equalities and hence preserved from M to I:Ifl’
closed substructures. Since ¥;;; will be true in all Ky, for m > j + 1, also
LIND(%(a,b)) will hold in these models. Consider for instance the second
case, where K1 F k < |a| & &(k) & ~&(k + 1). Then &(k) will be preserved
by extensions, since all the structures are Dp +1 closed, hence Eb elementary,
while =@(k + 1) will be preserved by the deﬁmtlon of the extensions. Let K*

be the union of this Z’ elementary chain. Then all formulae ¥; are true in
K*, hence it satisfies condition (4) and

K* E LIND- strzth',_H
By Lemma 4.23 this implies that K* is a model of S:i,"'l. a
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Now we are ready to prove Buss’s witnessing theorem. The original theo-
rem was proved with T' = S;"'l; the next theorem is a strengthening (since
T4 is a subtheory of S;'H) which is also due to Buss.

4.32 Theorem. Let i > 0, let (A(z,y) be 22, .. Suppose that
i+1

Syt E (Vo) 3Fy)e(a,y) -
Then for some f in O0F, ;,

T+ (Vz)p(2, f(2)),

where T is S% if 2 =0 and ch otherwise.

Proof. First observe that we can bound y by some term t:
S5t E (V2)(Fy < te))e(e,y) -

This follows from Theorem 1.4. By Corollary 4.12 we can assume that ¢ is
strith‘? +1- Suppose that the conclusion is false. By compactness, there exists
a countable model M of T such that

M E —¢(c,{e}i+1(c))

for every e standard and moreover, 2"’"‘, k € N, is not cofinal in M. Let K
be the Df +1 closure of the element ¢ in M. Then K is not cofinal in M and

K F (Vy)~p(c,y),

since, by Corollary 4.25, it is Z’f elementary in M. Let ¥ be (Vy < t)-¢(c,y),
then it is equivalent to a strictIl f +1 formula already in predicate logic. Thus
we can apply Theorem 4.31 to get some

K* F S3H 4+ (W < t)e(c,),
which is a contradiction. O
The most interesting case is with : = 0; we state it explicitly.
4.33 Corollary. Let ¢(z,y) be a 2{’ formula. Suppose that

53 F (V2)(3)p(z, ).

Then for some f polynomial time computable function

53 F (Ve)o(z, f(2)) - o
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4.34 Corollary. For i > 1, .S’;'H is a 2‘? .1 conservative extension of T2i, i.e.
for ¢(z) in ﬁ'?+1,

1+1 - (V.’E)So(m) = T2 + (V-T)‘P(m)

Proof. Add a dummy existential quantifier to ¢(z) and apply Theorem 4.32.
O

Recall that A? sets are sets computable in polynomial time usmg oracles
from Z‘p ”_1- Let us note that it is an open problem whether X +1ﬂII +1= Ap

Thus Af definable sets need not be in Af

4.35 Corollary. Let i > 1, let p(z) be a Af-’ formula with respect to S;. Then
¢(z) defines a AF subset of N.

Proof. For () we can find some formulae a(z,y), B(z,y) in IAI?__1 and terms
t,s such that

Sk o(z) = (Fy < ta(z,y) = -y < 5)B(z,y).

Hence )
S5+ (Jy < t)a(z,y) V (Jy < s)B(z,y).

The last formula can be easily transformed into a Zb formula; thus we can
apply Theorem 4.32 to obtain some f in Dp such that

N E (Vz)(f(z) S t&a(z, f(2))) V (f(z) < s& B(z, f(2))))-
Hence we can decide () by computing f(z) and using a II”_; oracle. O

Again the most interesting particular case of the last corollary is the one
with ¢ = 0; it can be stated as follows

S3-XeNPNcoNP = S}+H X eP.

(e) On the Finite Axiomatizability of Bounded Arithmetic

In this subsection we shall consider the question of the finite axlomatxzabxhty
of Bounded Arithmetic. First we shall show that the fragments 5'2 and T‘
are finitely axiomatizable for ¢ > 1. Thus the finite axiomatizability of Sg
is equivalent to the statement that the hierarchy of these theories is infinite.
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Then we shall reduce the finite axiomatizability of Sy to the non-collapsedness
of Polynomial Hierarchy.

4.36 Theorem. For 7 > 1, each of S% and Té is finitely axiomatizable.

Proof-sketch. The basic idea of the proof is the same as for fragments IX,,
see Theorem 1.2.52. However, since this theorem is important, we give at least
a sketch of the proof.

In Theorem 4.18 we showed that there are Z‘f’ formulae u; which are in a
sense universal; more precisely, for every ¢(z) in Z'f’ there exists an e such
that _

Sk o(z) = (e, 2, 2F)

Furthermore, ol=l® provably exists in S%; this follows from the bound
olel"*t < olel 4 o

For induction and PIND we need formulae which have an induction variable
and parameters. One parameter is sufficient since the pairing function and
the decoding functions are Al{ definable. For the same reason, we can extend
the result above to formulae with two free variables:

S% F ‘P(z’ y) = /“i(g'/ (:I:, y)a ZIEF) .

Another easy modification of the result above reads as follows:
Stz 2 2EIF - (p(2,9) = Wi, (2,9), 2)).

Now we only need to show that there exists a finite subtheory T of .S'% such
that for all o(z,y) in Z'? the above equivalence is provable in T. Once we
have such a T', we can finitely axiomatize S5 by T plus BASIC plus

(Vea Y, z)PIND(z 2 2|(:c,y)|° i m(e,(:c,y),z)) )

where z is the induction variable (thus bounded in PIND), and e,y,z are
parameters of induction. Similarly we can axiomatize Tzi.

To find such a T we have to analyze formulae y; and v; of Theorem 4.18
more closely. The concept that we want to use is just Tarski’s conditions for
the definition of the satisfaction of Z‘? formulae. Tarski’s conditions describe
the satisfaction of formulae of a given class via relating the truth of a formula
with the truth of its components. For each closure condition of the class
of formulae there is one Tarski condition. The classes Z’f’ were defined in
Definition 4.2; furthermore we have to use the inductive conditions for the
value of terms.
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Now we shall describe the conditions more explicitly.
(1) For each function symbol of Ly we shall have an integer constant, eg,
€+, €x, etc., such that

3+ w(es,z,y,2%1%) = y = 8(2);
S3+ vo(3+,($1,wz),y,2|(”"”’)|?+) =y ==z +22;

etc.

(2) For relation symbols = and < we construct binary functions e= and
e< such that

S% F “0(6-':(31;62),33, 2'2"’(‘\v‘2))

= (ayla y2)(?’0(e1,w, Y1, 2|z|°1 ) & V0(62, z,Y2, 2|z'82 ) & Y1 = y2) )

and similarly for <. The functions are All’.

(3) For each of the conditions of the definition of the class Z,‘f we have a
function and a condition. Consider for instance the condition

aeXt= (Vz<|thae L.

Then we have a binary All’ definable function e}y such that

Sk Hi(epy|(e1, e2), 7, 2""6"'.)
= (Vy, 2)(vo(e1, 2,4, 21717 ) & 2 < Jy| — pieg, (2, 2), 21E?Y).

The function computed by the machine with the code e}y does the following.
If e; is the code of a machine for a term ¢ and ey is the code of a machine
for a formula ¢(z), then e)y|(e1,e2) is the code of a machine which decides
the formula (Vz < |t|)¢(z, 2).

Let T consist of the above conditions plus finitely many sentences needed
to formalize functions e, e, LIS (existence, uniqueness, Al{ definition).
Then we can easily show, using induction on the depth of ¢ € Z‘E’ , that there
exists an e such that _

T+ o(z) = pi(e,z,2°1%) .

It remains to prove the above Tarski conditions in .S'%. A formal proof
would, perhaps, require a whole section. But in fact it is not hard to see
that they must be provable. Let us look at the last considered condition,
which concerns the sharply bounded universal quantifier. Formula p; has
been defined as being true if the Turing machine with code e accepts input z.
The condition describes what the machine with code e of the form evi(e1, e2)
will do: first it will simulate machine e; on z and obtain y (the value of the
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term), then it will simulate machine es on inputs (z,z) with z < |y|. Thus
we need only to choose the codes of the machines in a suitable way. a

4.37 Corollary. S is finitely axiomatizable if and only if Sp = .S'{, for some 3.

We are not able to decide whether Ss is finitely axiomatizable. We shall
only show that it is not, assuming a plausible conjecture that the Polynomial
Hierarchy does not collapse on its finite level. This does not seem to be
a surprising result because of the relation between the classes of formulae
Z’? and complexity classes Z‘f . But the relation is not so straightforward.
Induction and definability are different things. We shall show that induction
is related to optimization and we shall use this fact in our proof.

4.38 Theorem. Let i > 0 and suppose Z¥ o #F 1T, 4 +9- Then T2" # S;'H.

4.39 Corollary. If the Polynomial Hierarchy does not collapse then
() Si#Sifori>1and Tj #T5t! fori > 0.

(ii) S2 and T% are not finitely axiomatizable.

(iii) TAg + 21 is not finitely axiomatizable.

(iv) IAp is not finitely axiomatizable.

Proof. (i) and (ii) follow using the inclusions T§ C S3 C T} C S2....

(iii) IAg + £2 is contained in S in such a way that the functions of S
are definable in IAg + 2.

(iv) Just recall that £2; is a single axiom. a

Before proving Theorem 4.38 formally we shall sketch the main steps of
this proof. We shall consider only the case i = 0.

Let C(z,y) be a polynomial time predicate. Consider the optimization
problem of finding maximal y such that y < z and C(z,y). In order to
simplify notation we shall assume that the bound y < z is implicit in C(z,y)
and that C(z,0) holds for all z. We shall call y a feasible solution to z if
C(z,y). Let ¢ be defined by

(e:1) ¢(2,y,2) = C(z,y) & (ly| < |z| = =C(z,2))-

Since C is polynomial time computable, ¢ is Z‘f, Now the meaning of
(V2)p(z,y,2) is that y is the feasible solution to z of mazimal size. In S}
the schema LINDZ'% proves that for every z there exists a maximal feasible
solution y. If Tg = .5'21, then this is true also in Tg , l.e.

T3 F (V2)(3y)(V2)e(2,y, 2).

Now we can apply Theorem 4.29. We obtain some functions fg, f1,...,fn
computable in polynomial time such that
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(62) NE (va 20y .- ,Zn)((P((L’, fO(x),zO) \% ‘P(zafl(za 20)521) Ve
eV (P((L', fn(za 205y zn-—l)a zn)) .

The rest of the proof is only complexity theory. We want to show that such
functions cannot exist for all polynomial time predicates C. If n were always
0 (as in Buss’s theorem) then our goal would be simple. In such a case, for
example, we could construct a maximal clique in a graph using a polynomial
time computable function fp. This is impossible unless P = NP. In fact we
can take any NP problem, not only optimization problems. Let C(z,y) be
defined, say, by

y = 0 or y is a Hamiltonian circuit in graph z.

Then fo(z) would be 0, if z is not Hamiltonian and fop(z) would be a
Hamiltonian circuit in = otherwise.

But in general n need not be 0. So we modify our problem as follows:
z will be a string of graphs and y will be a string of 0’s and Hamiltonian
circuits in corresponding graphs. Now we assume that for this particular C
we obtain (e.2) with n = 1, (this is sufficiently instructive). Consider an z, a
two element string z = (G, G2), where both graphs are Hamiltonian. Then
there are two possibilities:

(1) fo(z) is not a feasible solution or fo(z) = (y1,y2) where y; = y2 = 0;

(2) fo(z) = (y1,y2) and y; is a Hamiltonian cycle in G or y is a Hamilton
cycle in Go;

In case (2) fo has produced nontrivial information. In case (1) it is not so,

but fi must produce information: if we take z9 = (3',0), where y' is some

Hamiltonian cycle in G1, then we have —¢(z, fo(z), 20), since either fo(z) is

not a feasible solution or zq is a better one. Hence we get

(V21)¢(z, f1(z, 20),21)

i.e. fi(z,z0) is an optimal solution. This means that fi(z,z0) = (y1,y2)
where both y; and y; are Hamilton cycles. Let us draw an arrow G; — G2
in case.(1) and an arrow G2 — G in case (2). This indicates that by having
a Hamiltonian circuit for the tail we can construct a Hamiltonian circuit for
the head. Consider all Hamiltonian graphs of size m. The above argument
shows that there is an arrow at least in one direction between any pair of
them. An easy counting argument shows that there exists a set of polynomial
size of such graphs which covers the rest. For each of these graphs, we choose
a Hamiltonian circuit in it. Let H be the set consisting of these pairs. H
has also polynomial size. Using H we can decide in polynomial time whether
a graph G is Hamiltonian: try fo and f; on all pairs (G,H) and (H,G),
where H runs through H. Computations which use additional polynomial size
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information are called computations with polynomial advice. There is a well-
known argument (see [Karp-Lipton 80]) showing that if every NP problem
can be computed using polynomial time computation with polynomial advice,
then X% = Hg .

Now we prove Theorem 4.38 in detail. We shall divide the proof into several
lemmas. Let 7 > 0 be given. A formula C(z, y) will be called a IT f’ optimization
problem if C(z,y) is a IT? formula such that C(z,0) and C(z,y) = y < z is
provable in predicate logic. We shall say that y is a length optimal solution
to z if the following formula holds:

- (V2)(C(z,y) &(ly] < |2] = ~C(=, 2))) -

4.40 Proposition. For every IT. :’ optimization problem C, S;'H proves that C
has a length optimal solution to every z.

Proof. Let ¢(z,y) be defined by
Y(e,u) = (y < 2)(C(z, ) &yl 2 v).
By LIND X!, we have

—%(z,0) V (Fu < [e])($(z, u) & ~¢(z, S(u))) V $(=, |z]) .

Since 1(z, 0) is always true, it just expresses the existence of a length optimal
solution. o

It is an easy exercise to prove that, in fact, the existence of length optimal
solutions to II‘!’ optimization problems is equivalent to PINDZ'? 41 OVer a
sufficiently strong base theory, say Sj.

We are going to use Theorem 4.29. It is convenient to refer to the conclusion
of the theorem, see formula (e.2) above, as a kind of interactive way of
computing a witness to Jy in (Vz)(Jy)(Vz)e(z,y,2). Let z be given and
suppose we want to construct y. Assume (e.2) holds true. First consider
fo(z). I (V2)¢(z, fo(z), 2), then take y = fo(z), otherwise there is some 29
such that —¢(z, fo(z), 20). We shall call this zg a counterezample to fo(z).
By (e.2), it must be n > 0 and we have

NE (anzlv .. )zn)(‘P(zs fl(m’ 20),21) Ve
sV SD(:B, fn(z, 20, - - 'azn—l)y zn)) .

Hence we can repeat the reasoning above and we get that either fi(z,zp)
witnesses y or the disjunction can be reduced further by taking a counterex-
ample z1 to fi(z, 29). However this process can be repeated at most n times,
since when we obtain

(V:t, zn)‘P(w, fn(za 205:-+y zﬂ—1)7 zn)

we can stop.
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Let C(z,y) be a II; b optimization problem. Assume that T" .S"."'1 Then

3 proves that C has always length optimal solutions. Thls statement can
be expressed in the form (Vz)(3y)(Vz)p(z,y,z) with ¢ in Ez+1’ see (e.1).
Hence, by Theorem 4.29, we get that an optimal solution can be computed
using Df ;+1 functions and a fixed number of counterexamples. This is our first
lemma.

4.41 Lemma. If TS = S"H, i > 0, then for every IT; b optimization problem its
length optimal solutlons can be computed using Elp ; functions and a fixed
number of counterexamples.

The computations with counterexamples do not define a function complex-
ity class, since we allow the asking of counterexamples only for the particular
optimization problem that we want to solve. If we allowed asking arbitrary
queries of the same logical complexity, we would obtain just the class D{-’_I_z
But it is easy to prove that optimal solutions can be computed by such func-
tions. Thus our next step is a reduction to a different function class.

4.42 Definition. A function f belongs to OF /poly if there exists some g in of
and a polynomial p(z) such that for every k there is aj < p(k) such that for

every z, |z| =k,
f(z) =g(z,ax).

Here ay, is called a polynomial advice; it is some extra information given
for free for each size of input; the dependence on the size of input is quite
arbitrary.

4.43 Lemma. Let : > 0. Suppose that for every II; b optimization problem its
length optimal solutions can be computed using Dp 41 functions and a fixed

number of counterexamples. Then for every ¥(z, y) in IT; P there exists an f
in O0; , /poly such that

N E (Vz)(3y < z)¢(z,y) — ¥(z, f(2))).

Proof. Let 9 be given. Define a Hip optimization problem p(u,v) by
p(u,v) = T1h(v) < Th(u) & (Yt < Th(v))($((u)t, (v)e) & (v)2 < (u)e).

Let fo(u),..., fn(u,vq,...,v5—1) be some functions in D”_H which interac-
tively compute length optnna.l solutions for p. Let k be given. We shall con-

struct a polynomial advice for inputs of size k. Once we describe the advice,
the definition of the function g will be clear. Let

Vi = {z;|z| = k& (3y < z)¢(z,v)} -



4. Witnessing Functions 357
Choose some function w(z) such that, for z € V1,
¥z, w(=)).
We shall use the following notation. If m < lh(u) then
w(u | m)

denotes the sequence (w((u)p),...,w((u)m)). To each n + 1-tuple u of ele-

ments of V3, we assign a pair (I,y), 0 < [ < n, using the following procedure:
Step 0: compute fo(u); if p(u, fo(u)) and lh(fo(u)) > 0, then put I =0
and y = (fo(u))o and stop, otherwise go to step 1;

Step m (m < n): compute frm(u,w(u|0),...,w(u|m—1));if

Pty fm(u,w(u | 0),...,w(u | m —1)))

and
lh(fm(uaw(u | O)s'-'aw(u l m— 1))) >m,

then put / = m and
y = (fm(u,w(u|0),...,w(u|m—1))m,
otherwise go to step m + 1;

Step n: If we have reached this step, then it necessarily holds that

p(u, fﬂ(uvw(u | O)v .. 7w(u ! n-— 1)))

and
Ih(fa(u,w(u |0),...,w(u|n-1))=n+1,

thus we put [ = n and

y= fa(u,w(u|0),...,w(u|n-1)),

and stop.

Let us call y a witness for z if 3(z,y). The meaning of the above procedure
is the following. Let u be an n + 1-tuple and let [,y be assigned to it. Then
having witnesses for (u)o,...,(u);—1, we can compute the witness y for (u);.

For an n-element subset @ of Vi and ¢ € V7\@, we shall say that pair
(@, z) is good if for some arrangement {zo,...,2j_1,Z(4+1,...,Zn} of @, [ is
assigned to u by the above procedure, where u is the sequence

(Zgse+ s TI=1, 2, T1415- -1 Tn) -
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Define a sequence of subsets of V3
i2Ve2Vs---,

having N1, N3,.. ., respectively, elements. The j+1-st element in the sequence
is defined as follows. Find an n-element subset @; C V; such that

Nj—-n
n+1

Hz € Vj;(Qj,x) is good }| >

’

and take
Vit = V\{z € V5 (Qjy ) is good }.

We must show that it is always possible to choose such a Q;. By the procedure
above, for each n + 1-element subset {z¢,...,z,} of V; we can construct a
good pair (@, z) such that

{xo,"'awﬂ}=QU{z}v

by taking u to be the sequence (zo,...,zn). Hence there are at least ( nl_\{_jl)

good pairs. On the other hand there are (lx’) n-element subsets @ of Vj, so
at least one such @ must form good pairs with at least

. N\ 1 A
N] . NJ =NJ n
n+1 n n+1

Nj—n n
n+1 _n+1(NJ+1)’

elements. Hence

Nj+1 < Nj—

from which we get

n J n n 2 n 3
N1 < | — _
i+1 S (n+1) Nl+n+1+(n+1) +(n+1) +
J
n
< (m) Ni+n+1.

Hence we get Nt < n + 2 after ¢ steps, for

t < logg(N1).(loga((n +1)/n)) ™! < O(logy(2¥)) = O(k).

We take the polynomial size advice to be the sequence of pairs (z,w(z)),
where z runs trough all elements of

Q1UQ2U---UQUV;.
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Now let z be such that

lz| = k& 3y < z)¥(z,y),

i.e. z € V1. Then either ¢ € V; and so a witness for z is in the advice, or
(Qj,z) is a good pair for some j < t. But then we can construct a witness
for z from the witnesses for the elements of QJ (using O0F i+ functions in the
procedure above). O

4.44 Lemma Let 7 > 0. Suppose that for every ¥(z,y) in Hp there exists an
fin® i1 /poly such that

N E (Vz)((Jy < 2)¥(z,y) — ¢(=, f(2))).
Then 5¥,,=117,,

Proof. Let A(b) be in IT; +2 Without loss of generality we can assume that it
can be represented in the form

(Vz)(lz| = [b] = (Fy < b)v(b, =,y)),
where 7 is Hf.
Let 9(z,y) be a IIz-b formula such that
¥((b,2),y) = |z] = |b] = (y < b&(b, 7,y)).

Let f be a function in Df i1 /poly guaranteed by Lemma 4.43 for 3, and let
function ¢ in Dp +1 and polynomial p be guaranteed by Definition 4.42 for f.
" Then we can write A(b) in the following Z? 1o form!

A(b) = (Ja)(a < p(I(5,0)]) & (Vz)(I2| = [B] = (b, 2, 9(a, (b, 2))))) -

The right to left implication is trivial, the left to right implication follows by
taking an advice a. O
This finishes the proof of Theorem 4.38.

There is a similar reduction of the question S} = T2"? to a problem in
complexity theory. First we shall define that for an optimization problem
C(z,y), y is an optimal solution to z if

(Vz)(C(z,y) & (y < z = ~C(z,2))).

Secondly, we define interactive computations with an unbounded number of
counterexamples as the the natural extension of the concept above. Of course,

1 Note that g is Hg’ +1 definable by Theorem 4.17.
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there is an implicit polynomial bound to the number of counterexamples,
since we consider only polynomial time oracle computations. Note that the
number of feasible solutions to £ may be exponential in |z|, thus polynomial
number of counterexamples apparently cannot help to solve some difficult
optimization problems (such as the TRAVELLING SALESPERSON), while
it gives trivial algorithms if we ask only for length optimal solutions (as in
CLIQUE for instance).

We have the following counterpart of Theorem 4.29.

4.45 Theorem. Let ¢ > 0, let S’{; F (Vz)(3y)(Vz < t)p(z,y, 2), for ¢ in Bf’_H
and t a term. Then, for a given ¢ we can compute y using Df 1 computations

with (an unbounded number of) counterexamples.

This theorem can be proved using the proof theoretical method which
Buss used for his witnessing theorem. We are not going to prove it here. The
counterpart of Lemma 4.41 is the following.

4.46 Corollary. For : > 1, if S% = 2i, then the optimal solutions for ev-

ery Hf_l problem can be computed using Df 41 computations with (an un-
bounded number of) counterexamples.

We conjecture that the conclusion of Corollary 4.46 is false, hence also

that 5§ # Tj.
*

The research on witnessing functions is still going on and we can look for
new nice results. The task of proving that Bounded Arithmetic is not finitely
axiomatized without assumptions on complezity classes seems still too hard.
What might be more accessible is to prove nonconservation results for S5 and
T2i using such assumptions.

5. Interpretability and Consistency

(a) Introduction

In the last section we were mainly interested in the strength of theories
obtained by restricting the quantifier complexity of bounded formulae in
the scheme of induction. The main theme of this section is investigation
of the strength of theories obtained from IXy by adding functions of a
different growth rate. (These functions have graphs definable by Xy formulae,
so the strength is increased by assuming that they are total.) We shall
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consider typical questions of metamathematics: interpretations, provability
of consistency, conservativity, etc.

First we shall consider the definition of truth for Xy formulae in Bounded
Arithmetic. As a consequence we obtain that IXy + Ezp is finitely axiom-
atizable. Another consequence (which uses further technical results) is the
existence of an interpretation of IXy + {2, in Q, n = 1,2,..., which in turn
implies that @ and these theories are equiconsistent in I X9 + 2;. For fur-
ther results we need a formalization of a weaker form of the cut-elimination
theorem in IXy + Ezp. The usual form of this theorem is unprovable in this
theory. On the other hand G6del’s incompleteness theorem can be strength-
ened further for such fragments. For instance I Xy + Ezp does not prove the
consistency of (). This and several other results of this kind will be shown
in subsection (f). Finally we shall consider the question of limited use of
exponentiation in IX).

(b) Truth Definitions for Bounded Formulae

In Chap. I, Sect. 1 we have shown that truth for X formulae can be defined
by a A; formula in IX;. Because of diagonalization there is no such Xy
definition. However we can omit the main 3 quantifier in the X formula and
thus we obtain a Xy formula with an additional parameter. Then we estimate
how large the parameter must be; put another way, we are looking for a
suitable bound to the 3 quantifier in the ¥ definition of Xy truth. Sometimes
we shall call the Xy formula obtained in this way a truth definition for Xy
formulae, though it is not quite precise. The construction will be essentially
the same as in Chap. I, only we have to compute the bounds more precisely.

Before constructing a formula with a parameter which defines the truth
for Xy formulae, we shall briefly consider this problem from the point of
view of complexity theory. Assume that there is a definition of Xj truth
described above; suppose that it has the quantifier complexity ¥ and the
bound to the parameter is some function f. Then we have the following
relation between complexity classes TV C Z‘Lf ! (see Sect. 2 for definitions).
Thus the corresponding question is: for which function g and constant k
do we have E(I,V Cc Zi? Recall that E(I,v are just the sets in the Linear Time
Hierarchy (Theorem 2.16), hence the best that we can achieve (to our present
knowledge) is

zf ¢ | Time(c®)=E.
céN

This result can be used to write a definition of truth for Xy formulae based
on a Xy formula with an exponential bound to the length of the parameter,
but again we not only need a formula, but also proofs of its properties in I Xjp.
Furthermore we need an estimate of the constant c¢. Therefore we present an
explicit construction.
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We shall use the notation introduced in Sect. 3. Thus for instance max(s)
is the maximal element of sequence s. In this subsection we use only the stan-
dard arithmetical language Lg. The formalization of syntax is as described
in Sect. 3; thus if z is the G6del number of an expression, |z| is its length.

Our approach is to consider a bounded formula literally as a program. The
computation of terms needs no explanation; the interpretation of bounded
quantifiers is as search procedures. The crucial thing is to estimate the size
of the numbers that will occur in such a computation.

Let us consider an example first. Let a(z) be a bounded formula

(ay < :82)(32 < y2)(au < zz)ﬂ(za yazau)a

where f is also a bounded formula. To compute the truth value of a(z) we
use three FOR loops, one for each bounded variable. Note that the third loop
has the range 0 to z2

5.1 Proposition (IXy). (1) For a term ¢t and a string of numbers s,
#(s) < (max(s) + 2)*l.

(2) The maximal value needed to compute the truth of a bounded formula
a on a string s is bounded from above by

(max(s) +2)2*' .

Note in passing that, by (1), the value of a closed term ¢ is bounded by
oltl < 2t, hence it can be defined as a total function in I Xy, while for general
terms in Lo we need I X+ §21. Nevertheless the estimates above are provable
in IXy provided that the upper bound exists.

Proof. (1) is easily proved by induction on the length of ¢.

(2) This is also proved by induction on the length of a.. We shall compute
only the induction step for a quantifier. Let a(s) be (Jy < t(s))B(y,s) (for V
it is the same). Assume we have bound

(max(s, y) +2)2",
for A(y,s). By (1) we know that
t(s) < (max(s) +2),
hence for a(s) we get

(max(s, (max(s) + 2)11) + 2)2*' = ((max(s) + 2)1) + 22"
< ((max(s) + 2)It|+1)2|p| .
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We shall estimate the exponent:
(|t] + 1)2/8! < altl+1+18] < glel |
which proves the induction step. O

First we define the graph of the wal function which defines the value of
arithmetical terms. Also here we need an additional parameter. The meaning
of Value(y,z,2,u) is: y is the value of term = computed on string z, u is
the parameter. Let Var(z,:) be a formalization of the concept of the i-th
variable.

5.2 Proposition. There exists a Xy formula Value(y, ¢, z,u) and a polynomial
p such that it is provable in I Xy that:

(1)  Term(z1)& Term(z2) & |z1],|z2| < v & |u| > p(| max(z)|,v) —
— (Var(zl,i).\—b Value(y, 21, 2,u) = (2); = y)
& (Value(y,0%, z,u) = y =0)
& (Value(y1,S8°(z1), 2,u) & Value(y2, 21, z,u) — y1 = S(y2))
& (Value(y, z1+°2, 2,u) & Value(yy, z1, 2,u)
& Value(ys, 22, 2,u) = y = y1 + y2)
& (Value(y, z1%°z2, 2,u) & Value(yy, 1,2, u)
& Value(ya, 9, 2,u) = y = y1 * y2);
(@) Ferm(z) &le] < vieul,luzl > p(|max(2)],v)
& Value(y1, z, z,u1) & Value(ya,z,2,u2) = y1 = y2.

Proof. Value(y,z,z,u) is defined as (Is < u)p(y, z, z, 8), where ¢(y,z, z, s)

is a Yy formula expressing the following conditions:

(1) s is a sequence of pairs (ag, bp), .- .,(am,dm);

(2) for every i < m, either a; is a variable, or a; is aj+®aj, where 0 < j,
k <1, etc. for S,0 and x*;

(3) ifa;is the j-th variable, then b; = (2)j; if a; is aj+°ay, then b; = b; +by;
etc. for S,0 and *;

(4) y=>bm and = = am.

-Clearly, if s satisfying these conditions exists, then it determines y uniquely
and the conditions of the proposition are provable. (Namely, using induction,
one can prove that every sequence of pairs for a subterm of ¢ is a subsequence
of some sequence of pairs for ¢.) Thus we only have to find an upper bound
to the size of s. Assume s is given. By Proposition 1(1),

b; < (max(z) + 2)!%!.
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Since the pairing function is a polynomial, (a;, b;) is bounded by a polynomial
in v and (max(z)+2)?, hence (a;, b;) < (max(z)+2)4(*) for some polynomial
g. By Proposition 3.30, |s| < r(|(max(z) + 2)‘1(”)|, v) for some polynomial r,
which gives the required bound |s| < p(| max(z)|,v), p a polynomial.

The details can be worked out in a similar way as we did in Sect. 3. 0O

5.3 Corollary. The value of an Ly term is definable by a X;** formula (in
fact by a bounded formula in Lj).

Proof. Define

val(z,2) =y =gf Value(y, z, z,2P(|mﬂX(2)|'|1‘|)) . O

The meaning of I'(z, z,u) in the following theorem is: the X formula z is
satisfied by a string of numbers z and u is some bound.

5.4 Theorem. There exists a Xy formula I'(z, z,u) and a constant ¢ such that
it is provable in I X that:

lu| > (max(z) +2)° &|z| < v. = (z =t =* s = (['(z,2,u) =
(3y)(Value(y,t, z,u) & Value(y, s, z,u)))) &
& (z = (z1 =° z2) = (I'(z, z,u) = (I'(z1,2,u) = I'(z2,2,u)))) &
& (z =-"zy = (['(z,2,u) = -I'(z1,2,u))) &
&(z = (3w <* t)z1 = (D2, 2,u) = Ty, yv")(Value(y', t,z,u) &y < ¢/
&I'(z1,7,u)))),

where we assume that w is the j-th variable for some j and sequence 2’ is
obtained by replacing its j-th entry by y; the conditions (Tarski’s conditions)
for <* and bounded V* are similar and therefore omitted.

Proof. The proof is similar to the one above. We define I'(z,z,u) as (3s <
u)1(8), where ¥(s) says that s is a sequence consisting of pairs of some sub-
stitution instances of subformulae and their truth values satisfying Tarski’s
conditions. Let s be the sequence of pairs (ag,bp),...,(am,bm). We shall
require the following condition. Let a; be of the form (3w < t)p(w) or
(Vw < t)p(w). Then we include all formulae p(R) for n < wal(t,2) in
ag,: . .,am. Here 7 denotes the dyadic numeral introduced in Sect. 3(g). (If
the value of (3°w <® t)p(w) turns out to be TRUE, then it suffices to in-
clude just one (%), but this is not a real advantage.) By Proposition 1(2),
the values needed to compute the truth value of a formula z are bounded by

(max(z) +2)2" .
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Thus the a;’s are Gédel numbers of subformulae of z with some variables
replaced by numerals @ for

n < (max(z) + 2)2M .
The length of such formulae is estimated by
e1 % |(max(z) +2)*"| * o],

where c; is a constant, since the length of a numeral is linear in its value.

The length of (a;, b;) is thus
ez * |(max(z) +2)*"| ¢ 2],

for some constant co. Now we estimate the number m of such pairs. We have
at most |z| variables in z, and each variable can be replaced by a numeral 7

with the bound abpve for n. This gives ((max(z) + 2)2"' + 1)l possibilities
and there are at most |z| subformulae, hence

m < |z| * ((max(z) + 2)2" + 1)l
Thus we can estimate the length of s by
c3 * |(max(z) + 2)27'| # [2/? * (max(z) + 22" + 1) < (max(z) +2)°”,

where c3 and c are suitable constants. Hence if u is larger than or equal to
this bound, then there exists some sequence s that witnesses the truth of .

The provability of Tarski’s conditions is shown as above. a
For a string of variables 21,...,2n we denote by (z1,...,2n) the code of
the sequence z,..., 2.

5.5 Corollary. (1) For every bounded formula a(21,...,2n) in Lo there exists
a constant k such that

150 b u > 2max(znmz)+)t (a(z1y..-,2n) = I'(a,(21,...,2n),u)).

(2) Let M be a model of Xy, let a,b,d € M, let a(z) be a Ty formula.
Suppose d is nonstandard and b > 2(3+2)°, Then

M F a(a) = I'(a@, (a), b).

Proof. (1) First apply Proposition 5.2 to prove the statement for a atomic
using induction on the complexity of terms in it. Then for general a use
induction on the logical complexity of a and Theorem 5.4.

(2) This is an immediate consequence of (1). O
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5.6 Theorem. I X + Ezp is finitely axiomatizable.

Proof. Let T be a finite fragment 1Y such that T proves Tarski’s conditions
of Theorem 5.4 for I'. Then for every a bounded, T' proves the formula of
Corollary 5.5(1). Let ¢ be defined by

<p(:c,y,p, U) = F(x’ (y,p),U) .

(Here we are misusing notation: to be quite precise, we should distinguish
between a pair and a two element sequence, but we do not want to introduce
new notation.) Let T' be T plus the least number principle for ¢(z,y,p, u),
where y is the induction variable and z, p and u are parameters, plus Ezp. Let
a(y,p) be an arbitrary bounded formula for which we want to prove the least
number principle (clearly it suffices to have just one parameter). We shall
argue in T'. Let p be given and suppose that for some yo we have a(yg,p).
Since we have Ezp, we can take

u > 2(max(yo,p))" ,

where k corresponds to a. Hence, for y < yy,

a(y,p) = I'(@, (v, p),u) = ¢(a,y, p,u).
Thus we can take the least y for (@, y, p,u). O

(c) An Interpretation of I X in Q

Q is a very weak theory, e.g. the associativity of + is not provable in it.
However from the point of view of interpretability it is quite strong. We shall
show that IXy + {2y, is interpretable in @ for every n. Moreover the form of
interpretation is very natural: we take the same operations and only restrict
the domain. The domain of interpretation is, roughly speaking, an initial seg-
ment of the original numbers. This suggests an attractive finitist’s program,
which was pursued by Edward Nelson [Nelson 86]. Namely, the consistency of
@ seems quite evident; further it is also evident that interpretation preserves
consistency, thus if we develop mathematics only in theories interpretable in
Q, we are safe-guarded against inconsistencies. Later on we shall see that
we can even interpret in () some consequences of Xy + Ezp which are not
available in IXy + 2, (Theorem 5.27 (i)).1

1 Letus remark, for those who are interested in minimal foundations of mathematics, that
one can use an extremely weak system for set theory instead of Q, since Q is interpretable
in it. The system has only two simple axioms:

(3=)(V)(~y € z);
Vz)(Vy)(3Fz)(Vu)(u €z =(u €z Vu=y)).
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The main reason why we consider interpretation of Bounded Arithmetic
in @ is, however, different. The interpretability of systems of Bounded Arith-
metic gives us equiconsistency of them with @, and this equiconsistency is
provable in Bounded Arithmetic too. Hence Godel theorem implies that such
a system does not already prove consistency of Q.

The rest of the subsection is almost entirely devoted to the proof of the
following theorem. In the whole subsection we shall use only interpretations
given by restricting the domain. Such an interpretation is determined by a
formula with one free variable.

5.7 Theorem. For every n, there exists a global interpretation of IXy + 2,
in Q.

By a global interpretation we mean the usual concept of interpretation.
The word global is used here to stress the fact that we have one translation
of the language (but in fact only the domain will be different) such that
the translations of each one of the infinitely many axioms are provable. On
the other hand, local interpretation means that we can choose a different
translation for every finite subset of axioms. Nelson uses local interpretations
in his book. We shall use a local interpretation as an intermediate step.

We shall say that a formula I(z) is inductive in a theory T if

T+ I(0) & (Vz)(I(z) — I(S(2))) .-
Recall that I is a cutin T if it satisfies moreover
I(z)&y <z — I(y),
provably in T. We shall say that J(z) is a subcut of I(z) in T if moreover
Tt J(z) — I(z).
Let Q1 be Q augmented with the following axioms:

(associativity of +) z+y)+z=z+(y+2);
(left distributivity) 2(y+2)=zy+zz;
(associativity of *) (zy)z = z(y=2).

5.8 Lemma. There exists an inductive formula I(z) which determines an
interpretation of Q% in Q.

We shall not prove this lemma. It can be proved using similar tricks as we
shall use below, but it is technically more complicated, since we start with a
very weak theory Q. A complete proof can be found in [Nelson 86].
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5.9 Lemma. Let I(z) be an inductive formula in Q. Then there exists a subcut
J(z) of I(z) in Q.

Proof. We shall use the following three easy theorems of Q:

(i) =<0,

(ii) z <y=5S(z) < S(y),

(iii) 0 < =.

Let I be inductive in Q. Let K be defined by
K(z)=I(z)&(Vy,2)(z Sy&y <z —z<x).

We shall show that K is inductive. K (0) follows easily from (i) and from I(0).
Suppose K(z). Then, clearly, I(S(z)) and it remains to prove the second part
of the condition for K(S(z)). Let z < y < S(z). If z =0, then, by (iii), z < z.
Otherwise, by (Q3), z = S(2'), for some 2'. Then, by (i), (Q5) and (Q1), y
cannot be 0. Thus y = S(y'), for some y'. Thus we get 2’ < y' < z, using (ii).
By K(z), we have 2’ < z. Using (ii) once again, we get z = S(2') < S(z).
Hence K is inductive.
Now define

J(z) = (Vy < 2)K(y)-

First we shall show that J is inductive. J(0) follows easily from (i). Assume
J(z) and let y < S(z). We need to show that K(y). If y = 0, then K(y),
since K is inductive. Suppose that y = S(y'), for some y'. Then, by (ii), we
get y' < z, hence K(y'). Since K is inductive, K(S(y')), which is K(y). Thus
K is inductive. Now we shall prove that

J(z)&y <z — J(y).

Suppose J(z)&y < z. Let z < y be arbitrary. We need to prove K(z). By
J(z), we have in particular K(z), hence z < z. Thus we have K(z), since

J(z). 0

5.10 Lemma. Let I(z) be an inductive formula in Q*. Then there exists a
cut J(z) such that J is a subcut of I closed under S, + and *, i.e. Q1 proves
J(z) = I(z);
J(0);
J(2)& J(y) = J(S(2)) & I(z +y) & J (zy).
Proof. By Lemma 5.9 we may assume that I is a cut. We shall use the same

construction as in the proof of Theorem 3.5, Chap. III. Take

Jo(z) = (Vy)(I(y) = I(y + z));
J(z) = (Vy)(Jo(y) = Jo(yz)).
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Then Jp contains 1, since I is inductive; Jg is closed under + by associativity
of +; J is contained in Jy (since Jy contains 1) and hence also in I; J is
closed under + by left distributivity and since Jy is closed under +; J is
closed under S, since it contains T and it is closed under +; J is closed under
* by associativity of *. To show that J is closed downwards, we use the
assumption that I is a cut, left distributivity and Jy being closed under +.
]

5.11 Lemma. I Yy is locally interpretable in Q.

Proof. By Lemma 5.8 we can take Q% instead of Q. Let ¢1(z,p), ..., ¢n(z,p)
be given bounded formulae. We want to interpret @ plus induction for

#1(z,P), - - -, pn(z,p) in Qt. Let
Ii(z,p) = ¢j(0) & (Vy < z)(v;(y,p) = ¢;(S(¥),p)) = ¢j(z,p),
for j =1,...,n. Let

I(z) = (Vp)(I1(z,p) & ... & In(z,p)).

Since each I;(z,p) is inductive with respect to z in Q*,sois I(z). By Lemma
5.10 we can find a subcut J(z) closed under + and *. Since J is closed under
S, + and * and it is closed downwards, we have, for any bounded formula

a(zla' .. azk)’
QT J(21)& ... & J(z) = (alz1,...,20) = (a(z1,. .., 2k))7).

Since

J(z) = I(z) = I;(z)

provably in Q7, for every j, J determines an interpretation of induction for
every ¢;. All but two axioms of Q (even Q™) are open, hence they hold in the
interpretation. The remaining two axioms are (Q3): z # 0 — (Jy)(z = S(y))
and (QB8): the definition of the relation <. The first one is provable using
induction for bounded formulae from the others (hint: first prove z < S(z),
then z # 0 — (Jy < z)(z = S(y))). Hence we can simply suppose that we
have enough formulae amongst ¢1,...,¢n to prove it. The last one causes
no problems, since we can trivially interpret @) in the theory obtained from
Q by eliminating < from the language and deleting (Q8). ]

Proof of Theorem 5.7. By Theorem 3.5, Chap. III, we know that each cut in
a sufficiently strong theory can be shortened to a cut closed under wy,, for a
given n. One can easily check that 1%y is strong enough for that. So, by the
last lemma, we only have to interpret I X in a finite fragment T of I5y. We
take T so strong that
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(1) the properties of the exponentiation relation are provable in it,
(2) Tarski’s conditions for the formula I' of Theorem 5.4 are provable in it,
and
(3) the least number principle for I'(z,(y,p),u), with y as the induction
parameter, is provable in it.
By the same theorem of Chap. III on shortening cuts we get a cut I(z) such
that
T+ I(z) - (Jy)(y = 2%).

By Lemma 5.10, we can assume that I is closed under + and *. We claim that
I determines an interpretation of IXy. It suffices to prove the least number
principle for every bounded a(y,p) with just one parameter. Let p be an
element in I and suppose that for some yg in I we have a(yo,p). Take

u= 2(max(y°!p))k ,

where k corresponds to a. This is possible, since

k 2m‘x(yo,p)-k
o(max(yo,p))* < 9 ,

and the last number exists by a property of I. Now we conclude as in Theorem
5.6: for y < yo,

a(y,p) = I'(@, (y,p),u),
and we can take the least y for I'(@, (y, p), u). (i

The concept of consistency Con used in the following theorem is the usual
one as used in Chap. III, except that we must use the efficient coding of
sequences as described in Sect. 3 of this section.

5.12 Theorem. For every n,

IXo+21 F Con(IZp+12;) = Con(Q®).

Proof. The consistency of IXy + 2, implies the consistency of @ trivially.
The consistency of IXy + 2, can be reduced to the consistency of @ using
an interpretation. We shall analyze this proof, in order to see that it can
be done in IXy + §21. Let a proof of a contradiction in IXy + £2, be given.
Using the interpretation constructed above we can transform it into a proof
of a contradiction in Q). Again, it is clear that the interpretation as a relation
can be described by a Xy formula. Hence we only have to check that the
size of the transformed proof is polynomial in the original one. This can be
proved by showing that each application of a logical rule in the original proof
is replaced by only a polynomially longer sequence in the new proof. There
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is only one place where we have to modify the interpretation given above.
When we prove the least number principle for a bounded formula «, we define
parameter u by

u = 2(max(yo.p))*

Now we have to take into account how k depends on «, since « is not fixed.
Thus instead of the double exponential function in the definition of I(z), we
take triple exponential. Hence

Q+I(@) - By () &y =2")

where cut J(y) determines an interpretation of a sufficiently strong finite
fragment T of X in Q. Then we replace number k in the definition of u by
a more explicit bound given by Theorem 5.4:

u = 2(mex(uop))™

where ¢ is the constant independent of a from Theorem 5.4. Now, using the
estimate

g(max(yo,l’))J"'l < 22’“‘“(“" Yelel
one can show that u exists and J(u) holds true, and the proofs of these facts
in @ are of polynomial length in the length of @. Hence the induction axioms
are replaced also by polynomially long sequences. O

(d) Cut-Elimination and Herbrand’s Theorem
in Bounded Arithmetic

There are two basic measures of the complexity of proofs: the length of proofs
and the quantifier complexity of proofs. Cut-elimination and Herbrand’s
theorem implies that each first order tautology a has a proof whose quantifier
complexity is not larger than the quantifier complexity of a. The cost for the
reduction of the quantifier complexity is an increase in the size of the proof.
This is the reason why this theorem is not provable even in IXy + Ezp in
full generality. Nevertheless there is a restricted version of this result which
is provable in I Xy + Ezp and which has several applications. We shall prove
it in this subsection. The proof will be just an analysis of a classical proof of
cut-elimination. There is an alternative proof based on Hilbert style calculi,
but we shall use a variant of Gentzen’s approach since it is simpler and more
transparent. The transformations used in the proof will again be some simple
manipulations with sequences, hence definable by ¥y formulae. Thus we only
have to estimate the size of constructed proofs.

We shall use a slightly simplified version of Schwichtenberg’s system
[Schwichtenberg 77] and follow his proof of cut-elimination. The proofs will
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be only briefly sketched; however we do not presuppose knowledge of proof
theory. For more details the reader should consult [Takeuti 80]. It should be
stressed here that the translations from this system to the system introduced
in Chap. 0 and backwards are quite elementary. In particular (assuming ef-
ficient coding, which was introduced in Sect. 3), it is possible to prove in
IXy + §2; that a sentence is provable in one system iff its translation is prov-
able in the other one.

*

We consider a system for first order logic. Its language consists of logical
connectives &, V, -, quantifiers V, 3, variables, constants, function symbols
and relation symbols. We do not distinguish equality as a special (or logical)
relation symbol. In order to reduce the number of rules, and consequently
the number of cases to be considered in the proofs, we allow negation only
at atomic formulae. Thus, for a complex formula ¢, the expression - is
an abbreviation for the equivalent formula obtained by applying De Morgan
rules. For a similar reason we shall treat disjunction V differently too. We
shall think of the formulae in a disjunction as forming a set rather than
a sequence. In the arithmetization, all syntactical objects are represented as
sequences (which in turn are represented as binary expansions). Thus what we
mean is that: in proofs we allow the replacement of a disjunction by another
one which has the same elements. For reasons of symmetry we shall consider
conjunction & to be also a set operation. When we write, for instance, that
a formula ¢ has the form 4 V 1, we mean that ¢ is the disjunction of a set
{M,--+yYm>¥1,.--,¥n}, where y1,...,Ym,¥1,...,¥n are atomic formulae,
conjunctions or formulae starting with a quantifier, and we do not assume
that the sets {71,...,7Ym}, {¥1,--.,¥n} are disjoint and v is the disjunction
of y1,...,9m, or ¥y =71 if m = 1, and v is the disjunction of ¥1,...,%y, or.
Yp=1ifn=1.

A proof is a sequence of formulae (usually called proof lines, or steps)
where each formula is either a logical axiom or follows from preceding ones
by a rule.

There is one axiom schema in our system:

(A)  YVeV-y,

and five rules:
v YV, YVY
w) L ()Y vy
(W) TVe (%) TV (p &)
\%
v) -’7—\% where the variable z is not free in v,

@ —rve)

where 7 is a term free for = in
¥V @z)p(z) i
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TV, 6Vp
(Cut) Ve
The elements of the disjunctions v and é are called side formulae; v and 6
may consist of one formula or can even be void. In Cut, ¢ and - are cut
formulae. Let us point out that an important rule, the contraction rule, is
only implicit in our system. A typical application of it, which is also needed
in the proof of Herbrand’s theorem, is the following: we derive by (3)

7V (3z)p(z) V(1)
TV (3)e(z)
In the lower sequent we do not repeat (3z)¢(z) once more, since our disjunc-
tions are sets. Rule (W) is clearly redundant (and in contrast with (Cut) also
harmless), but it is convenient to have it in the system.

The fact that we define proofs to be sequences, not trees (the latter being
common in proof theory), will be important later, when we shall consider
systems weaker than IXy + Ezp.

We shall follow the notation of Chap. IV, Sect. 4 by writing Proof (d,-y) for
the relation d is & proof of 4. By writing y(z) and then (), we denote the
substitution of T for all free occurrences of z in 4. We shall use two measures
of the complexity of proofs. The length, denoted lh(d), is the length of the
sequence which codes the proof d. Of course, Ik is defined also for formulae and
terms. We assume that the number of symbols used in the coding sequences
is finite, thus the Gédel number of a proof d is bounded by (D) for some
constant c. Further we define, for a formula ¢, rank(p) as the number of
connectives and quantifiers in ¢ plus 1. The cut-rank of a proof d, denoted
by c-rank(d), is 0 if there is no cut in it; otherwise it is the maximum of the
ranks of the cut formulae.

5.13 Lemma (I X+ Ezp). (i) Suppose Proof (d,yV(Vy)¥(y)); then there exists
d’ such that Proof(d’,v V 9(z)) and c-rank(d') < c-rank(d), lh(d') < lh(d).

(ii) If Proof(d(z),v(z)), then for any term 7, Proof(d(7),v(7)) and c-
rank(d(z)) = c-rank(d(7)), Ih(d(7)) < lh(d(z)) * Lh(T).

(iii) Suppose Proof(d,p9& 1), then there exist dp,d; such that
Proof (d;, p;) and c-rank(d;) < c-rank(d), lh(d;) < lh(d), for i =0, 1.

(We take z and 7 in (i) and (ii) so that there are no clashes of variables.)

Intuitively, the statements are clear; formally they can be proved by in-
duction on the length of the proof. The proofs are easy, therefore we omit
them.

5.14 Reduction Lemma (/X + Ezp). Suppose d is a proof of © such that
the last inference is a cut with a cut formula ¢. Suppose that the part of the
proof before the last inference has cut-rank less than rank(y). Then there
exists d', a proof of O, such that c-rank(d') < c-rank(d) and Ih(d') < lh(d)3.
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Proof. Let the last inference be

YV, Vg
YV§é )

1. First suppose that ¢ is atomic. Then rank(p) = 1, hence there is no
other cut in the proof. The proof d contains a proof dy of ¥ V ¢ of rank 0.
Consider how ¢ enters the proof dy. If it is by (W) or as a side formula in
(A), then we can omit it and derive v V § by (W). If it is by (A) of the form
oV ¢V -, then we first derive o V6V - from § V -4 by weakening (W) and
then use this proof instead of the proof line o V¢ V-¢. We remove ¢ also from
the proof lines below o V ¢ V = and extend them by forming disjunctions
with 8. Thus we transform the proof of 4 V ¢ into a proof d' of 7V é.

2. Suppose ¢ is (Iz)yp(z). Our strategy is the same as above, but now
¢ can be introduced also by rule (3). (Note that ¢ can be introduced in
d several times by (3); see the example above describing the contraction.)
Consider such a derivation in d:

oV (r)
oV (3z)yP(z)’

where it is possible that the lower disjunction is just o. In d we have a proof
of §V -y, which is § V (Vz)(=%(z)). By Lemma 5.13 (i) and (ii) we get a proof
of § V ~(1). Now we apply cut to o V ¢(7) and § V -¢(7) to get o V 6. This
cut has smaller rank, hence, after all these changes, we get a proof d' of vV é§
of a smaller rank.

3. If ¢ is a conjunction g & 1, then we do the same procedure as in 2
except that we now use Lemma 5.13 (iii).

4. By duality there are no other cases. If, for instance, ¢ is a disjunction,
then —¢ is a conjunction.

5. It remains to compute the size of the transformed proof d'. This will
also be a proof that the above considerations can be carried out in I Xy + Ezp.
The proof d' is constructed in such a way that for certain proof lines of d we
add a proof of § V = or a proof of § V —(), or a proof of § V ¢; or just
extend the disjunction by é and remove ¢ from it. The largest increase in the
size occurs when we need the proof of § V -9(7); there we have the following
upper bound from Lemma 5.13:

Ih(d) * Ih(r) < Ih(d)?.

As there are at most [h(d) places where we do such extensions, the bound is

Ih(d)3. 0

5.15 Lemma (IXy + Ezp). If Proof(d,v) and c-rank(d) > 0, then there exists
d' such that Proof(d',v), c-rank(d') < c-rank(d) and Ih(d') < 22",
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Proof. Take the initial segment of proof d down to the first cut whose rank is
equal to c-rank(d). Replace this subproof by a proof whose rank is less than
c-rank(d) using Lemma 5.14. Repeat this procedure until no cut with rank
equal to c-rank(d) remains. We start with a proof of length lh(d); then in
each step the length is raised to the 3, and there are at most lh(d) cuts that
we have to eliminate. This gives

In(d) < 1h(d)y*"™® < 22" w

Now we shall define several concepts of provability and consistency. The
basic concepts have already been defined in Chap. III; we repeat their defi-
nition for the reader’s convenience.

5.16 Definition.
(0) dis a proof ofz in T

Proof 7(d, z) =45 (3s < d)((Vi < Ih(s))T((s)i) &
& Proof (d,(s)o &° ... &*(8)in(s)—-1 —° 2))-

(1) Provability in the theory T
Prp(z) =4 (3d) Proof (d, z).
(2) Restricted provability in the theory T
RPry(k,z) =45 (3d)(c-rank(d) < k& Proof r(d, z)) .
(3) Cut-free provability in the theory T
CFPrp(z) =4 RPrp(0,z).
(4) Herbrand provability in the theory T

HP}T(:D) =gf “there exists a propositional proof of

a disjunction of instances of the open part of

He(/\S — ), for some finite § C T,

(see 0.18 for the definition of the function He).
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(5) Consistency of the theory T
Cony =45 ~Prr(0=1).
(6) Restricted consistency of the theory T
RCong(k) =g4f ~RPrp(k,0 =1).
(7) Cut-free consistency of the theory T
CFCont =g4f ﬁCFPrT(GTT).
(8) Herbrand consistency of the theory T
HCony =4 ~HPrp(0 =1).

(If we omit the subscript, it means provability or consistency in pure
logic.)

The theories that we shall use will be either finite or have naturally defined
polynomial time computable sets of axioms. For such theories T the predicate
“p is an axiom of T” can be expressed by a E{’ formula. Then Proof 7(d, z)
is also a 2{’ formula.

Denote by Superezp an axiom saying that the Xy definable function 27 is
total (see Definition IIL.3.3).

5.17 Theorem

(i) IZg+ Superezp F (Vz)(Pr(z) — CFPr®(z)).
(ii) For every k, IXg + Ezp - (Vz)(RPr®(k,z) — CFPr®(z)).

Proof. Both statements follow immediately from Lemma 5.15. O

Let us note that it is provable in IXy + Ezp that each propositional tau-
tology has a cut-free proof. This can be shown by formalizing a completeness
proof for the propositional fragment of our system consisting of the schema
(A) and rule (&). Let a propositional tautology ¢ be given. Construct a proof
of ¢ by applying rule (&) backwards, i.e. we split conjunctions into parts un-
til only disjunctions of atomic and negated atomic formulae are left (recall
that negations can occur only at atomic formulae). We must show that these
disjunctions are of the form (A) which just means that they are tautologies.
This is true because rule (&) is sound also in the opposite direction. In each
step of this construction we add two formulae of length at most l[h(y) and
the construction has at most lh(y) steps. Thus the total size of the proof is
estimated from above by 1h(y) * 2/A(¥), Therefore, the construction can be
carried out in IXy + Ezp.
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We conclude this subsection by showing that in /Xy + Ezp the cut-free
provability and the Herbrand provability are equivalent. Then we derive
corollaries about the provability of the consistency of Q.

5.18 Middle Sequent Theorem. Let ¢ be a first order tautology in prenez
"normal form. Then there exists a proof d of ¢ which is cut-free and such that
it can be divided into two parts d' and d” such that d’ is quantifier free, while
d" contains only applications of the quantifier rules.

The idea of the proof is simple. First one shows that axiom schema (A)
and rule (W) can be restricted so that the newly introduced formulae must be
quantifier-free. This increases the length of proofs only polynomially and no
new cuts are needed. Now take such a cut-free proof of ¢ and switch quantifier
and non-quantifier rules to obtain the required form of a proof. The only thing
that we have to take care of are possible collisions of variables in rule (V).
Therefore we must first transform the proof into a regular proof, which is
a proof in which each application of rule (V) has its own variable that is
generalized (eigenvariable). To do such a renaming we have to transform the
proof into tree form, which means that each premise is used only once. This
may cause at most an exponential increase. Hence it is provable in I Xy + Ezp
that a formula ¢ has such a proof whenever it has a cut-free proof.

Suppose such a proof d of ¢ is given. Let d' be the quantifier-free initial
segment of the proof, let ¢/ be its last formula. We may also suppose that
each formula, except the last one, is a premise of some application of a rule in
d. Hence ¢ is obtained from ¢’ by successive applications of quantifier rules.
In this situation we call ' the middle formula of d. (Usually in proof theory
sequents are used instead of our use of disjunction of formulae; therefore the
theorem is referred to as the Middle Sequent Theorem.) We shall show that
¢’ can be easily transformed into a tautological Herbrand disjunction He(y).

Let ¢ be of the form

(Fz1)(Vy1) - - - (320 )(Vyn)$(21,915- - - Tny Yn) -

We can transform any formula in a prenex normal form into such a form by
adding dummy quantifiers. Then ¢’ has the following form

V'/)(ti:zia- --’ti’zfz)a
i

where t% are some terms and 2% are variables. Let f1,..., fn be new function
symbols that will correspond to the universally quantified variables of ¢. Now
we follow the derivation of ¢ from ¢’, but instead of applying the rules, we
substitute terms in ¢’ as follows. If generalization (V) is applied to the variable
z;:, then we substitute f;(t},.. .,t;'-) for z_; If the rule (3) is used, then we
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do nothing. In order to prove that the resulting disjunction is a Herbrand
disjunction, we shall show two things:

1) t{, ceey tj- are changed (i.e. something is substituted in them) only after
the generaliza.tion of zj;

i 1z—z enj=j and ti =tF ... & =tk
if , th dti =k, ti =t

Suppose (i) is false. Then some 2%, which is generalized before z;: must

occur in t?:l, ... ,t;-. Clearly z,’,‘n is not among z{, 2 i . Hence before 2%, can
be generalized, its occurrences in #}, t must be killed by existentially

quantifying the terms in which it occurs. But this is a contradiction, since such
existential quantifications are done only after the universal quantification of
3

Zj.

Let us prove (ii). If z;- occurs in different disjuncts, they must be first con-
tracted into one before we can generalize (see the restriction on (V)). Two
different disjuncts may become identical in the course of the derivation d”
after we replace some terms and free variables in them by bounded variables.
However, different t’l,...,t-’;. and t’f ,...,t;? can be identified in such a way
only after we quantify z;: (by the same argument as in (i)). Thus (ii) must be
true.

Now it is clear that the procedure changes ¢’ gradually into a Herbrand

disjunction. Condition (i) ensures that the terms have the required form,
condition (ii) ensures that we replace the same variables by the same terms,
hence we preserve the property of being a tautology. In each step the size of
the disjunction increases quadratically (since we substitute some substrings
of a string into itself), hence the size of the resulting He(y) can be estimated
by Ih(d)2lh(d) < 222‘”1(4) .
The converse transformation, from He(y) into a cut-free proof of ¢, is also
easy. Consider a formula ¢ of the same form as above. First eliminate the new
function symbols fi,..., fn in He(p) by replacing maximal terms starting
with such a function symbol by new variables. Let us denote the resulting
formula by ¢'. Since He(y) is a propositional tautology, so is ¢’. Take some
proof of ¢'; we have shown above that there is always one that is cut-free
and at most exponentially long. Now we only have to see that we can apply
the quantifier rules in a suitable order to suitable terms and variables to get
. The following rules lead to a proof of ¢:

(1) Whenever we have a disjunct of the form
(Yy;)(3241)(VW541) - - - (32n)(Vyn)
¢(tl’z17 K ’tjvyj7¢j+11yj+1’ ceeyTny yn) )

apply (3) to the term t¢;;
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(2) if the above is not possible, then consider formulae of the form

(3zj41)(Vyj+1) - - - (Fza)(Vyn)
¢(tlaz1a cee :tja 2y Ti4+1sYj4+1se-+) zmyn) H

take one of them such that the term in He(y) to which z; corresponds
is of maximal length, and generalize z;.

If we repeat this rule the disjunctions clearly converge to ¢. Thus we only
have to show that the rule can be applied repeatedly, until the disjunction
becomes ¢. For (3) there are no restrictions, for (V) we have to show that z;
occurs in only one disjunct and it does not occur in t1, 21, ...,%;j-1,zj-1,t; of
this disjunct. The last thing is clear, since z1,. .., z; correspond to the terms
fi(t1),..., fij(t1,...,t;), hence f;(t1,...,t;) cannot be a subterm of any of
the terms
t1, fi(t1), ... tj—1, fj—1(t1, .-, tj-1), 85 .

Now suppose (1) is not possible and suppose z; occurs in another disjunct.
Since (1) is not possible, the disjunct must have the following form

(32k+1 )(Vyk+1) v e (3z0)(Yyn)
1/)(t’ 1211 oo 7tlka z;cazk-}-la Ye+1s-++3Tn, yn) .

The term corresponding to zj, is fi(t],...,t}). If zj occurred in ¢}, 2}, ..., 1},
then the term corresponding to zj, would be longer than the one corre-
sponding to z;. Hence we can have only z; = z;c. But then f;(t1,...,t;) =
fr(ty,...,1}), thus j = k, and ¢; = ¢],...,t; = t}. Hence it is the same
formula.

We have proved the following theorem.

5.19 Theorem. It is provable in I Xy 4 Ezp that: a formula has a cut-free proof
if and only if it has a Herbrand proof. In symbols

IXy + Ezp - (Vz)(CFPr®(z) = HPr®(z)).

By formalizing a classical proof of the consistency of arithmetic we get the
following result.

5.20 Theorem.

(i) IXo + Superezp - Conpg,.
(ii) IXo+ Ezp F HConb and for every k, IXy + Ezp |- RConb(F).

Proof. First we transform  into an open theory Q': we delete axiom (Q8)
defining <, add the predecessor function and replace axiom (Q3) by an open
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axiom. Assume ~HCon(Q'), hence we have some propositional tautology
He(~Q'), which is a disjunction of substitution instances of ~Q’. But this
is impossible, since in IXy + Ezp we can define the truth for open formulae.
Thus we have IXy + Ezp + HCon'Q,.

To prove (i), first reduce the consistency of I to the consistency of Q
using the interpretations of I £ in Q (Theorem 5.12) and Q in Q'. Then apply
cut-elimination in I X + Superezp (Theorem 5.17(i)), and the equivalence of
the cut-free and Herbrand consistency (Theorem 5.19).

RCanb(E) is reduced to RConb, (M), for some m, by the interpretation of
Q in Q'. Applying cut elimination (Theorem 5.17 (ii)), this is further reduced
to CFConb, and by Theorem 5.19 to H Con’Q,. Thus we get

IXo+ Ezp+ RC’onb(F).

Now RConb(ﬁ) is just CFCong)y which is equivalent to H Cong in I Xy + Ezp.
This shows the rest of (ii). 0

(e) The IT; Theorems of I3y + Exp

In this subsection we prove a theorem of A. Wilkie which characterizes II
sentences provable in IXy + Ezp as the IT; sentences interpretable in @ and
consider some related problems. We start with some lemmas. Recall that
z denotes the formalized numeral function and that we are using dyadic
numerals of Sect. 3.

5.21 Lemma. For every inductive formula I(z) in @, there exists k such that

S} F (Vz)RPry(%,I(z)).

Proof. Recall that a numeral 7, for n > 0, is constructed as follows. We take
ng,...,nk such that ng = 1,n; = n and n;_; = n;/2.. Then 7y is 1 and,
fori=1,...,k,m;is

2xm;_y, ifn;=2n;_1;
@*7;1)+1, ifn;=2n;_1+1;

where T is S(0) and 2 is (S(0) + S(0)). For a given inductive I(z), take some
J(z) which is a subcut of I and J(z) — J(2 * z), provably in Q. Then to
show J(7) we need at most 2k + 1 proof steps. The formulae that we use are
of polynomial size in the length of n, hence the whole proof has polynomial
size. Therefore 521 can formalize this proof. Note that the rank of formulae
used in the proof does not depend on 7, hence is determined only by I. O
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5.22 Lemma. There exists k such that for every two terms ¢(z1,...,z,) and
8(z1,...,Zp) in Lg:

83k (Vz1,...,20)((¢(21, ..., 2n) = s(21,...,Tn) =
RPrb(E, (Z1,...,&n) = 8(21,...,2n)))
& (t(z1,...,2n) # s(z1,...,2n) =
RPrg(k, (21, .., 8n) # 8(21,...,%n))))-

In the following proof and the next lemma we shall denote the function as-
signing the dyadic numeral to a number also by numeral(z); the dot notation
would be rather confusing in some formulae.

Proof. Let I(z) be a cut in @ on which the operations + and * have the
properties of ring operations. We can use this cut to construct proofs of
instances of associativity, commutativity, etc. for numerals. Namely, by the
lemma above, we first show that the numerals in question belong to I and
then we apply the law in I. This cut will be the only factor that influences
the cut-rank k of the resulting proof. Now the sentence ‘

RPT.Q(F, t(i!]_,. .. ,:i:n) = 3(1':1’ .. ,_'i;n))

can be easily proved in S% by induction. We only have to transform it into
a Z’i’ formula, i.e. we have to find a polynomial bound to the length of the
proof of ¢(21,...,%n) = 8(Z1,...,%n). By Lemma 5.21 the length of a proof
of I(z) is polynomial in the length of z. Next we find polynomial proofs of

(e.1) S(numeral(z1)) = numeral(S(z1)),
(e.2) numeral(z1) + numeral(z9) = numeral(z1 + z2),
(e.3) numeral(z1) * numeral(z2) = numeral(zq * z3).

Perhaps the best way to see a polynomial bound to these statements is the
following. First construct proofs of &; = t; where t; are terms of the form

P+ (1> e > > dm),

where 2* denotes 7 (2*---*2)). Think of ¢; as a modified numeral. Then
| S —
k times
follow the standard algorithms for + and * to obtain the proofs of (e.1-3)
for the modified numerals. Finally transform the modified numerals back into
original numeral(S(z1)), numeral(z1+z2) and numeral(z1 *z3) respectively.
As is easily shown by induction, the maximal of these three bounds (the
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bound for the length of the proof of (e.3) is asymptotically maximal) is a
bound to the proof of the equality of general terms. To prove the inequality,
take a suitable term u, prove

t(:i:l,...,a':n)+5(u) = 8(5:1,...,5:"),

or
8(Z1y.-.,2n) + S(u) =t(Z1,...,%n),

and use the fact that

QFI(z)&I(y) = z+S(y)#=. a

5.23 Lemma. There exists k such that

Sk (Vy)RPrb(F, (Vz)(z < numenal®(y + 1) = (z < numeral®(y) v
z = numeral®(y + 1)))).

Proof. We construct a cut I in @ such that
(e.d) QF (Vz,2)(I(2) = (¢ < S(2) =(z L zVz = 5(2)))).
First take J defined by
J(z) =4 04z =2 & (V2)(S5(2) + = = S(z + z)).
One can easily show that J is inductive. Now take I to be a subcut of J and
verify (e.4). We shall work in S}. Let a number y be given. By Lemma 5.21
we have Q I I(numeral(y)), hence by (e.4)
QF z < S(numeral(y)) = (z < numeral(y) V z = S(numeral(y))).
By Lemma 5.22 Q - numeral(y + 1) = S(numeral(y)). Thus Q proves
(Vz)(z < numeral(y + 1) = (z < numenal(y) V z = numeral(y + 1))).

All that we have used were proofs of bounded cut-rank. (|

For the following lemma, we shall fix some translation of Ly into Ly which
determines an interpretation of BASIC on some cut in Q. Such a translation
exists, since IXp + 21 is interpretable in Q by Theorem 5.12. We shall say
that a formula v of Ly is essentially 2{’ (resp. I {’ ), if it is the translation of
a % (resp. I1?) formula of Ly.
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5.24 Lemma (formalized X' completeness of Q).
(i) Let 3(z,y) be a bounded formula in Lg. Then there exists k such that

IZo + Ezp + (V2)((3y)¥(z,y) = RPrg(k, (Fy)¥(4,v))) -

(i1) Let ¥(z,y) be essentially E{’ . Then there exists k such that

S3 F (V2)((3y)(2,y) = RPrg(k, (Fy)b(2,v))) -

Proof. First we observe that in both cases it suffices to prove only

(Vz)($(z,y) — BPrg(k,¥(2,9)) ,

since (Jy)y(&,y) will follow by an application of the rule (3).

(i) The task of proving (&, y) is similar to the task of deciding its truth:
we shall prove ¥(&,y) by proving numerical instances of the open part of 3.
Thus we can bound the size of the numerals needed in this proof in the same
way as in the proof of Theorem 5.4. The numerical instances of the open
part of ¥ follow from the numerical instances of atomic and negated atomic
subformulae. The existence of bounded cut-rank proofs of atomic sentences
with = and their negations follows from Lemma 5.22. The atomic sentences
with < and their negations are reduced to atomic sentences with = in the
same way as the negations of atomic sentences with = had been.

We must be a little careful when pasting the proofs of the numerical
instances into a proof of a bounded sentence, since we need a proof of
bounded cut-rank. A sentence of the form (Jy < t)a(y) follows from some
a(7), where n is less than or equal to the value of ¢. A proof of (Vy < t)a(y)
is constructed from the proofs of a(0), a(1),...,a(7%), where m is the value
of t, as follows. We prove successively (Vy < B)a(y), for n = 0,...,m. For
n = 0 it is an immediate consequence of a(0); to obtain it for n + 1 from a
proof for n, use Lemma 5.23 and a(n + 1). Finally use Lemma 5.22 to show
QF (Vy < t)a(y) = (Vy S M)a(y).

(i) The proof of (ii) is only a modification of the proof of (i) where we
replace bounded by sharply bounded. We also need an extension of Lemma 5.23
to Lo, instead of Lo, and BASIC, instead of Q. Again the proof is essentially
the same: translate the natural polynomial time algorithms for the evaluation
of terms in L9 into a proof using equalities which hold on a suitable cut in
BASIC. We omit the details. a

5.25 Lemma. Let 1(z) be a bounded formula and suppose

IXo + Ezp - (Vz)ip(z).
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Then there exists k such that

IZo - (Va)((3y)(y = 2§) — ¥(=)).

Proof. Suppose IZg does not prove (Vz)((Jy)(y = 2§) — ¥(z)), for any k.
Then, by compactness, IXg + {(Fy)(y = 2§)&~¥(c) | £ € N} (c a new
constant) is consistent. Take a model M of this theory and an initial segment
of it

K={aeM|(3BkeN)MEa<2{)}.

Then K is a model of IXy + Ezp, but K F —3(c), because 1 is bounded. O
Now we are ready for the theorems.

5.26 Theorem. Let (z) be a bounded formula. Then the following are equiv-
alent:

(1) There exists a cut I(z) in @ such that

QF (V)I(2) - $(2).-

(2) There exists an interpretation of @ + (Vz)¥(z) in Q.
(3) IXy+ Ezp F (Vz)y(z).

Proof. (1) = (2) follows from the existence of shortenings of cuts closed under
+ and *.

(2) = (1) Let ¢ be an interpretation of @ + (Vz)¥(z) in Q. We shall
construct a cut I(z) in IXy such that

IZo - (Ve)(I(2) — ¥())-

This is sufficient, since I Xy has an interpretation in ¢ determined by a cut.
The cut I(z) is defined by the formalization of the following formula: “There
exists an isomorphism of the initial segment [0, z] onto an initial segment in
the sense of interpretation ¢”. Here we take intervals as structures with =,
<, and +, * as ternary relations. An isomorphism is a number which codes a
sequence of pairs. We leave it to the reader to write down an explicit formula
for I and check that it is a cut in IXy. Let us only note that the extension of
an isomorphism with domain [0, z] to an isomorphism with domain [0, S(z)]
is obtained by adding to it a pair (S(z),2), where z is the ¢ successor of the
image of z. Such an extension of a sequence is possible in Xy (but not in
Q). Now the fact that (Vz)y(z) holds in the sense of ¢ is transferred by the
isomorphisms onto I.

(1) = (3) Suppose

Q+ (V2)(I(z) » ¥()).



5. Interpretability and Consistency 385

By Lemma 5.21
15y + Ezp F (Vz)RPry(k, I(z)),

for some constant k. Hence
1% + Ezp F (Yz)RPrgy(k, 9(2)).

By Theorem 5.20, IXy + Ezp proves the consistency of Q with respect to
proofs of cut-rank k. Thus we have

IZo + Ezp b (Vz)-RPrgy(k, ~(2)) .
By Lemma 5.24 (i)
1% + Ezp b (Vz)(~%(2) — RPro(m, ()

for some m. We can assume that k¥ = m (otherwise take max(k,m) instead
of k and m). Hence (3) follows from the last two statements.

(3) = (1) Suppose IXy + Ezp F (Vz)y(z). By the lemma above we have
some k such that

IZy F (V) ((Gy)(y = 2§) — (=) -

Take cuts I,J in @ such that J determines an interpretation of IXy in @
and I is a subcut of J such that '

QFI(z) » Fy)(y =25 & J(v))-
Then we have Q I (Vz)(I(z) — ¢(z)). O

5.27 Theorem. Let 1(z) be a bounded formula in Lg. Then the following are
equivalent:
(1) IXy + Ezp F (Vz)y(z).
(2) For some k _
S} F (V) RPro(k, %(2)).

If () is the translation of a IT? formula ¢(z) into Lo, then (1) and (2) are
equivalent to:
(3) For some k

S3 + RCond(F) F (Vz)p(z).

Proof. (1) = (2) Suppose IXy + Ezp + (Vz)y(z), ¥ bounded. Then by
Theorem 5.26 we have Q F (Vz)(I(z) — 9(z)) for some cut I in Q. By 2y
completeness

S} + RPry(7, (Vz)(I(z) — ¥(2))),
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for some j. By Lemma 5.21
S} F (Vz)RPry(m, I(2))

for some m. Take k to be the maximum of j and m, then we have (2).
(2) = (1) By definition

(e5) S3 + RConQ(k)F (Vz)RPry(k,(2)) — (Vz)~RPrg(k, ~()).

By Theorem 5.20, RConb(F) is provable in I Xy + Ezp, thus (e.5) is provable
in IXy + Ezp. Since we assume (2), we have

IZ + Ezp & (Vz)~RPro(k, ~(4)) .
By Lemma 5.24 (i)
15y + Ezp b (Vz)(~RPro(E, ~(2)) — $()) -
Hence (2) implies (1).

Now assume that 1 is the translation of a IT {’ formula ¢(z) into L.
(2) = (3) By Lemma 5.24 (ii) we have

S3 b (Va)(~RPr(k, ~$(2)) — 9(2)).
Then using (e.5) we get
S3 + RCond (k) + (Va)y(z).

from (2). But ¢(z) is equivalent to ¢(z) in S}, thus we have (3). 3
(3) = (1) This is because I X+ Ezp “contains” S} and proves RCong(k).
O

We would like to axiomatize IT; consequences of I Xy + Ezp over, say, 521
(put otherwise, we want to find some nice basis). The equivalence of (1) with
(8) gives only a partial answer: since RCon:?(k) can be written as a formula of
the form (Vz)¢(z) with ¢ in II{’, the set of sentences RConb(F), k=0,1,...

axiomatizes the VII {’ consequences of I Xy + Ezp.

(f) Incompleteness Theorems

It would be paradoxical if the incompleteness theorems did not hold in
weak systems. Of course formalization of syntax in weaker theories is a
more difficult task, therefore we cannot apply classical proofs of the second
Godel incompleteness theorem quite directly. It turns out that the second
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incompleteness theorem can be even strengthened. A typical example is the
unprovability of the consistency of @ in I X + Ezp. The results presented in
this subsection will be corollaries of the theorems proved above and of the
following theorem.

Note that in the following theorem (i) holds for every finitely axiomatized
sequential theory containing (). We shall not prove this general theorem here.
For finite theories in the language of arithmetic extending I, statement (i)
follows from Theorem 3.20(1) Chap. III. Statement (ii) generalizes Theo-
rem 3.11, Chap. III, to weaker theories; however the assumption about the
axiomatizability is stronger here. It is possible to use here the same assump-
tion about the axiomatizability as in Chap. III, but we shall not prove this
strengthening. Recall that RCan}I (k) is

(Vz)(I(2) & c-rank(z) < k — —Proof (2,0 = 1)).

5.28 Theorem. (i) For every k there exists a cut I in @ such that
QF RCaan(E);

(ii) Let T be a consistent theory containing Q and having a £} axiomati-
zation. Then for every cut J in T there exists m such that

—(T + RCon¥ (m)).

Proof. (i) By Theorem 5.20 (ii), for every k
IXy + Ezp RConb(F).

By Theorem 5.26, this implies the first statement.

(ii) The proof of this statement will be similar to the proof of Theorem
3.11, Chap. III. Roughly speaking, we only have to take m sufficiently large.
Since this result plays a key role in the rest of this section, we shall prove it
in detail. .

Because of the shortening techniques, we may suppose that J has some
additional properties. Thus we shall assume that J is a cut in @ and it
determines an interpretation of S% in Q. In particular, it is provable in @,
hence also in T', that for any two sequences in J, their concatenation lies also
in J.

We would like to use the provability conditions of 2.16, Chap. III, for
RPrp(m, z). We shall prove the first two. The third one, which is formalized
Modus Ponens, is clearly false, since Modus Ponens increases the cut-rank.
Thus we shall first take a suitable m, and then we shall follow the usual proof
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of the second incompleteness theorem and check that the third condition is
actually applied only to formulae of rank at most m. We shall divide the
proof into several claims.

Claim 1. For every sentence ¢, if T F ¢, then T I CFPT}J(G).

Proof. Suppose T + ¢. By cut-elimination we have a cut-free proof of ¢
in T. By the X-completeness of @, @ + CFPry(%). Since J determines an

interpretation of @ in T', we get the conclusion of the claim. O

Claim 2. There exists k such that

T+ RPr (z,y) — RPry (k, RPry/ (¢,7)).

Proof. Let us first write down RP’I’E—-J (z,y) more explicitly:
(3d)(J(d) & J(z) & J(y) & c-rank(d) < z & Proof r(d,y)) .
By Lemma 5.24, for some k;

S} rank(d) < z & Proof 7(d,y) —
— RPrg(k1, rank(d) < ¢ & Proof}.(d, y))-

By Lemma 5.21, for some k9

S} + RPrg(ke, J(d) & J() & J(9)).-

To obtain RPT;—J (#,9) we need only the rules for & and 3 which do not
increase the cut-rank. Hence for k£ = max(kj, k2)

S} F RPriy(z,y) — RPrg (%, RPry (,7)).
Here we can replace @ by T, since Q is contained in T'. As T |- (S%)J , we get
T+ (RPry(z,y) — RPry(k, RPr$ (3,9)))’,
which is in fact the statement of the claim. 0O

By 2.1, Chap. III, we have some §(z) such that

T+ §(z) = ~RPry (z,8(z)).
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6(z) is the numeral of the formula §(numeral(z)). Now we can choose m. Let
m be such that

(1) m > k, where k is from Claim 2;
(2) m > rank(RPry(z,y));
(83) m > rank(8(z)).
Note that we thus have also m > rank(RPry J(m,y)) and m > rank(8()).
Let us define also
A =y §(M);
o =gf RPT%"(m, Z) .

Claim 3. T + A = ~RPr! (7, ).

Proof. By definition we have
T + §(7) = ~RPry (m, 6(7)).
Thus we only need
T + é(m) = 6(m),
which follows from the X-completeness of Q, hence of T. O
Claim 4. ~(T I A).

Proof Suppose T + A. Then, by Claim 1, T + CFPrf: J(A), whence T +

RPry!(m, ). By Claim 3 this means that T is inconsistent, which is a con-
tra.dJctlon a

Claim 5. T - RPr: J(m, @) & RPry (m,=a) — ~RCon: J ().
Proof. If a and —a are derivable using proofs of cut-rank of at most m, then
soare aV0 =1and ~aV0 = T(addﬁ = T to each proof line as a side
formula). Since m > rank(RPr (z,y)) = rank(a), we get a proof of 0 =1
by taking the concatenation of these proofs and applying the cut rule. The
closure properties of J ensure that such a proof will be also in J. O
Claim 6. T + RPry/ (7, A) - RPrY: I (m, @).
Proof. By Claim 2

T+ RPry! (m,B) — RPry (m, RPrY (1, A)).
By the definition of a and X-completeness

T+ RPry! (m,8) =a. O
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Claim 7. T + RPr§/ (1, A) — RPry (1, =a).

Proof. By Claim 3 and the definition of @, T+ A — -a. By Claim 1, this
implies T RPT}J (m,A — =a). If we have proofs of A and A — -a of
cut-rank m, we can easily combine them into a proof of cut-rank m of -,
because m > rank(A). Again, the closure properties of J ensure that this
proof is in J too. a

Now we can finish the proof of part (ii) of the theorem. By Claims 3, 6, 7
and 5, we have in T

-A — RPry (m, A) — (RPry (M, @) & RPry (1, =a)) — ~RCon¥ (),

ie. TH RCon}J('m‘) — A. Hence, by Claim 4, RCon}J('ﬁz‘) is not provable in
T. O

5.29 Corollary. Cong is not provable in IXg + Ezp.

Proof. By the theorem above, @ does not prove Cong for any cut I. Hence
by Theorem 5.26 IXy + Ezp does not prove C’onb. a

5.30 Corollary. Cut elimination (unrestricted), and Herbrand’s Theorem are
not provable in I Xy + Ezp.

Proof. By Theorem 5.20(ii) IXy + Ezp proves cut-free and Herbrand
consistency of Q. If we had cut-elimination or Herbrand’s Theorem in I.Xg +
Ezp, we could reduce the ordinary consistency of @ to the restricted one. [

5.31 Theorem. I Xy + Ezp + Conj}y, does not prove Conyy, . Eap-
Proof. Let J be the cut in IXy + Ezp defined by
J(z) =45 (Fy)(y =29).
We shall show that
(f.1) IXy+ Ezp + Con'QJ .

Suppose not. Let us work in I Xy + Ezp, let d be a proof of a contradiction
in J. Then d has cut-rank at most [h(d). We have

Ih(d) 0
234in(d) < 24>

since d must be nonstandard and d is exponentially larger than lh(d); hence
such a number exists. Thus we can apply cut elimination to obtain a cut-free
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proof of a contradiction in Q (apply Lemma 5.15 [h(d)-times and use the
inequality
2¢1h(d) < 22,(1.(4)

22

But this is not possible by 5.20 (ii).
Now suppose the statement of the theorem is false. Thus

1%y + Ezp & Conyy, — Conlyp | pyy-
Since Conyy, and Cong are equivalent in I Xy + Ezp, we have
IXg + Ezp b Congy — Conig | gy -
Using an obvious Lemma 5.25, we can deduce that provably in IXy + Ezp, a
proof d of a contradiction in Xy + Ezp can be transformed into a proof d’

of a contradiction in Q such that d’' < 2% for a suitable standard k. Let I be
a subcut of J such that

I1Xy + Ezp & I(z) — J(2%) .
Hence a proof d of a contradiction in IXy + Ezp such that d is in I can be
transformed into a proof d' of a contradiction in @ such that d' is in J. Thus,

by (£.1) no such proof can exist, i.e. Xy + Ezp proves Conf So+Ezp- But this
is in contradiction to Theorem 5.28 (ii). 0O

5.32 Corollary. IXy + Ezp is not interpretable in I.X).

Proof. Suppose I Xy + Ezp is interpretable in IXy. It is well-known that if T'
is interpretable in S and S is consistent, then T is consistent too. This simple
theorem can be easily formalized in I Xy + Ezp, if T is finitely axiomatized.
Since IXy + Ezp is finitely axiomatizable (Theorem 5?6), as one can check
provably in IXy + Ezp, we get

IZo + Ezp F Congyp — Con;2°+Ezp ,
which contradicts Theorem 5.31. O

5.33 Theorem. For every k there exists m such that RCon'Q(ﬁ) is not provable
inIXy+ 2y + RConb(F) for any n.

Proof. We shall use Theorem 5.28 again. Let I be a cut in @ such that

Q+ RConY(F).
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We can suppose that I determines an interpretation of I Xy. Let J be a subcut
of I such that
QF J(z) — I(2%).

We know that, for some m, Q+—\RConz?J () is consistent. Let M be a model
of this theory. Let K be its initial segment defined by

K ={ae M;(3be JM)(3ie N)(a < wi(b)}.

First we shall show that K is closed under all functions wy,. Let a € K
without loss of generality we can suppose that a is nonstandard. Then, for
some nonstandard b € JM, a < w;(b). Let n be given. Then

wn(a) < wn(wi(b)) < wmax(n.i)(wmax(n,i)(b))
< wmax(n,i)+1(b) €EK.
To prove the last inequality, use induction on j to show that
wj(wj(2z)) < wjpi(e),

for every sufficiently large z (hence for every nonstandard z). Now we need
that K C IM. This follows from the definition of the cuts and from the
following inequality, which is also easily provable by induction on j:

wj(z) < 222 for z sufficiently large.

Since K is contained in IM, which is a model of I X, K is a model of I Xy +wn,
for every n. Since Q F RCoan(k) and M F ﬁRCoan (), we have

KE RConb(F) & ~RCong(),
which finishes the proof. O

This theorem gives us another piece of important information about VII {’
consequences of IXy + Ezp: they are not “finitely based”. Further we have
this consequence.

5.34 Corollary. IXy + Ezp is not II; conservative over Xy + {£2,; n € N}.

In fact this is all that we know about IT; conservativity between systems of
bounded arithmetic. In particular it seems plausible that I Xy + £2; is not IT;
conservative over IXg, but we cannot even prove that IXg+ {2,; n € N} is
not II; conservative over IXy. A II sentence which might separate I Xy + 2,
from IXj is the so-called Bertrand’s postulate. It is the theorem (due to
Sylvester) which says that there is a prime between n and 2n, for every n.
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This sentence is provable in X + 27, but no proof of it has been found in
IXy. Whether such a proof exists is an important open problem.

(g) On the Limited Use of Exponentiation

If we are interested only in II; sentences, then it seems that all such sen-
tences which are also truly mathematical results are provable in IXy + Ezp
(we consider sentences like Con(Q) to be uninteresting for an ordinary math-
ematician). In fact the proofs use exponentiation at most once. This means
that for instance if we construct some graph, we may consider the set of all
graphs of a given size, but usually we do not consider the set of subsets, etc.
Put otherwise, we use the finite power set operation only once. This phe-
nomenon is worthwhile to formalize, but it cannot be done directly in first
order logic. In first order theory we have either to accept axiom Ezp, and
then we have also all finite iterations of 2%, or we do not have exponentiation
at all. A possible approach is to use higher order bounded arithmetics. We
shall use a different approach. Our aim is, roughly speaking, to show that
there is an infinite hierarchy according to the number of applications of the
exponentiation axiom.

So what does it really mean that (Vz)p(z) is provable using exponentiation
only once? This means that we prove ¢(z) assuming that 2% exists; formally

IZy + &1 F (Vo) (Fy)(y = 2%) — ¢(z)) -

It is convenient to consider IXy + 2; instead of I Xy, since thus we obtain a
concept which is more robust: in I X + 21, 2% exists iff 2% exists, etc. There
is an equivalent and shorter way to express that (Vz)p(z) is provable using
exponentiation only once, which is

1%y + &1 F (Vz)e(|z]) .

Similarly, k applications correspond to the provability of (Vz)<p(]a:|(k)), where
|z|(%) denotes the k times iterated function z - |z|.

Finally let us also mention a model theoretical characterization of prov-
ability using exponentiation only once. Let I(z) be defined by

I(z) =¢r (Fy)(y = 2°).
Let K be the class of models of the form
K={aeM; MEIYy+ 21 &ME I(a)},

with the operations inherited from M. Then the sentences in question are
just the sentences true in all models of K.
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Let ¥(z,y) be a bounded formula such that for every m
1%y + 21 & (Vy)$(m,y) = RCongy(T).
5.35 Lemma. For every k there exists m such that (Vy)yp (7, |y|(k)) is not
provable in 1Y + £21.

Proof. Let I(z) be a cut in @ such that I determines an interpretation of
IXy + £2;. Let J(z) be a subcut of I(z) such that

QF J(a) > 120).
By Theorem 5.28, there exists m such that

-(Q + RCon¥ (m)).
Now suppose that (Vy)y(m, |y|(k)) is provable in I¥g + {21. Then

QF (v)(m, [y )T,

hence, by the construction of J,

QF (W@, ),
which is a contradiction. O
5.36 Theorem. For every k there exists a bounded formula ¢(z) such that

ISy + 2 F (Va)e(lz|E+D),

but

~(IZ + 21 F (V2)p(J2|®)).

Proof. Let m be such that (Vy)(7, ly|(¥)) is not provable in I X+ ;. Since
RConb(m), i.e. (Vy)¢(m,y), is provable in IXy + Ezp, it must be provable

using exponentiation a finite number of times, see Lemma 5.25. Thus, for
some n,

15y + 21 F (Vo)p(m, |z|™).

Hence for some i, k <i < n,

150 + 2 + (Va)y(m, |z|+D),
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and )
~(IZ + 2 + (V2 )p(mm, || D)) .

Take () to be 3(7, |z|(i~F)), then the theorem follows. 0O

The instances of the schema PHP XY are IT; and they are provable using
one exponentiation. Actually, most of the proofs that require exponentiation
can be reduced to PHPX). Still it seems that PHP Yy is not sufficient to
prove all sentences derivable using one exponentiation. We are not able to
derive PHP XY in IXy + {21, so it is possible that some instances could be
used as more natural formulae in the theorem above for k = 0. However we
do not know which. The point is that the known mathematical statements
which can be derived using PHP X can be derived also from a weaker version
of PHP which is already provable in IXy + §2; (Bertrand’s postulate is an
example).

The related problems of whether I Xg+{2; is IT; conservative over I Xo+2;,
for j < i, are still open. They are typical in the sense that they are related
to open problems in complexity theory. For instance, the question whether
IXy + §21 is IT; conservative over IX) seems to be formally related to the
open problem whether PH = LinH (though we are not able to prove any
relation). New techniques will need to be developed in order to solve such
problems. Solving such problems in Bounded Arithmetic might be the first
step in solving the corresponding persistent problems in complexity theory.








