
Chapter IV

Models of Fragments of Arithmetic

Introduction. The present chapter is devoted to the study of models of arith-
metic, i.e. structures M for the language L of arithmetic such that M f= T,
where T is either PA or a fragment of PA. Models are useful as means for
showing unprovability of a formula φ in T (by exhibiting a model M for
T + -i</?) as well as for showing provability (by proving that (T + -*φ) has
no model). In particular, we shall prove some conservation results by model-
theoretical methods.

Model theory of arithmetic is a rather broad field and we shall not try to
be exhaustive; our aim will be to present selected typical results and tech-
niques. Section 1 (Some basic constructions) makes the reader familiar with
non-standard models and some techniques of their construction; the main re-
sults are hierarchy results (concerning theories IΣn, BΣn, PΣn), theorems
concerning existence of elementary extensions and the Paris-Friedman con-
servation result. Section 2 (Cuts in models of arithmetic with top) introduces
and studies cuts (roughly: initial segments of models having no greatest el-
ement) and various kinds of cuts: in particular, fc-extendable cuts and their
relationship to models of BΣk+\. Furthermore, the section contains a proof
of the theorem saying that each non-standard model of IΣ\ is isomorphic to a
proper cut of itself. Section 3 (Provably recursive functions and the method of
indicators) presents two characterizations of a J£?fc-provably recursive func-
tion; a corollary is the fact that IΣ\ -provably recursive functions coincide
with primitive recursive functions. We rely heavily on the method of indica-
tors, a formalization of ordinals in JΣΊ, fc-extendable (or fc-restrainable) cuts
and the notion of α-large sets. Finally, there is a short Sect. 4, dealing with a
formalization of some parts of model theory of fragments; we formalize in IΣ\.
In particular, we give in IΣ\ a model-theoretical proof of Paris-Friedman's
conservation theorem and get various corollaries, among them the fact that
JJCfc+i proves the consistency of BΣ%+1.

Our main omission is the absence of the theory of recursively saturated
models. We apologize for this and refer to bibliographical remarks for refer-
ences. But we hope that the present chapter will give the reader satisfactory
insight into the world of models of arithmetic and their possible uses.
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1. Some Basic Constructions

(a) Preliminaries

1.1 Introduction. Our starting point is the standard model iV, consisting of
all natural numbers endowed with the usual (standard) successor, addition,
multiplication, zero, equality and the less-than-or-equal-to relation. Since
isomorphic models differ in an inessential manner, each model isomorphic
to N is also called standard. We shall be interested in non-standard models.
We shall investigate only countable models; thus in saying "model" we always
mean "countable model".

We shall often use Gδdel's famous completeness theorem 0.12 and also
the method of skolemization 0.14. We shall also make use of the fact that
Matiyasevic's theorem is provable in IΣ\ (cf. 1.1.59). We shall construct new
models as extensions of a given model (e.g. of N) or as submodels of a given
(non-standard) model. In this section we shall deal with definable ultrapower
as a method for construction of an extension of a given model and with a
few methods of construction of submodels using definable elements. Definable
ultrapower of N is one of the simplest examples of a non-standard model
(and corresponds - mutatis mutandis - to the first historical construction
of a non-standard model of PA due to Skolem). This is elaborated on in
subsection (b). The methods of constructing submodels of a non-standard
model are powerful enough to produce, for each theory T from the hierarchy
of theories IΣjfe, J3JP^+i, PΣjt+i, a model of T which is not a model of
any stronger theory in the hierarchy. For details see subsection (d). In (e) we
generalize the construction of definable ultrapower and characterize models of
BΣk+ι by the existence of some proper extension; as a by-product we obtain
new models of some theories in our hierarchy that are not models of stronger
theories. Subsection (f) contains two proofs of the theorem of Friedman and
Paris saying that BΣk+\ is 77&+2- c o n s e r v ati v e o v e r IΣk (& > 0) Thus the
reader finds here some techniques for construction of models, examples of
models showing that the hierarchy of fragments is proper (and non-linear) and
the above-mentioned conservation result. Most results of this section are due
- mutatis mutandis - to Skolem, Gaifman, Friedman, Paris, Kirby, Wilkie,
Lessan, Kaye and Dimitracopulos; see bibliographical notes for details.

1.2 Conventions. M, K, /, J vary over models for L; N is reserved for the
standard model. We use the same letter for a model and its domain if there
is no danger of misunderstanding. A model M has its zero Ojvf, successor
SM, addition +M> multiplication *Λ/, inequality <M\ we deal with models
having absolute equality. Sometimes we shall omit the index M in +M etc.
If t(xι,...,xn) is a term L containing the variables displayed then t^ is
the corresponding mapping of Mn into M, i.e., for each α i , . . . , α n E M,
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l> Jαn) is the value of t for α i , . . . , α n . We use Tarski's definition
of satisfaction; if φ is closed then M t= φ means that φ is true in M. K
φ{x\,..., xn) has the free variables displayed then M (= y>(αχ,..., an) means
that φ is satisfied by a\,..., an in M (which in turn is a condition concerning
sequences of elements of M having the value α, in the place corresponding
to Xi). M C K means that M is a submodel of ΛΓ, i.e. the domain of M is a
subset of the domain of if, Ojif = 0χ and 5^/, +M J *M > ̂ Λf are restrictions

<K respectively.

1.3 Some Definitions and Facts. (1) If Λf 1= /o p en then + M and *Λf axe

associative and commutative, satisfy the distributive law for multiplication
w.r.t. addition, <Λ/ is a discrete linear order with the least element Ojvf > &M
associates to each element its bigger neighbour, addition is monotone and so
is multiplication by a non-zero element; etc., cf. Chap. I, Sect. 1.

(2) Let K,M t= /open- K is an end-extension of M (M is a cut in ΛΓ,
notation M C β K) if for each a E M and each b 6 K — M we have K f= α < 6,
i.e. each element of M <#-precedes each element of K — M.

(3) Each M f= JOpen is an end-extension of (a copy of) the standard model:
Let / = {a 6 M \ (3n G N)(M N α = n)}; then clearly / is a cut in

M (cf. 1.1.6 (4)) and is isomorphic to N. Evidently, M is non-standard iff
/ Φ M, i.e. iff there is an a € M such that for each n G iV, M 1= a φ n.

(4) If M,K t= /open, M Cβ ϊ , ^ € Γ o and α , . . . , 6 G M then
M t= v?(α,..., b) iff i f t= φ(a,..., δ) (obvious). Consequently, if φ G ΣΊ and
α , . . . , b G M then M 1= y>(α,..., 6) implies if 1= y>(α,..., 6).

(5) In particular, the set of all ^-formulas is defined in N by a formula
Formm(x) which is Δ\ in IΣ\. Thus </? is a formula iff N 1= Form*(φ) iff
M N ίorm ^ ) for each M 1= JΣΊ.

(6) We introduce the notion of a J7n-definable subset of a model M N IΣQ]
A C M i s parametrically Σn-definable in M iff there is a Σn -formula φ and
an element c G M such that A = {a£M\M^ φ(ay c)}. Similarly for
non-parametric definability and for definable subsets of Mn.

(7) Recall that in 1.1.73-74 we defined satisfaction for ΣΉ-foπnulas in IΣ\
and in 1.1.81 we defined i7n-definable sets and their codes in IΣ\\ we have
predicates Code^,n and EΣ^ The relation to definable subsets of models is
as follows:

1.4 Claim. Let M f= IΣ\ and ACM. The following is equivalent:

(1) A is parametrically Σ"n-definable in M;
(2) there is a c G M such that M t= (c is a I7n-formula* with one variable)

and A = {a G M \ M t= SatΣyn(c, (α))}
(3) there is a d G M such that M 1= £*-set#(d) and A = {a G M | M 1=

} (Cf. 1.1.78)
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Proof. (1) =» (2). Let A = {a \ M 1= φ(a,p)}] M N φ(α,p) iff Af *=
S&tΣ,n(ψi (α»P)) iff JW ̂  £αt£>n(c, (α)) where c results from φ by substituting
the p-th numeral for the second variable).

(2) =» (3). Let A = {a \ M t= SatΣ%n(c, (α))}, then M f= ££-sef(c) and
A = {α I a Gj;,n c}.

(3) => (1). If A={aeM\M\=a eΣ,n d] then A is Indefinable in M
since G£,n is a -Σn-formula. •

Example of a non-standard model. The existence of a non-standard-model
follows trivially from compactness and completeness: let Th(N) be the set
of all sentences true in JV. Let a be a new constant and put T' = T U {n <
α I n 6 JV}. T7 is consistent by compactness and therefore has a model M;
M is non-standard since if c is the meaning of α then M 1= c > n for each
n G N. In the next subsection we shall construct a non-standard model in an
apparently more transparent way.

(b) Definable Ultrapower of the Standard Model

1.6 Construction. Let F be the set of all definable mappings of N into N
(as particular subsets of JV2). Let D be the set of all definable subsets of
N. Clearly, D is a Boolean algebra, i.e. is closed under meet, union and
complement. D is countable; let U be a non-trivial ultrafilter in D, i.e. we
have the following:

A C B and A € U implies B eU.

A,B eU implies AΠ B G U ,

for each A e f l , either A G Ϊ7 or (JV - A) G U,

A G E7" implies that A is infinite.

(Hint: let Ao,Ai,A2,... be the sequence of all (countably many) definable
subsets of N; define Do = JV and for each n, let Dn be DQ Π Π Dn-\ Π An

if this set is infinite, otherwise let Dn = DQ Π Π Dn_χ Π (iV — An). Let
A G £> iff (3n)(Dn C A).)

Let, for f,geF, f=u g mean {i e N \ N \= f(i) = g(i)} G U. (Observe
that the last set is in D.) It is easy to show that =u is an equivalence, i.e.
is reflexive, symmetric and transitive. Let [f]u be the equivalence class of
/, i.e. [f]n = {g\ f =u g} Let N* = {[f]u \ f G F). Put / + F g = h
iff, for each i G JV, /(i) + g(i) = /ι(i), similarly for 5,*. Let / <χj g mean
{i G JV I /(i) < 5f(i)} G U. Show that =£/ is a congruence w.r.t. the operations
SF> +F> * F ; this means that we may define [f]u +N* [g]u = [/ +F g]u and
similarly for 5. Doing this we endow JV* with a structure for L (we put
0N = ko where ko(i) = 0 for each t). This structure is denoted by JV* (or
JV*(ί7)) and is called the definable ultrapower of JV (given by U).
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1.7 Theorem. (1) N* is a structure for L elementarily equivalent to N; thus
N* is a model of PA.

(2) The mapping associating with each n 6 N the element [kn]u (where
kn(i) = n for each i) is the unique isomorphic embedding of N onto a cut in
N*.

(3) N* is non-standard; e.g. the diagonal d (such that d(i) = i for each i)
is a non-standard element.

The rest of the subsection consists of the proof of this theorem.

1.8 Lemma. (1) For each term t(xι,...,xn) of L and all / i , . . . , / n €
F, let t jK/l. . . ,/n) be the function /(i) = ijv(/i(i),...,/n(i)). Then

(2) For any terms *(a?i, . . . , s n ) , θ(a>i,... ,z n ) and / i , . . . ,/ n Gf ,

iff

{i € ΛΓ I iV N *(/i(i),... f/n(i)) = *(/l(i),...,/n(0)} € EΓ.

The same replacing = with <.

Proof. (1) by induction on the complexity of t. (2) follows immediately from
(1). D

1.9 Los's Lemma. For each L-formula φ(x\y...,xn) and any / i , . . . , fn € F,

iV* 1= v([/l]t/,. , [ /nM iff {i G ΛΓIJV t= φ(h(i),...,fn(i))} € IT.

Proo/ by induction on the complexity of ψ\ we elaborate the induction step for
quantification. Let φ be (3y)φ(xιy...,#n, y) and assume the assertion for ψ.
1£N*£ (3y)ψ([fι]u,...,») then for some <,, ΛΓ* (=
thus

which implies {i | N t= (3tι)^(/i(i),... ,/n(t),tι)} G Ϊ7. Conversely, let
^ = {i I JV N (3tιM/i( ) , . . . , /n(0, tι)} € t/. Define ^ as follows:

for i e A, g(i) = min/ N N φ{f\{i),..., /n(0>i) 5

for i i A, 0(i) = 0.

Since / i , . . . , fn are definable, one easily sees that A is definable and so is g.
Clearly,

A = {i I N N v (Λ(i), , /n(0 ? ί ( 0 ) € D",

thus i\Γ* 1= ^ ( [ / i ] σ , . . . , [/n]c/, \g]u) and iV* t= (3α)^([Λ]^,...,«). •
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1.10 Corollary. 1.7 (1) follows.

1.11 Lemma. For each n, let kn(i) = n for each i; then kn is the value of the
n-th numeral n in N.

Proof. Clearly, [&o]{7 1S the least element in N* and n < m implies N* 1=
[kn]u < [̂ m]c/ It is sufficient to show that if N* t= [f]u < [kn]u then for
some m < n, [f]u = [km]u. Let Am = {i \ f(ί) = m}; clearly, {i \ f(i) <
n} = AQ U U An G U and therefore for an m < n we have Am £ U. Thus
f =U km. Thus 1.7 (2) is proved. D

1.12 Lemma. The diagonal is non-standard.

Proof. Clearly, for each n, [d\χj φ [kn]u since the set {i \ d(i) = n} is a
one-element set. This completes the proof of 1.7. D

1.13 Remark. In subsection (e) we shall generalize this construction in two
ways: first, we shall start with a possibly non-standard model M instead of
N and, second, we shall only assume that M is a model of a fragment of PA.

(c) On Submodels and Cuts

This subsection is somewhat technical; we collect here several facts useful
further on. They concern three things; first we formulate very useful principles
of overspill and underspill, second we introduce the notion of a fc-elementary
submodel and prove some lemmas about this notion and third, for M C K
we define sup^ (M) = {a G K \ (3b G M)M (= a < 6} and prove some facts
about this notion.

1.14 Definition. Let M 1= /Open A set / C M is a cut (notation: I C e M) if it
is closed under successor (in the sense of M) and contains with each a each
b G M that is less than α, i.e.

(Vα G I)[SM(a) G I&(V5 G M)(M 1= b < a -> b G / ] .

A cut / C M is proper if / φ M.

1.15 Observation. Let M t= JOpen M t= IΣ^ iff no proper cut is
definable.

Proof, (ii) =Φ> (i) is evident; and (i) =Φ- (ii) follows from the fact that
implies IΣ0(Σk) (see 1.2.4). D

1.16 Corollary. Let M 1= IΣk. Let φ(x) G Σ0(Σk) and let J C M be a proper
cut. Then
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(i) (overspill) if for each a G /, M 1= φ(a) then for some b G M — /,
M 1= (Vx < δ)v?(x);

(ii) (underspill) if for each a G M — /, M t= <£>(α) then for some b G I,
M 1= (Vx > % ( x ) .

/. If for each 6 G M - /, M 1= (5x < b)-^φ(x) then 7 = {a G M | M 1=
(Vx < a)φ(x)}; thus / is Σo(Σk)-definable. Similarly for (ii). D

1.17 Definition. Let M C K. M is a k-elementary substructure of K (no-
tation: M -<j. K} if for each y>(xi,...,xn) G Σk and each α i , . . . , αn G M,
M 1= y?(αi,..., an) ΊS K \= φ(aχ,... an). M is an elementary substructure of
KiίM -<kK for each k.

1.18 Remark and Notation. Clearly if M C e K (i.e. UΓ is an end-extension of
M) then M -<Q K. See below for a stronger result. We write M <ek K for
MCeK kM <kK.

1.19 Lemma. Let i > 1, and Af, AΊ= /open, Af C K. Then M ^ K iff, for
each UA -1 -formula π(x,y) and each b G M such that if 1= (3x)π(x,b), there
is an e E M such that K f= τr(α, b).

Proof. The implication => is obvious; let us prove the converse. Assume the
condition and prove M -<i K by induction on i < k. For 2 = 0 use induction
on the complexity of the formula in question. D

1.20 Lemma. Let M,K£ IΣ\ and M C K. Then M -^0 K.

Proof. Let φ(x) be ΣQ] then both φ and -*φ are Σ\. By Matiyasevic's theorem
(provable in IΣ\, cf. 1.3.25) there are pure existential formulas σ\(x) and
σ2(x) such that IΣ\ h c (̂x) = σ\(x) and JΣΊ I—»<£>(x) = ^2(^) Let α G M
and assume M t= v?(x). Then M t= σ"i(α), thus K N σi(α) and ΛΓ \= φ(a).
Similarly for ~^φ. G

1.21 Remark. (1) Note that IΣo(exp) proves Matiyasevic's theorem as well
(cf. 1.3.26); thus IΣ\ may be replaced by IΣo(exp) in the previous theorem.

(2) Note that for k > 1, BΣk and PΣk are axiomatized by iTjfe_|_2~f°rmulas

(see Chap. I, Sect. 2 and subsection (d)) below. Furthermore observe that
M -<k K implies that M satisfies each Πk+ι sentence true in K. Thus if
•W Â -f 1 K a n ( l K i s a model of /Σ1^, 5JCjb, PΣ1^ respectively, then so is
M. (Furthermore, IΣo is Π\-axiomatized; thus M -<o K 1= 7i7o implies

1.22 Lemma. Let M -^e>ib if N JΓ f c. If M φ K then M 1= BΣk+v
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Proof. Clearly, M (= IΣΌ Let π(z,y,z) G Πk, α,δ G M, M N (Vα; <
α)(3y)τr(a;,y,δ). For each c G ΛΓ - M, ΛΓ 1= (Vx < α)(3y < c)τr(a:, y, δ).
By underspill, there is a c G M such that ΛT t= (Vx < α)(3y < c)π(x, y, 6);
thus Af N (3*)(Vz < α)(3y < *)π(:r, y, 6). D

1.23 Definition. Let M C K; put s u p ^ M ) = {a G ΛΓ | (36 G M)(Jf 1= α <
6)}. (The cut in K determined by M.)

1.24 Theorem. Let fc > 1, M \= BΣk and M C ]f (= IΣ\. Then M - ĵb+i
sup^(M).

Proof. Put / = supjR:(M). Clearly J Xo ^ (since / C e ϋΓ), and M Xo -^
by 1.20. Thus M -<Q /. We prove M ^ i /. Let (Vx)φ(x,y) be J7χ and
assume M 1= (Vx)φ(x,a). Let c G /, take a c' G M, I 1= c < c;. Then
M t= (V* < e/M^α), thus / N (Va: < d)φ(x,a), thus / t= φ(c,a). We
have proved J t= (Vx)φ(x,a). Now let fc > 1, i.e. k + 1 > 1; assume the
theorem for fc, let M t= J3JE*+1, M C X t= J £ i , let Φ be a ilfc+i-formula
(Vz)(3y)τr(z,y,z) and let M t= (Vx)(3y)τr(x,y,α). By induction, we assume
M -<k I. Let cyc

f be as above; since M t= BΣk+ι, there is a d G M such
that M N (Va? < c/)π(x,(d)x,α). Thus ΛΓ 1= (Va? < c/)ir(oi,(cOy,a) and
UΓ l= (3y)π(x,y,α). We have proved K t= (Va;)(3y)π(a;,y, α). D

1.25 Remark. (1) In the next subsection we shall show that the above theorem
is the best possible: for each fc > 1, there are M 1= BΣk and K 1= IΣ\ such
that for I = sup#(M) M is not a (fc + 2)-elementary substructure of 7. (See
1.51)

(2) For PA we get the following Corollary: If M,K N PA, M C K and
/ = sup^-(M), then M •< I (M is an elementary substructure of J).

(d) Models for the Hierarchy

In this section we shall show that the hierarchy of theories IΣ^ , BΣk is
proper; we shall also show the exact place of theories PΣk investigated in
Chap. I, Sect. 2.

Recall that PΣk is IΣ\ plus the schema saying that each ^-definable
partial function has arbitrarily long finite approximations, i.e. if F is such a
function then for each x there is a segment s of length x such that, for each
i < x — 1 and each u < (θ)t , u from dom(F), we have F(u) < (θ)»+i. Recall
the positive results we have:

1.26 Theorem. (1) PA = (Jn IΣn = U n

 BΣn = On p^n
(2) for n > 0, IΣn+\ implies BΣn+\ and BΣn+ι implies IΣn]
(3) for n > 1, IΣn+ι implies PΣn and PΣn implies IΣn\
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(4) PΣo is equivalent to PΣ\ and BΣQ is equivalent to BΣ\.
Recall also the following fact (more or less explicit in Chap. I, Sect. 2, see

also the preceding subsection).

1.27 Theorem. (1) IΣQ is a i7i-theory.
(2) For n > 1, each of IΣn, BΣn, PΣn is a 77n+2-theory (i.e. it has a

system of axioms consisting only of i7n+2 formulas).

Remark. The proof is an easy exercise; note that for n > 1, BΣn is equivalent
to IΣ\ plus

(.. .)(Vβ)[(V* < a)(By)φ(x, y) - (3a)(V* < a)φ(x, (,).)]

(cf. 1.2.24).

1.28. Thus the relative strength of the theories in question may be visualized
by the following diagram where T —* S means: T is at least as strong as S
(cf. 1.2.26):

/ \

PΣ2 BΣz

\ /

IΣ2

/ \

PΣQ = PΣi BΣ2

\ /

IΣX

i

BΣi = BΣQ

i

IΣ0

We shall show that the diagram remains valid if the arrow is understood
as meaning "is strictly stronger than". In more details:

1.29 Theorem. (1) For n > 1, IΣn+\ is strictly stronger than either of
BΣn+ι and PΣn; both BΣn+\ and PΣn are strictly stronger than IΣn.
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Furthermore, IΣ\ is strictly stronger than BΣ\ and BΣ\ is strictly stronger
than IΣo.

(2) For n> 1, PΣn and BΣn+ι are incomparable, i.e. neither of them is a
subtheory of the other.

(3) For n > 1, PΣn & BΣn+i does not imply IΣn+ι.

1.30. To prove this theorem we define three constructions of submodels of
a given non-standard model; all are given by some definable elements. Note
that an element a £ M is Σn-definable if there is a Σn-formula φ(x) such
that a is the unique element of M satisfying φ in M. More generally, a is
Σn-definable from b in M (where b is a tuple of elements of M) if there is a
XVj-formula φ(x, y) such that a is the unique c G M such that M 1= y?(c,b). If
X C M then a is called Σn-definable from X in M if it is i7n-definable from
a tuple of elements of X in M.

Clearly, each standard element of an M t= I o p e n (or even M 1= Q) is in-
definable (n is definable by x = n). Our starting point is the following.

1.31 Observation. There is a model M 1= PA containing non-standard So-
definable elements.

Proof, By GόdeFs first incompleteness theorem, there is a J7i-formula
(yx)φ(x) unprovable in PA\ thus PA+(3x)-»</?(x) has a model M. Let α be the
least element of M satisfying -*φ\ then a is defined by ~^φ{x) & (Vy < x)φ(x)
which is ΣQ. D

1.32 Definition. Let M 1= 1Σ\ and fc > 0.

Kk(M) = {α β M I α is Indefinable in M } ,

M

{a E M I a is majorized by a ^-definable element of M} .

I f l C M then Kk(M,X), Ik(M,X) are defined as Kk(M), Ik(M) but
replacing "definable" by "definable from X".

Hk(M) = \Jn=0H
k(M) where HJ}(M) is Ik(M) and Hk

+ι(M) is
Ik(M,Hk(M)).

1.33 Theorem. (1) Let fc > 0 and M 1= IΣk. Then

(i) ^ ( M ) —<jfe M, thus ίΓ*(Aί) 1= ΓΛ/7fjb+i(M)

(ii) Ik(M) -*>jt_i M and Ik(M) t= 2ΊAτj>jt+i(M)

(iii) iΓ*(Af) ^k M, thus JT*(M) t= ThπM1(M).

Evidently Ik(M) Ce M and Hk(M) C e M.
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(2)ΊfN^ Kk(M) (i.e. if Kk(M) is non-standard) then

(i) Kk(M) is a model of IΣk^ and ->BΣk; if jfe > 1 then also Kk(M) 1=

(ii) Ik(M) is a model of BΣk and -i/27jb; if * > 1 then also Ik{M) 1=

Άi
(iii) Hk(M) is a model of BΣk+i and -»PΣΆ.; thus #*(M) N

JZemαrib. Assertion (1) and the positive parts of assertion (2) relativize, i.e.
Kk(M) may be replaced by Kk(M,X) etc.; but trivially, the negative parts
do not, e.g. if X = M then Kk(M, X) = M and M 1= IΣk by assumption;
thus M N BΣk.

1.34 CoroUary. (1) If M N P4 and i f ^ M ) means the substructure of all
definable elements then K°°(M) -< M.

(2) Theorem 1.29 follows.
(3) PA is not finitely axiomatizable, since each finite subtheory of PA is a

subtheory of some IΣk. (Cf. 3.2.24)

The rest of the subsection contains a proof of Theorem 1.33 and a proof of
the fact that Theorem 1.24 in the previous subsection cannot be strengthened.

1.35 Definition (only for this section). A ^-formulaφ{x) (possibly containing
Other free variables as parameters) is special if IΣQ h φ(x) & φ(y) :—> x = y,
i.e. in each model of IΣQ, at most one object satisfies φ.

1.36 Lemma. (1) An element a € M is ^-definable in M N IΣk iff it is
defined by a special Σk -formula.

(2) More generally, if X C M is ^-definable and non-empty in M N IΣk

then there is a special Σk-formula defining an element of X.

Proof. Let φ € Σk define X C M. If k = 0 then min-Y has a special. ΣQ defi-
nition. Assume k > 0 and let φ(x) be (3y)φ(xy y); let χ(x) be (3y, z)φ(x, y)
& * = (x, y) & (Vtx < ^ίί^^ίί^Jo, (w)i)). Then x is special and clearly defines
an element of X (not necessarily the least element). D

1.37 Lemma. If M 1= IΣk (k > 1) is non-standard then indefinable elements
are not cofinal (i.e. there is an a G M such that no b G M, b >M a is In-
definable). This generalizes to ^-definability from a proper cut.

Proof. Formalize the notion of a special definition in IΣ\. In M, let y = F(x)
if x is a special* JCjJ-formula* and y satisfies x (w.r.t. Satzik). Clearly, F is
a ^-definable partial function. If a is non-standard then, by SΣk, there is
a t such that (Vx < a)(x G dom F :-> F(αr) < ί). If 6 is Σfc-defined in M by
a special Σk-formula ψ then M t= 6 = JP(^) & ^ < α, thus M t= δ < t. D
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1.38 Convention. In the following lemmas 1.39-1.44 we assume k > 1, M t=
IΣk, X CM.

1.39 Lemma. Kk(M) ^k M.
(The same for κ\ht,X).)

Proof. Use lemma 1.19: let M 1= (3y)π(α,y), π € iTjfe-l> * € Kk> <* defined by
θ € Σk; the least y such that π(α, y) is defined in M by

(3u)(*(t») & JΓ(U, y) & (Vj/ < y)-«r(u, j / ) ,

the last formula is Σk in JΣ1^ (even in BΣk-ι) and such a y exists by ijfe-i
Thus the least y such that π(α, y) is in M. D

1.40 Corollary. Kk(M9X) satisfies iTjfe_i; if k > 2 then it also satisfies

1.41 Lemma. If N φ Kk(M) then Kk(M) N

Proof. Assume Kk 1= -BXΆ . In Kk, each element is Indefinable (by any
special ^-formula defining this element in M). Thus for s,t G UT̂  — iV,
UΓΛ (= 5 < t, we have (after an obvious formalization, see above)

Kk 1= (Vz < t)(Ξe < s)(e is a special ΓJ-definition of x).

By BΣk the last formula is equivalent to a ^-formula and consequently it is
true in M. The restriction of the relation "e is a special ^-definition of x"
to s x t is coded (by IΣ^) and yields a finite set which is a one-one mapping
from (< s) onto (< £), which contradicts the pigeon-hole principle for finite
sets, provable in IΣ\. This completes the proof. D

1.42 Lemma. Ik(M,X) <k-l M.

Proof. Trivial for k = 1 since Ik(M, X) C e M. Suppose k > 2, let φ G Πk_2

and M 1= (5α;)^(a:,α) where a e Ik. (Write /fc instead of Ik(M,X).) We
find a d E if* such that M 1= (3x < d)φ(x,a); and since such an # is
necessarily in Ik, the lemma follows by 1.19. Thus let c G Kk be such that
M N α < c; in M, take d = maxy<cmina φ(x,y). In more detail, for y < c
put ^(y) = minx φ(x, y) if there is such an x. Clearly, F is 2?o(J7n_2)-defined
and therefore coded; let d = max(range(F)). Then d is defined as follows:

x = d = (3y < c)(y>(x, y) & (Vy; < y)^(rτ, y'))

&(Vy < c)(Vz)(V(z,y) - (3zf < x)φ(z',y)).
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Write this as x = d = α(z,c); clearly α is Σk (even ϋjfe-i) in M; if 7(2/) is a
^-definition of c, d is Σjfe-defined by (3y)(7(y) & α(x, y)). D

1.43 Lemma. /^(ΛfjΛ') 1= ThΠjk+ι(M), i.e. each 27fc+2 sentence true in M is
true in Ik(M,X).

Proof. Let π be U*.^ and let M N= (Vx)(3y)π(a;, y). Take an arbitrary a € ΛT*.
Then M t (\/x < a)(3y)π(x,y) and, by BΣk, M 1= (Ξ*)(Vx < a)(3y < t)
π(x,y). We show that the least such to is in K. Indeed to is Σo(Πk^ι)
in α, thus ^-definable (without parameters) in M, hence to G if. Thus
Ik t= (Vx < a)(3y < to)τr(x,y) (thanks to Ik -<k-l M) and since a was an
arbitrary element of K we get I* t= (Va;)(3y)π(a:, y). D

1.44 lemma. (1) Ik(M,X) t=
(2) If jfc > 2 then Ik(M,X)
(3) If X is a proper cut in M or if X = 0 and M is non-standard then

Ik(M,X) t= / îb, thus Ik(M,X) φ M.

Proof. (1) follows by Lemma 1.22 for Ik φ M and is trivial for Ik = M. (2)
follows by 1.33 since PΣk_λ is Πk+1. (3) follows by 1.37. D

1.45 Lemma. If fc > 1, and M t= BΣk+1 then (1) Hk(M) (= BΣk+1 and (2)

JT*(Af) -<k M.

Proof (1) follows by Lemma 1.22 for Hk φ M and is trivial for Hk = M
(since M t= BΣk+{). (2) is clear since H (M) is the sum of the increasing
chain of models Kk(Hk(M)) and each such model is -<k M. D

1.46 Remark. (1) Observe that the assumption M t= BΣk+\ may be replaced
by M t= IΣk and # f c (M) ^ M.

(2) Recall the notion "a finite increasing sequence is an approximation of
ί1" (where F is a JCj.-defined partial function); note that this is a Πk notion.
Thus (1) IΣk proves that if there is an approximation s of F such that
lh(s) = x then there is a least such s; (2) for each n, IΣk proves that there
is an approximation s of F with lh(s) = n. (See 1.2.21).

1.47 Definition (IΣ\). From here on out, let F be the function associating
with each pair (z,x) (where z is a special parametrical Σk definition and
x is a parameter) the only y defined by z from x if there is such a y, and
undefined otherwise.

(2) A finite increasing sequence s is said to capture x if x is less than or
equal to the last member of s.
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1.48 Lemma. Let M f= IΣk and a G M; a G Hk(M) iff, for some standard n,
the least approximation s of F with lh(s) = n captures a.

Proof. Since Hk(M) 1= /-Σjfe, for each standard n there is an s n G Hk(M) such
that, in Hk(M), sn is the least approximation of JP such that Ih(sn) = n.
Since Hk(M) -<k M, s n has the same property in M; this proves that if a is
captured by such an sn then α G Hk(M).

Conversely, let us prove by induction on i that each element of Hk is
captured by some sn. This is clear for i = 0; assume the assertion for i
and consider (i + 1). It suffices to show that an element of Kk(Hk), i.e. an
element a ^-definable from an element c of if*, is captured. Let φ G Σk
and φ define a from c in Λf observe that φ, being standard, is in HJ? and
hence (φ,c) G Jϊ*. By the induction assumption, let sn capture (φ>c); then
clearly, θn +χ captures a. D

1.49 Corollary. Let M 1= JΓ* be non-standard and let Hk(M) φ N. Then
Hk(M) is not a model of PΣk. Thus Hk(M) is not a model of IΣk+v

Proof. In Hk(M), the function F defined in 1.37 has no approximation of
non-standard lenght. D

1.50 Summary. We check that Theorem 1.33 has been proved. (1) (i) by 1.39,
(2) (i) by 1.40 and 1.41; (1) (ii) by 1.42 and 1.43; (2) (ii) by 1.44; (1) (iii) by
1.45, (2) (iii) by 1.45 and 1.49.

The last task of the present subsection is to show that the result of 1.24 is
optimal.

1.51 Theorem. For each k > 1 there are M C K such that M 1= IΣk,
K 1= /Xfc+i and M is not a (k + 2)-elementary substructure of sup#(Λf).

Proof. Take a K 1= IΣk+ι containing non-standard ΣΌ-definable elements,
and let M = A * * 1 ^ ) ; thus M t= IΣk & ^BΣk+1 (cf. 1.33). Let I =
sup/f(Λf) = I ^(K). Note that in M, each element is Σk+ι-definable; in
other words, for each non-standard t,

M 1= (Vz)(3y < t)(y special* and 5αt27 |ib+1(y,a;)).

Assuming Λί -<fc+2 ^ ^ β l a s t formula would be true in / for each non-
standard t (since M is cofinal in J), thus in / each element would be Σ"^+i-
definable. But by 1.33, I (= BΣk+ι and the following lemma gives a contra-
diction. •
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1.52 Lemma. If k > 1 and M N BΣ^i is non-standard then some elements
of M are not I7fc+i -definable. More generally, assume a £ M and t £ M — N;
then under the above assumption, there are elements b E A/ — iV, such that
M t = 6 < ί and 6 is not Σ^+i -definable from α.

Proof. Assume that each b <M t is £fc+i-definable from a; thus M t= (Vx <
t + l)(3y < t)(y special* and 5α*jE,jb+i(y> s, α)).

This can be written as

Λί 1= (V* < * + l)(3y < <)(3ix)τr(x, y, u, o)

where π E Hjfe. Using M N U27j.+i we can bound the quantifier (3iί); thus
for some g,

M t= (Vx < * + l)(3y < t)(3u < q)π(x, y, tι, α).

By IΣfc, there is a d E M coding the relation on (t + 1) x t defined by
(3u < ςf)τr(a:,y, ίx,α). From d we may construct a df which is, in Λf, a finite
mapping associating to each x < t its least special Σfc-f-i-definition from
α. Since M t= (σ is one-one) we get a contradiction with the pigeon hole
principle for finite functions (provable in IΣ\). D

(e) Elementary End Extensions

1.53 Theorem. Let M f= IΣQ (countable!).

(1) For k > 1, the following are equivalent:
(li) M N BΣk+1

(lii) M has a proper (k + l)-elementary end extension K t=
(2) If M has a proper 1-elementary end extension K 1= IΣQ then M 1= 2Ϊ272
(3) If M t= /27o then [M has a proper elementary end extension iff M t= P.A].

1.84 Remark. The theorem is proved in this subsection. In (1) observe that
(lii) evidently implies that the K in question is a model of IΣ^i (since this
theory is Π^i). We don't know if we may always have AT 1= BΣ^ but if
k > 2 we may have K t= PΣk-i

The reader may show as an exercise that (lii) cannot be strengthened to
K N IΣjg (this would imply M t= JJCfc+l) But comparing this theorem with
1.22, we may ask if 1.22 can be converted, i.e. if (li) implies that M has a
proper fc-elementary end extension to a model of IΣk The answer is negative
(personal communication by R. Kaye).

1.55 {Proof of (2)). Assume M 1= IΣ0, M ^e>χ K f= IΣ0; we prove BΠi. Let
τr(#,y) = (yz)φ(xi y, z) where φ is Σo and assume M N (Vx < α)(3y)π(x, y)
(we disregard parameters). Let t E ί ί — M; then K t= (Vrr < α)(3y < t)π(x,y)
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- here we use M -<χ K. For each c € K - M, K 1= (Vx < a)(3y <

Fix a and c; by underspill, there is a t G Λf such that the last formula is
true in K. Thus, Af h (Va: < α)(3y < i)π(x, y, z). D

1.56 (Proof of (lii) =» (li).) Let Jb > 1, Λf 1= IΣ0, M -* β | j b + 1 i f N iΊ70.
By 1.22 and by induction on fc, we know that M N BΣ^ and AT N IΣ^\.
We prove M N BΠjg. Let π(x,y) = (V )̂y>(α;,y,2r) where y) is 27j._i. Assume
M t= (Vx < α)(Ξy)τr(a:, y). For a t e K - M, we have

Thus

t= (V* < α)(Vu)(3y < t)(V* < uV(x, y, z),

< α)(Vtι)(3y

since i f 1= BΣk-\ the last sentence is -Ejfe+i and therefore holds in M.

M 1= (3t)(Vx < α)(Vt*)(3y < t)(Vz < u)φ{x, y, z).

Since M N BΣk we may use RΣ^\ (regularity) and get

M 1= (3t)(V* < α)(3y < t)(Cu)(Vz < u)φ(x,y,z)

where (Cu) is "for infinitely many u" (cf. 1.2.20); thus

M \= (3t)(Vx < β)(3y < *)(Vz)V(a:, y, z), G

1.57 (Proof of (li) => (lii). We generalize and refine the construction of
the definable ultrapower described in subsection (b) (1.6-1.12). First, we
start with an M \= BΣ^\^ not just by N. Second, we take algebra D
of (parametrically) <Δfc-definable subsets of M and construct an ultrafilter
U on D. To be able to prove that in the corresponding model constants
form an initial segment (cf. 1.11), U must have the following property: each
parametrically Λ^-definable partition of M into a M-finite number of sets
intersects U. In other words, if / is a Z\fc-definable mapping of M into (< a)
where a £ M then for some b <M α, /~ 1 (6) G U. Due to countability, we can
arrange all such F's (satisfying the "if"-part above) into a sequence /o, /i,...
and define: XQ = M\ and if Xn has been defined and is unbounded in M, put
ff = fn Γ -̂ n Since M N J3I7fc+1, it satisfies ω —> ωf

<ω(Δk, Δ^) and therefore
there is a b such that /'~ 1(δ) is unbounded; we put Xn+\ = //~1(&). Then
we put, for A G JD, A e U iff (3n)(X n C A).
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Let F be the set of all parametrically zl^-definable mappings of M into
itself. Define / = # y, [f]u as in 1.6 and let K = {[f]v \ f G F}. Define < # ,
+K-> *Ki e * c as m l δ We have the following

Claim 1. Los's theorem holds for JC&-formulas, i.e. for each such formula
φ(xu >">Zn) and /i, . . . ,/„ G F, K t= φ([f]u, . ., [/n]tf) iff there is an
X £ U such that

To prove this we first prove a subclaim: if φ is a Boolean combination of
JCfc_l -formulas and /,• are as above then

tf, , l/nltr) iff {α € M I M

The subclaim is proved by induction on the complexity of φ (cf. 1.8-1.9
observing that the sets in question are Δjς). Then consider φ(xι,..., xn) =
(3y)φ(x,y) where ψ is IZjb-i

First assume K t= (3y)ψ([fι]u, > -. ,y); thus there is a ^ such that if t=
Ψilfίiu, > [ff]iτ) By the subclaim, {a £ M \ M N ̂ (/ i(α), . . . , </(α))} G t^.
Conversely, let for each α G X € 17, M 1= (3y)φ(fι(a),..., y). Then define

minyMt=^(/i(α),...,y) for α G

Clearly, g is ^-defined and total and K t= ̂ ([/i]t/,..., [g]u) This proves
Claim 1.

Claim 2. The mapping associating with each a £ M the constant function
ka on M with range (&a) = {a}isa(fc + l)-elementary embedding of M onto
a proper initial segment of K.

The proof of the fact that this is an embedding of M onto a proper
initial segment of K is fully analogous to 1.11-12 (due to our careful choice
of U). Furthermore, it is immediate from Claim 1 that for each ψ G .Σ/fc,
M 1= y>(α,...,6) iff ϋC t= v([*α]^,...[*6]ir). Now let ^ G ̂ + 1 , ^(a?i,... fy)
and let K 1= ¥>([fcα]u> ••)? ί e ^OΓ s o m e 9, K ^ ^([^α]t/? ••Ĵ lc/')- Then
for some c G M, M N ^(α? * #(c)) s ί n c e otherwise we would get K N
"•^([^oli/) > [#]£/) from Claim 1. This proves Claim 2.

Since k > 1 and after the trivial identification of M with its isomorphic
image in K, M -<k+l K> w e Se^ K ^ ^^0 and (lii) is proved. D

1 58 (Proof of 1.53 (3).) The implication =$• follows by 1.55 (1). Conversely, if
M 1= PA we may modify the construction of the definable K by investigating
all definable subsets and construct U such that it intersects each definable
partition of M into M-finitely many subsets. Then evidently M -< K and
thus K t= PA. Ώ
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(f) A Conservation Result

The main aim of this subsection is to prove the following:

1.59 Theorem. For each k > 0, BΣk+i is a Γ̂A +2~conservative extension of

The theorem is due to Paris and Friedman, independently. We shall present
two proofs. The first is simpler (due to Kaye; apparently this was the original
unpublished Friedman's proof) and the second brings additional information.
The first proof relies on the following:

1.60 Lemma. For each k > 0, if IΣk+φ(ά) is consistent, where φ is Ufc+i and
a is a constant, then there is a model M t= IΣk + φ(a) which has a proper
fc-elementary cut containing α.

Clearly, the lemma implies the theorem, using 1.22: if IΣk + (βχ)Φ(x) 1S

consistent then the cut I above is a model of J?Σj.+i + φ(a). The second
proof uses the following theorem, which is of independent interest.

1.61 Theorem. For each k > 0, each model M of IΣk has a cofinal (fc + 1)-
elementary extension K to a model of BΣk+\.

This again implies 1.60: if M 1= φ(ά) where φ is as above then K N φ(a)
since M -<k+l K We have also the following

1.62 Corollary. For each fc > 1, (BΣk+ι + PΣk) is a IΓjfe+2-COIlservative
extension

Proof. Observe that if M and K are as above and M t= PΣk then K t= PΣk:
if F is a partial function ^-definable in K then its restriction to M (i.e.
F Π M x M) is ΣΆ -definable in M; and if c e M and M N (s is an
approximation of F with lh(s) = c) then the same is true in K (since
M -<k+l K) This suffices because M is cofinal in K. O

The rest of the subsection elaborates proofs of 1.60 and 1.61.

1.63 (Proof of 1.60). First assume k = 0 and let (IΣQ + φ{a)) be consistent
where φ is Π\. Let c be a new constant; then the theory T = (IΣQ + φ(a) +
{ α n < c | n E J V } i s consistent (by compactness). Let M 1= T and let
I = a

N = {6 e M I (3n E N)M f= (δ < αn)}. Then / is a proper cut in M,
J ^ 0 M , J N ^(α) and I N BΣΊ by 1.22.

Now assume A; > 0 and work in IΣk. Say that y majorizes witnesses of Σk-
foπnulas beneath z with parameters beneath u (in symbols: MWitn(y, z, u)) if
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the following holds for each Σk formula x < z of the form (3VQ)K(VQ, . . . , υt)
and each ί-tuple s < u: if there is a w such that Satjjjg—iζπ, (w) ^ s)(a
witness for the fact that s satisfies x) then such a w exists beneath y. Define
JE7(J2Γ, u) be the minimal y such that MWitn(y, z, u). Observe that E is
and total (due to SΣk).

Now take the following theory T:

IΣk, ψ(a0), { α n + i = E(n, an) \ n e N], {c>an\neN}.

Clearly, T is consistent; let M t= T and I = supn an = {b e M | (3n)(M 1=
b < an)}. Then α G /, / ̂  M, J ̂ jt M as desired. D

1.64 Remark. The reader may prove the following fact as an exercise: In the
above proof, / = Hk(M, (< αo)). The rest of the subsection contains a proof
of Theorem 1.61. (The proof differs from the original proof by Paris.)

1.65 (Construction). Recall that each theory T has a conservative extension
S = Sk{T) having the following strong Skolem property: for each formula
φ(y, x) of 5, there is a function symbol Fφ in S such that S t= (3y)y>(x, y) :—*
φ(χ, Fφ(x)). Moreover, each model M> T has an expansion to a model of 5.
(see 0.15.)

Let M N IΣk and let M* be the expansion of M to a model of Sk(IΣk).
Let I? be the Boolean algebra of all subsets of M definable in the language of
Sk(IΣk) (B is countable). Let U be a non-trivial ultrafilter on B containing
all upper segments (> b) = {a £ M \ M f= a > b}. Let K* be the definable
ultrapower of M* given by U and let K be the reduct of K* to the language of
arithmetic. Identifying each a E M with a = [ka] where ka : M —• {α} we get
M C i f . Finally, let / = sup^(M) = {[/] £ K \ (3a £ M)(K 1= [/] < a)}. We
show that / is the desired extension, i.e. M Ccf J, M -<k+l ?̂ I

1.66 Fact. (1) M -< K and M is not cofinal in K.
(2) M ̂ k+1 I.

Proof. (1) M -< K follows from the fact that Los's theorem holds for all
formulas of S:

K*£φ([f1],...,[fn])i${a€M\M*\=φ(f1(a),...Jn(a)}eU.

(The verification is left to the reader as an easy exercise.) In particular, for
α χ , . . . , α n GM,

K* f= φ(av..., an) iff M* N v ( β l , . . . , α n ) ,

which means, after the identification of M with the isomorphic substructure
of if*, M* -< K*. Consequently, M -< K. M is not cofinal in K since the
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diagonal d defined by d(a) = a satisfies K t= d > a for each a G M (by the
choice of U).

(2) For k > 1, the assertion follows by 1.24. For k = 0 argue as follows: Let
π(a ) be iTi and let M 1= π(α). Then if N π(α) (by M -< K), hence /1= τr(α)
(since I C e if).

(3) The claim is trivial for k = 0. For k > 0 use the function J3(u,2)
from 1.63 (£7(u, z) is the least upper bound for a witness of ^-formulas < u
with parameters < z). Let b G I and K t= (3u)<p(u,b) where <p G ϋjb-i. Let
m £ N such that y> < m (y? is standard). Furthermore, let a G M be bigger
than b; in M, let e = E(m,a). Since Λf -< K we have ΛΓ t= e = J5(m,α), i.e.
if f= (3t/ < e)<£>(u,b). This means that there is a c G / such that K t= φ(c,b).
By 1.19, this implies I -<k K. D

1.67 Corollary. / 1= BΣjfe+i, thus I is the desired extension of M. This follows
by 1.22 since I φ K hy 1.66 (1) (M is not cofinal in K). This completes the
proof of 1.61.

2. Cuts in Models of Arithmetic with a Top

Cuts in models of Peano arithmetic have played an important role in the
development of model theory of arithmetic: Paris and Kirby did pioneering
work that continued by the indicator theory and a model-theoretic proof of
the independence of the Paris-Harrington principle. Later Paris developed
the theory of cuts in models of IΣ\\ this is the topic of our main interest.
Important in Paris's work are cuts in models of arithmetic with top (TA1):
they present a powerful device for the study of cuts in models of IΣ\, which
in turn, are very useful in the study of provably recursive functions. This and
the next section are devoted to this.

(a) Arithmetic with a Top and Its Models

2.1. Recall the theory BA1 - arithmetic without function symbols, introduced
in Chap. I, Sect. 2 (e). Its language L1 consists of the constant 0, the pred-
icates =, <, S (binary), A, M (ternary) having the usual meaning; axioms
assure that < is a discrete linear order with the least element 0, 5, A, M
define partial functions having natural properties of successor, addition and
multiplication and, in addition, axioms contain the induction schema for Σ1-
formulas (bounded formulas of Lf).

TA' (arithmetic with top) results by adding the axiom "there is a largerst
element" and IΣf

0 results by adding "successor, addition and multiplication
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are total functions". The only reason for the present short subsection is to
prove the following

2.2 Theorem. (1) If M t= IΣ'O and aeM then the substructure M \ a of M
with the domain (< α) is a model of TA!'.

(2) Conversely, if B (= TA! then there is a model K 1= IΣ'O and an a £ M
such that B is M \ a.

2.3 Corollary. IΣ1 and TA' prove the same 77{-sentences. Thus both theories
extend BA! n[ -conservatively.

2.4 Proof of 2.2 - beginning. (1) is trivial; we prove (2). For one-element B
the assertion is evident; so we assume that B has at least two elements. Work
with elements of B as with generalized digits and consider finite sequences s
of elements of B whose last element is not 0. (The length of s is an element
of N.) This is the domain of our K. It is ordered lexicographically; s < t
iff lh(s) < lh(t) or [lh(s) = lh{t) and if i is minimal such that (s)i φ (t) t

then B ¥• {&){ < (t)%] This defines the meaning of S. A and M (addition
and multiplication) are defined by algorithms of school mathematics, i.e.
K \r A(s,tyw) iff there are sequences q (of carries) and u (sum) of length
max(/Λ(θ),/fc(f)) + 1 satisfying "bitwise" the obvious conditions for addition
(</ consists only of zeros and ones and several cases are distinguished, e.g.,
for each 0 < i < max(lh(s),lh(t)),

(ί)i-l = 0 & A({3)i9 (*),, (ti),) & (q)i = 0 or

)(x minimal such that ->(3^)Λ((θ), , rr, z) —* A(x, (tz), ,

= l or

and w results from u by omitting the last element if it is 0, otherwise w = u.
Conditions for multiplication are clumsier (use lh(t) auxiliary sequences of
length lh(s) + lh(t)) but are easy to describe. The proof is completed by
proving the following lemmas:

2.5 Lemma. Let Bn be the substructure of K consisting of all sequences of
length at most n (n > 0). Then Bn Cβ K and Bn is definable in B using
n-tuples of objects of B to code objects of Bn. (Thus we have a formula with
2n free variables defining the successor for n-tuples etc.)

Proof by formalizing the above definitions - for a fixed n. D

2.6 Lemma. For each n, Bn is a model of TA1.
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Proof. The verification of properties of <, S, A, M is tedious but straight-
forward. To verify the least number principle use the fact that by 2.5, each
//-formula with k free variables speaking about Bn can be equivalently re-
placed by an L'-formula with kn free variables speaking about B. Then use
the lexicographic ordering of n copies of the universe inside B. D

2.7 Lemma. K t= IΣ1, B\ C e K and B\ is isomorphic to B.

Proof. Since K = (J Bn is a union of an increasing chain of initial segments,
basic properties of 5, A, M, < are verified easily. The least number principle
in K reduces to the least number principle in a suitable Bn. Clearly, K has
no greatest element. This completes the proof of Theorem 2.2. D

(b) Cuts

2.8 Definition. (1) Standard models of BA! are N and non-empty initial
segments of N (finite standard models). All other models of BA1 are non-
standard: by the previous, these are just non-standard models of IΣ1 and
their segments given by non-standard elements.

(2) Let M N BA! and let J C M. I is a cut in M if it is a non-empty initial
segment without a largest element in the ordering <M I is closed under the
operations if, for each a,b £ I, there are c,d G J such that M f= A(ay6,c) and
M t= M(a, 6, d) (addition and multipliation are total on J).

2.9 Remark. (1) Clearly, a M f= TA1 is non-standard iff M has a proper cut.
A cut J C M i s closed under operations iff J t= IΣ'.

(2) Recall the Σ$ predicate exp(x,y) defining exponentiation in IΣQ as
a partial operation. We shall use the same notation for an equivalent Σ1-
predicate.

2.10 Definition. A cut / N M is short if / is closed under operations and there
is an a G M — I such that 22<* exists in M, i.e.

M t= (36, c)(ezj>(2, α, b) & esj>(2,6, c))

2.11 Remark. (1) Observe that if M 1= JΣΊ (or even if M t= J Γ 0 +
then each proper cut is short.

(2) Recall that in IΣQ we have a ΣQ predicate bit(x,zyy) saying "the *-th
bit in the binary expansion of x is z". Informally, we shall use bit as a symbol
for the corresponding partial function.
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2.12 Lemma. For each Σ"o-formula </?(#, y) BA1 proves the following: For each
y and each z such that 2Z exists, there is a w < 2Z such that, for each x < z

Proof. Take a ZQ such that 2Zo exists and prove the assertion by induction
for z < ZQ (observing that it is ΣQ): assume that for z we have the respective
w < 2Z° and that z + 1 < ZQ and consider z + 1. If ^φ(z -f- l,y) then take
w' = w; otherwise take wr = w + 22 r + 1. D

2.13 Definition. (1) Let I be a short cut in M N BA1, let A C I and a E M-I.
a codes A in M if for each x E /,

a; E 4 iff bit(x, a) = 1.

(2) 55/(M) is the set of all A C / coded in M.
(3) α codes an R C / fc iff it codes the set A of all (α i , . . . , αj.) such that

β ( α i , . . . , αjt).((...) is the definable fc-tupling function; recall that I is closed
under it since / 1=

2.14 Theorem. Let I be a short cut M t= BA!. Then

(1) SSj(M) is a Boolean subalgebra of the algebra of all subsets of I.
(2) If A E SS^M) and J? is Z\7(A) in / then B E SSj(M).

Proof. In fact, we only need an α such that I < a < 2a E M; clearly, each
a; E SSi(M) has a code < 2°.

It follows immediately by 2.12 that SSj(M) is closed under Boolean
operations and that if X E SSi(M) (coded by 6) and Y is Σ'(X) (in /
or in M, which is the same) then Y E SSj(M). It remains to assume y
to be both Σ'{X) and Π'(X) (both in I), * E 55/(M). Let y E K =
/ N (3ιι)P(tι,y) = 11= (Vυ)Q(t;,y) where P , Q e 55/(Af). Use the "Rosser
device": put y>(y) = (3tt)P(u,y) ^ (3υ)-iQ(υ,y), i.e. ^(y) = (3tι)[P(tι,y) &
(W < tι)Q(v, y)j. Clearly, y E y iff / N v?(y) iff M N (p(y). Thus take a c such
that, for all y < α,

M 1= ift(y, c) = 1 = (3tι < α)(P(tι, y) & (Vt; < u)Q(v, y)).

This c codes y. D

2.15 Definition. (1) A short cut / E M is semiregular if / satisfies strong
collection with respect to coded functions, i.e. if F E SSj(M) is a function
and oEJ" then F"(< a) is not cofinal in /.

(2) / is a model of JX1* (as a cut in M) if it satisfies induction for all
formulas that are Σn{X) with X ranging over elements of SSj(M). Similarly
for BΣ*.
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2.16 Theorem. Let M 1= BAl and let / C M be a short cut. / is semiregular

iff/NII;;.

Proof. The implication 4= is obvious since IΣ\(X) proves SΣχ(X). (Recall
that IΣχ(X) has a new class variable X and induction for all Σ\(X) formulas,
cf. 1.2.54) For the converse observe that, by 2.14 (2), we see that I (which
is clearly a model of IΣQ) satisfies STTQ, therefore satisfies SΣ* and hence
IΣ*. (See Chap. I, Sect. 2). D

(c) Extendable, Restrainable and Ramsey Cuts

2.17 Definition. (1) Make the following definition in IΣ\: X is 1-unbounded
if it is unbounded, i.e. (Vx)(3y > x)(y € X).

A set Y of (n + l)-tuples is (n + l)-unbounded if the set

{#0 I {(xι,...,xn) I (xo>xi,...,xn) € Y} is n-unbounded }

is 1-unbounded.
(2) Similarly, let M 1= BA\ let / be a short cut in M and let X C Mn+λ

be coded. We call X (n + l)-unbounded in I if the set

{XQ I {(a?i,..., xn) I (#o> ? Xn) € Y} is n-unbounded in /}

is unbounded in i".

Remark. (1) One can prove that if k + 1 = m + n and m,n > 1 then Y is
fc-unbounded iff

{(zo , . . .Zm-l) I {(sm,...,zjfe) | (a:o,.. - ,̂ Jk> € Y} is n-unbounded}

is m-unbounded.
(2) The formula saying that the set of all x\,..., xn satisfying φ(x\ , . . . ,« n )

is n-unbounded is equivalent to (Cx\)... {Cxn)φ(x\,..., x n ).

2.18 Lemma. For m,n > 1, let Rams{n,m) be the formula (VF € ^ )
Vn —> α) —»• (3i < α)F"~1(i) is n-unbounded). (This makes sense in IΣ\.) In
each y,w > 1, /ΣΊ proves

££n+m = Rams(n,m).

Proo/. Similarly as in II.1.26, show in IΣm that Rams(ny m) implies Rams(n-
1, m + 1) observing that if F : V^1 -> a is ZVm+n, F = UrnG, G : Vn -^ α,
G 6 Δm, {(x,y) I G(x,y) = 6} is n-unbounded then

= {y I ix I G(a?,y) = 6} is unbounded)
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is (n — l)-unbounded (cf. the remark in 2.17). Then

(Vm)JΣi I- Rams(n,m) -> BΣn+m

by induction on n: for n = 1 see 1.1.23 and for n > 1 II. 1.27.

(=>) Assume BΣn+m and let F G An, -F '• ^ n -> α, i.e. F acts on all
ordered n-tuples of numbers. Restrict F to increasing n-tuples; you get an
F1 : [V]n —> a and, by II. 1.6, there is an unbounded A homogeneous for F1.
Show that [A]n is n-unbounded; clearly F is constant on [A]n. D

2.19 Definition. (1) Let M 1= BA1, k > 1 and let I C M be a short cut. (1)
/ is k-Ramsey in M if for each a G / and coded F : Ik —> α there is a 6 < a
such that JF~1(6) is fc-unbounded in Ik.

(2) Let 11= JJC'. A sequence I Q Ko C Ki... C K^ is a k-extending chain
over / (notation: ΛΓo -<j K\ -<j . . . -<j ϋΓjt) if

(i) iff t= BΛ' for each i < fc,
(ii) ίCj is a Jϊ'-elementary substructure of ifj+i for each i < k (notation

Ki -<o Ift+i),
(iii) / is a short cut in Ki for each i < &,
(iv) for each i < k, there is a δt +i G i^ί+i such that / < δ, +i < (AT,- — /).

(Thus, when going from K{ to Kι+\ we get no new elements below
elements of / but we do get new elements between elements of / and
elements of K{ — J.)

(3) Let J be a short cut in a model M t= BAr. I is k-extendable over
M if there is a fc-extending chain over I whose 0-th element is M J is k-
restrainable in M if there is a fc-extending chain over / whose last element is
M.

2.19 Remark. Note that 1-Ramsey cuts are also called regular. The notion
of a fc-extendable and fc-restrainable cut is the key notion in Paris's model-
theoretic investigation of the strength of instances of combinatorial problems.
Observe that if UΓQ, . . . , Kn is a fc-extending chain over J, a G K$—I and 22°
exists in K$ then for d = 22° (KQ \ d) , . . . , (Kn \ d) is a fc-extending chain
over I which is formed by models of TA1 with the same top.

2.20 Theorem. Let J C M b e a short 1-Ramsey cut; then I is semiregular.

Proof. Assume J not semiregular and let H be a coded mapping from (< a)
into / cofinal in /. H may be partial but we may assume it to be one-one (if
not, replace it by Hf(b) = (δ,f/"(6)), clearly H1 is coded and cofinal). Now let,
for each x G /, F{x) be the pre-image of the maximal y < x, y G range(H).
This is Λι{H), thus F is in 55/(M); F : I -* a and clearly, each F~ι(b) is
bounded in /. D
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2.21 Theorem. A short cut I CM \= BAf is fc-Ramsey in M iff / 1= B27J+

in M (for each k > 1).

Proof. Since both conditions imply / 1= IΣ* the theorem follows from 2.18.
D

2.22 Theorem. If a short cut I C M 1= BA1 is fc-extendable over M then it is
fc-Ramsey.

Proof. By induction on k.
(1) fc = 1. Let M, ϋf be a 1-extending sequence over I. We prove / 1= BΣ%.

Assume /1= (Vx < α)(Ξy)(V2)v?(x,y,z) where y> is Σo(X) for some coded X.
Thus

(Vx < α)(3y € I)(Vs G / ) / N V^(^y^)

Here, / 1= may be replaced byMt= and therefore, by overspill,

(Vx < α)(3y € /)(3z0 e Af - I)M N (V« < ^o)¥>(̂ , y, ar).

Since M -̂ o ^> Λ^ *= can be replaced by UΓ k Thus, for d G K such that
7 < d < M — J, we have

(Vx < α)(3y G J)JΓ 1= (V« < d)φ(x, y, ar).

Now let e be minimal in K such that

(Vx < α)(3y < e)K 1= (Vz < d)^(x, y, z).

Then e G / (since otherwise e — 1 could replace e) and thus

This shows 7 N BΣ% and thus J is 1-Ramsey in M.
(2) Now assume KQ -<J K\ -<J </ Kk+ι and let F : Ik+1 ~> g G / be

coded by / < 2α. Thus,

(Vz G J)JiΓ0 t= (Vxo ...xk< z)(3!u < g)((x0 . . . ^ , u) G / ) .

By overspill, there is a, d e KQ, I < d^, such that

Ko N (Vx0,..., x* < d)(3!w < g)((x0,..., x*, u) G / ) .

Define, in K\^ h as the function such that, for x = xo,..., Xjfe_i,

Kλ 1= (Vxo, ,**-! < d)(ΛW = /(x,<0)
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This h codes a H : /* —> q and by the induction assumption applied to
ΛΓl,..., UΓjfe_j_i, there is a b < q such that H"1^) is fc-unbounded in Ik. We
show that J F ~ 1 ( 6 ) is (k + l)-unbounded in I "̂ "1. For this it suffices to show

{x I H(x) = 6} C {x I {y I F(x, y) = 6} is unbounded}.

Thus assume x G J, /(x, c?) = b and let e be an arbitrarily large element of I.
Let p = min(/(x,y) = b and y > e) (computed in JKΊ). By iϊΌ -"</ -KΊ, this p
must be in Ko and since K\ 1= p < c? we have p G /. Thus {y | i^x, y) = &}
is unbounded in I. This completes the proof. D

2.23 Definition. Let M 1= BA', let I C M be a short cut, let c G /. I is regular
(l'Ramsey) up to c in M if for each a < c and each coded F : I —+ a there is
an i < a such that f ~ 1 ( i ) is unbounded in /.

/ is semiregular up to c in M if for each function F G SSj(M) and each
a < c, the .F-image of (< α) is not cofinal in /.

Remark. Compare these definitions with 2.19 and 2.13. It is easy to check
that Theorem 2.20 generalizes: if I is regular up to c then it is semiregular
up to c.

2.24 Theorem. Let Ko -<j -<j K^, a,b G Ko, a < I < b, c E I, I
semiregular up to c in Kk. Then Ko *= [α, 6] -> (A: + 2)£ + 1 .

This theorem will be used in subsection (e). First we prove a lemma.

2.25 Lemma. Let UΓ0 -</ K\, K{ 1= TA\ a,b e Ko, a < I < δ, / G Ko,
Ko N / : [α, &]*+1 -* c, c G /. Let C C / be coded in Ko and o.t.u. in /,
i.e. for each q G / there is a sequence θ G / coding the first q elements of C.
Then there is a B C C, B coded in ΛΓi, o.t.u. in I and prehomogenous for
/, i.e. for arguments from [JB]^ + 1 , the value of / does not depend on the last
coordinate.

Proof. Note that Kλ t= / : [a,b]k+ι -> c and / *= JΣΊ. (See 2.22, 2.21:
ίfo -<j i^i implies that / is short, by 2.22 / is 1-Ramsey in Ko and by 2.21
IN J5Γ2.) Let πo G K\, I < π 0 < Ko - /. Let e code C in ϋfo- We show that
there is a π G -Ki such that / < TΓ < ifo — / and K\ N π G e. Indeed, for
each α; G /, ifi t= (3y G e)(y < πo & y > x), thus, by overspill, there is an
x G ifi - I such that ΛΓi t= (3y G e)(y < πo & y > x). Let π be such an y.

If β = (/3o> -- iβq) €K\ is an increasing sequence of length > / we call /?
o.t.u. in / if, for each r € I, βr € I. (Then clearly the set of all elements of
the sequence belonging to I is o.t.u. in / . )

(1) In ΛΓi, define an increasing sequence β = (/?o,..., βq) to be a designated
sequence (d.s.) if g > fc, /?o,..., βjfe are the first fc elements of e bigger than α
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and, for k < p <Cg,

KX N βp+1 = min(Vs € [A, . . . , &]*)(/(•, z) = /(s, π)).
ZκiG

(2) We want to show that in K\, there is a d.s. /? of the length q > I which
is o.t.u. in I. This will prove the lemma: B will be the set of elements of β
belonging to /.

(3) It follows easily that, in JΓi, for each q there is at most one d.s. of the
length q.

(4) Since being a d.s. is Σ1', take in K\ the maximal d.s. β < π; each other
d.s. is an initial segment of β. We show that it has the desired properties.

(5) We show that each d.s. β such that β G I has a proper prolongation
which is a member of /. Let β = (/?o,.. , βp) G I] let βp+\ = mmzee(Kl N
(Vs G [/?o, , βp]k)U(*> *) = /(», ir)). We show that /?p+i is in /.

For s G [βo, <>βp]k, let y(s) = /(s,π); observe that g C [#>,...,0p]*x
(< c), thus gfEl and hence # G ifo For each d G Ao, d > J, we get

ffi N (3y < d)(V. € [̂ o, , /9P]fc)(/(s, y) = s(Ό),

and hence KQ f= the same. Let u be the smallest witness of the last formula
in KQ\ then u is the smallest witness of it in 2£"i, therefore K\ 1= u < π. But
then u G / and thus /? ̂ > (u) is the desired prolongation of β in /.

(6) Now we show that if β G K\ is a d.s. and lh(β) G / then β G /.
Indeed, let (/?o>. , βq) be a d.s. in K\ and let g E / . For x\ < < xj. < ς
let &(*!,..., xk) = f(βXι,..., βXk, π). Then Λ : [g]* -+ c in ΛΓi, thus h G /
(recall again / N /ΣΊ).

Since / satisfies even Σ\ -induction with classes coded in AΓo (due to KQ -<J
K\) we may define designated sequences inside / using C and F — f \ [I] .
Let DSf(β\a,h) be a formula such that / 1= DSf(β',s,h) iff, in Ji, β' =
(/9J,...,^) is a sequence, /^,.. ., βj. are the first k elements of C bigger
than a and, for k < r < p, βf

r+ι is the least z such that

Clearly, if p < q and /?' = (/?0,..., ^ ) G / then 11= ΰS'ί/?', α, h) iff UTi t= (/3r

is a d.s.).
Now it follows by induction in / that for each p < q there is a β' such

that DS'(β\s,h) ((5) giving the induction step); thus the original d.s. β =
(βθ,..., βq) must be in J.

(7) Consequently, the maximal d.s. β* cannot be in /, lh(β*) £ I and each
initial segment of β* of length q G / is in /; this means that β is o.t.u. in /.
The set B of all βq such that q G / is the desired prehomogenous set.

This completes the proof of the lemma. Now we prove Theorem 2.24. Let
KQ -<J •• Xj Kk, a < I < b G KQ, C G /. By iterating the construction
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of the lemma k times we get an A C C, o.t.u. in / and such that, for
s 6 [A]Λ + 1, the value f(s) depends only on the first coordinate of s. Let
g be the corresponding unary function and let h be the function associating
with each i < c the first x >a such that g(x) = i. Since / is semiregular up to
c, hf/(< c) is bounded in I; let αo G / be an upper bound and put p = CCLQ + 1
(recall that J N IΣ\). Let s be the sequence of the p first elements of A;
clearly, a £ I. Thus there is a j < c such that 5'""1(0 is a finite set having at
least αo elements and, by the choice of αo, the minimal element of g~ι(i) is
< αo Thus g~^{i) is relatively large and homogenous for /. D

(d) Satisfaction in Finite Structures with an Application
to Models of IΣ\

We shall now formalize our notion of standard models of arithmetic with a
top. We gain a notion used in various places in the later text. In the present
section we use this notion to prove that each non-standard model of IΣ\ is
isomorphic to a proper cut of itself.

Recall that in Chap. I, Sect. 1-2 we formalized various sorts of partial
satisfaction in the universe: for each k we defined in IΣ\ formulas Satjj^ and
Satjjjς (satisfaction for Σ^ and J7j. formulas) and showed that in BΣm (m >
2) we have a well-behaving satisfaction for JCfc(4m)-formulas. Moreover, we
showed that in IΣ\ we have a well-behaving satisfaction for Σ^Σi) formulas.
All this was satisfaction in the universe. (Using self-reference one can show
that there is no full satisfaction in the universe - this is routine, see IΠ.2.3.)

Now we shall focus our attention to finite structures of the form [O, x]
endowed with the standard structure given by the language l! (successor,
addition, multiplication as predicates). In 1Σ\ we show that full satisfaction
for such structures exists and is A\\

2.26 Theorem. {1Σ\) There is a A\ relation x t= z[e] (ternary) such that
for each x, each l!-formula z and each evaluation e of free variables of z by
elements of [0,x], Ίarski's conditions for satisfaction in [0,x] hold true.

The proof is more or less evident: take a; as a parameter and define a notion
of partial satisfaction in [0, x] for formulas < z as a finite set mapping pairs
(z', er), where z1 < z is a L'-formula and e' an evaluation as above into [0,1]
such that Tarski's conditions are true; by induction on z show that for each
z there is a unique partial satisfaction on [0, x] for formulas < z and if qι is
such a satisfaction for Z{ (i = 1,2) and z\ < zi then q\ is a restriction of
q<l. Then x N z[e] means that the unique partial satisfaction for [0,x] and
formulas < z gives the value 1 to the pair (z, e). D
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2.27. We now define an important class of formulas generalizing Σ"-formulas.
I7p0 formulas are open l! formulas in conjunctive normal form; Σ^k+l
formulas have the form (3x)φ where φ is a conjunction of disjunctions of
Σ^k formulas; Σγ2k+2 f ° r m u l a s ^ a v e the form (Vx < y)φ where φ is a
conjunction of disjunctions of Σ®2fc+i formulas.

A formula is Σ^ (generalized Σ1) if for some k it is Σ®k. Thus Σ^
formulas result from open Lf formulas by finite conjunctions and disjunctions,
existential quantification and bounded universal quantification.

The whole definition formalizes easily in IΣ\.

2.28 Theorem (IΣ\). The Σ^ formulas persist upwards on structures of the
form [0, x], i.e. for each z E Σ^ if x < y and x 1= z[e] then y t= z[e].

The proof by induction is easy. D

2.29 Definition. (IΣ\) We define satisfaction for Σ^ formulas in the universe
(SaiΣiQ(z,e) or V 1= z[e\) as follows: for each Σ^ formula z and each
evaluation e of its free variables by some numbers, V N z[e] if, for some x
(containing all elements of the range of e), x 1= z[e],

2.30 Lemma (IΣi). The satisfaction just defined fulfils Tarski's conditions.

The proof by induction is easy, observing that the formula for which induction
is applied is ΣQ(Σ\). Some care is necessary for handling finite conjunctions:
if z is Λί^i?t# < α} ^ d for each i < a there is an x such that x f= φ%[e] then,
by BΣ\) there is an x such that for all i < α, x J= φi[e]. Similarly for bounded
quantifiers. D

Clearly, each Σ1 formula is (equivalent to) a Σ^ formula. Conversely, we
have the following

2.31 Lemma (IΣχ). Each Σ^ formula is equivalent to a Σ1 formula, i.e. Σf
sets coincide with Σ' sets (and therefore with Σ\ sets).

Proof evident. Π

2.32 Lemma (IΣΊ). For each x there is a δ such that for each Σ^χ sentence z,

V h s i f f δ h * ,

i.e. z is true in the universe iff z is true in [0,6].

Proof. By possibly renaming variables we may restrict ourselves to Σfχ

sentences z such that all variables occurring in z are among the first x
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variables. Furthermore, we may assume some normal form with respect to
conjunctions and disjunctions: if Λί<α Vt'<6^«i» *s a S U Df° r m u l a of z then
for each i, all ψij are pairwise distinct and also all the disjunctions \Jj ψij

are pairwise distinct. It follows by induction that all z 6 Σ®χ in this normal
form form a finite set c. By SΣ\, there is a qo such that

(V* e c)[(3g)(? h= z) ^ (3g < soXϊ M l

thus, for each z G c, V t= z iff qo Is ^ D

2.33 Remark. We can slightly generalize the preceding by expanding l! by
finitely many constants for elements 0,1,. . . , t where t is a fixed number. The
resulting language will be denoted L(t).

2.34 Definition (IΣχ). Let a,b be tuples of numbers of the same length and
let q be a number. We write

(V, a)-».(«, b)

if for each z € Σ^χ with the appropriate number of variables,

7 N z[a] implies q f= z[b].

2.35 Corollary of 2.32 (IΣi). (Vx)(3q)(V -»x q). (Clearly, V -+x q means the
same as (V\0) —>x (tf,0), i.e. sentences are concerned.)

2.36 Lemma (IΣΊ). Assume (V,a) —> (g,b) and x > 0.
(1) If a: is even then

(Vc)(3d<β)((V,a,c)->._i( ί >b,d);

(2) if x is odd then

(W < max(b))(3C < max(a))((F,a)C) - + x _ α (q,b,d)).

(This is a prolongation lemma; think of a, b as partial isomorphism. The
lemma enables us to prolong it.)

Proof. (1) Let c be given and let Φ be the finite set of all ψ e Σ^χ_χ

formulas in the above-described normal form such that V N <p(a, c). Then
V 1= (3v) /\Φ(a,υ), hence q t= (3v) /\ Φ(b, v) and thus there is a d such that,
for all φ 6 ί, q N y>(b, d).

(2) Let d < 6, and assume (V, a, c) - ^ - i (g, b, d) to be false for all c < α, .
Then for each c < αt there is a formula u G ̂ ί ^ - i such that
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V t=u(a,c)but gt=-n*(b,d).

The last condition is Σ\\ by SΣ\ there is a set Φ such that for each c<a^
a formula u satisfying the above can be found in Φ. We can further assume
that Φ contains only such formulas u. Then V t= (Vz < α, )(V ^( a> x)) ^ u t 2 ^
-1 V#(b,d), i e 2 *= ( 3 * < 6,-)"1 V*(b»*)i w h i c h contradicts (F,a) ->x (g,b).

D

2.37 Remark. Again, we may generalize to i7p(i), i.e. admit constants for
numbers up to t.

2.38 Lemma. If M t= JΣΊ, e G J I ί i s non-standard and M 1= V ->e q then
there is a cut / C M not containing ς and isomorphic to M.

Proof. By the zig-zag method: let M = {αo,αi,...} be an enumeration of
M. Let co E M be non-standard and let do be such that do < M # a^d
Λf N (V, co) —*e-l (̂ > ^θ) Having constructed CQ, . . . , c& and do? > îfe such
that

M 1= (V, co,..., cA) ->e-Jb-l (?> do,...),

continue as follows: if k is even then take for d^+i the first α, G M less than
ςr and not among do,..., d*.; by 2.36 take for cj.+χ the first CLJ such that

M 1= (V, α 0 , . . . , Cfc+i) ->e-*-2 (V, d 0 , . . .,

(Observe that d^+i is distinct from co,..., c& because the corresponding open
formula that says it must be true due to the arrow above.)

If k is odd, take for c^+i the first α, € M not among co,. . . , c& and find
similarly d^+1 less than g using 2.36.

If k varies over standard numbers we construct two sequences (c0 , . . .)>
(do,...); clearly the mapping /(c, ) = d, is one-one and maps M onto a
cut I C M not containing q. And / is an isomorphism since for each fc,
M 1= (V, c0 , . . . Cfc) —>o (<?, d0,..., dj.) since e — fc — 1 is non-standard); thus
atomic formulas are preserved by / . D

2.39 Remark. Again, we may generalize keeping elements less than a given t
fixed. Thus by 2.35 and 2.38 we have proved the following

2.40 Theorem. If M N IΣ\ is non-standard (countable) and t € M then there
is a proper cut / C M containing t and an isomorphism / : M —> / identical
on (< t)M.

(Remark: in fact, we have used LΣ1 and IΣ'; but this is immaterial.)
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3. Provably Recursive Functions
and the Method of Indicators

In this section we are going to investigate means necessary to prove that a
function is provably recursive. We shall see that the amount of induction
necessary to prove that a function is total is related to its growth. We shall
give two characterizations of Ii7fc-provably recursive functions and two char-
acterizations of PA-provably recursive functions: one using largeness ( —• )

and one using the Schwichtenberg-Wainer hierarchy. As a particular case, we
show that IΣ\-provably recursive functions are just primitive recursive func-
tions (Takeuti-Minc). To achieve this, we shall use the method of indicators
developed by Paris and Kirby; this method has various other uses but ours is
typical. We obtain various independence results (and some few other results)
as corollaries. The section is structured as follows: (a) We formulate basic
definitions concerning provably recursive functions and present the main re-
sult on them, (b) We define indicators and prove the main theorem on them.
We also elaborate a technical notion of a Paris sequence (more general than
that of Chap. II, Sect. 2) as a means of constructiong restrainable cuts. In (c)
and (d) we investigate two kinds of indicators, one based on *-largeness and
the other on α-largeness. This will give the major results of (a), (e) contains
two other corollaries: provability of (W)k —> (PH)k m IΣ\ and the fact that
each non-standard model of 1Σ\ has a non-standard cut satisfying PA.

(a) Provably Recursive Functions, Envelopes

3.1 Definition. Let T D IΣ\ and let φ(x,y) be a formula; φ is said to define
a (partial) function in T if

T1= (Vz, t/i, y2)(φ(χ, yί) & φ(χ, V2) -* y\ = vi)

φ defines a total function in T if, in addition,

We also say that the function defined by φ is T-proυably total (or just that
φ is T-proυably total). (Cf. 1.1.51).

3.2 Remark. (1) If φ defines a partial/total function in Γ then it defines such
a function in each model of T; in particular, if N N T, φ defines a function
in N. We shall focus our attention on Σ\ formulas defining functions in N
(recall that we call a function partial recursive iff it has a ΣΊ-definiton in N).
Clearly, a function may have different definitions and their equivalence may
be improvable in a theory T. Thus, even if we shall freely speak on T-provably
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total functions, it should be always clear that we investigate a particular Σ\-
definition of the function in question. Recall that a ΣΊ-function provably
total in T is A\ in T and is called T-proυably recursive.

(2) Definition 3.1 evidently generalizes to functions with several argu-
ments.

3.3 Definition. Let T D IΣ\. A two-argument function ί 1 ( - , - ) JCi-defined
in T is an envelope for T-provably recursive functions if

(1) For each π, the function Fn defined by Fn(x) = F(n,x) is T-provably
total and

(2) For each T-provably recursive function H there is an n such that T h
(Wx)(H(x) < Fn(x))i thus H is T-provably majorized by Fn.

Remark. To avoid any misunderstanding, let us stress again that in fact
the definition concerns a particular Σ\-definition φ(u,x,y) of F and the
corresponding definitions y>(n, x, y) of Fn.

On the other hand, if N 1= T then φ defines a system {Fn \ n} of total
recursive functions such that whenever H is a T-provably recursive function
then H is majorized by one of the Fn (and more than that: the last fact is
T-provable).

3.4 Lemma. Ί£ F = {Fn | n} is an envelope for T-provably recursive functions
then a ΣΊ-definable function H is T-provably total iff, for some n, H is T-
provably primitive recursive in Fn (i.e a definition T-provably equivalent to
the definition of H may be obtained from the definition of H and definitions of
basic primitive recursive functions by composition and primitive recursion).

Proof. <= is clear since we assume T D IΣ\ and therefore T-provably recursive
functions are closed under primitive recursion. To prove =Φ- let (Ξz)α(x, y, z)
be a Σ\ definition of H (α being ΣΌ); define H*(x) = u iff u is a pair (y,z)
such that α(rr,y,*)&(Vy < z)-ia(xyy,z'). Evidently, H* is a function ΣΌ-
defined in T and is T-provably total, hence, for some n, T-provably majorized
by Fn. Thus

T\=y = H(x) = (5* < Fn(x))a(x, y, z).

This shows that H is T-provably primitive recursive in Fn since Σo relations
are and bounded minimization (T-provably) preserves (relative) primitive
recursiveness. •

Now we formulate our main theorems.

3.5 Theorem. For each k,n > 1 define (in IΣ{)

(a) Fktn(x)
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(b) Gk>n(x) = miny([(z, y)] is ω£-large)
(thus Gktn(x) = fωΐ_x(x + 1) where fa is the α-th function of the
Schwichtenberg-Wainer hierarchy)
Gn(x) = miny([(x,y)] is ωn-large)

Then

(1) for each ky {FktU \ n) is an envelope for JJCfc-provably recursive functions.
(2) for each fc, {Gk,n I n} l8 another such envelope;
(3) both {Fn I n} and {Gn \ n} are envelopes for (A4)-provably recursive

functions.

3.7 Corollary. IΣ\ -provably recursive functions are exactly all primitive re-
cursive functions. (In more detail, φ defines an IΣ\-provably recursive func-
tion iff there is a φ resulting from the definitions of basic primitive recursive
functions by finitely many applications of the rule of composition and prim-
itive recursion and such that IΣ\ h ψ = ψ.)

Proof. Each primitive recursive (definition of a) function is IΣ\-provably
recursive. On the other hand, it is easy to show for each n in 1Σ\ that fn(x)
is primitive recursive. Thus the result follows by 3.5 (b) and 3.4. D

3.8 Theorem. (1) For each k > 1, the following formulas are unprovable in

(a) ( V z ) ( r

(b) (Vα aξ! ωk)(fa is total).

(2) The following formulas are unprovable in PA:

(a) (Vx)(V*)(3y)([*,y]7(* + 2);+}),

(b) (Vα < eO)(/α is total).

We postpone the proofs to subsections (c) and (d).

(b) Indicators and Paris Sequences

3.9 Definition. Let M 1= IΣ\ be countable and non-standard; let χ be a set
of cuts in M. A Σ\-formula φ(x, y, z) is an indicator for χ in M if

(i) φ defines a total two-argument function Y in M,

(ii) for each a,b € M such that a < 6, F(α,b) is non-standard iff

(3Ieχ)(aeISεbiI),

(iii) for α, 6, c, d £ M such that c < a <b < d vie have

Y(a,b)<Y(c,d).
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We shall be mostly interested in indicators for cuts / t= T2 in a model
M N T\. If φ is an indicator for such cuts in each (countable) model of T\ we
simply say that φ is an indicator for models of T2 in T\.

The main theorem on indicators follows.

3.10 Theorem. Let T D IΣ\ be a theory (in the language of arithmetic). Let
φ be an indicator for T in T and write Y(x, y) = z instead of φ(x, y, z). Then

(i)
(ii)
(iii) If JV 1= T then the sentence (Vz, z)(3y)(Y(x, y) > z) is neither provable

nor refutable in T;
(iv) The functions gn(x) = miny(Y(χiy) > n ) form an envelope for T-

provably recursive functions.

Proof (i) Let M f= T be non-standard, let JV < c < α. If there is no b in
M such that M t= Y(a, b) > c we are done; otherwise let b be minimal with
this property. Then there is a cut a < I < b in M such that I t= T and in
T there is no ί/ such that I t= F(α, 6') > c (since otherwise we would have
M \= Y(a, b') > c, a contradiction).

(ii) Since in each non-standard countable model M of IΣ\ proper cuts
isomorphic to M are cofinal, given a £ M we find an a G I C e M with
7 N T; for each I < b E M, F(α, 6) must be non-standard, thus M 1=
y(α, 6) > n. We showed M 1= (Va;)(Ξy)(F(α, 6) > n and M was arbitrary;
thus Γ h (Va?)(3y)(r(α, 6) > n).

(iii) is evident.
(iv) Let / be T-provably recursive and assume T + {(3x)(f(x) > gn(x)) I

n} to be consistent. Then T + {(βx)(Y(x,f(x)) > n \ n) is consistent; let
M be a model of the latter theory. By overspill, M contains an element a
such that the value Y(a, f(a)) is non-standard. Consequently, there is a cut
a < I < /(α) satisfying T; in /, / is not total since f(a) is undefined. This
contradicts to / being T-provably total. D

3.11 Discussion. We shall be mainly interested in indicators for IΣ^ (or for
BΣk+ι). This is why we are interested in a method allowing us to conclude,
under some conditions, that between two elements a < b of a model M there
is a cut which is fc-restrainable in [0, b] (such a cut necessarily satisfies BΣ^i,
see 2.21-22). If / is such a cut then there are / C e Bk ^ j <j Bo = [0,6];
for each i < k, there is an Λt G 2?, such that I < h{ < l?t +i - I. Paris
exhibited two similar constructions of such a chain and we shall try to isolate
their common structure. Both constructions then become particular cases.
The idea is to find in [α, b] a coded increasing sequence {g{ \ i < v} of non-
standard length and another increasing sequence (/IQ? ? Ĵfe-i) of elements
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bigger than the tjj's and less than b such that if we put I = Un€./v
let Bj be the set of all elements of [0,6] "definable" from I U {hj,..., ftjfe_i}
(w.r.t. an appropriate notion of definability) then -By+i -< Bj, I Ce Bj
and hj G Bj for each j and we have to assure that hj £ Bj+\. In more
details, we shall have a Λ\ operation df(b,i,g,par) C [0,6] and for each
j , Bj = \JneN df(b,n,gn,varj) where parj = (hj,...,hk_ι)] we have to
guarantee {u G Bj+\ \u £ Ifou < hj} to be empty. To this end it suffices
to have, for each i < v, [<7i+i, hj] Π d/(6, i, </t ,V

aτj+\) = 0, as one easily sees.
It will turn out that it is enough to have

» hi)\ n # ( * • *» 9iParj+1) = 0.

This leads us to the following definition.

3.12 Definition (IΣ\). Let if be a total Σ\ function such that, for each
x, df(xyi,g,par) C [0yx]. Let b > 0, u > 0 and h = (λo,.. .,λ u -l) b e

a finite increasing sequence of elements < b. A finite increasing sequence
<7 = (<7o> .. ><7ι/-i) of elements < b is a Pαriθ sequence for Λ in 6 w.r.t. <£/ if

(1) each g{ is less than each hj,
(2) for each i < v — 1 and each j < u,

[(tfi+lΛ*)] n df(b,i,gi,parj+1) = 0

where par j = (Λj,... hu-\).

The number u is called the dimension of </ (cf. II.2.24 and (c) below).

3.13 Definition. Let M t= JΣΊ be non-standard and let, in M, J/ be a total
I?i function such that

M 1= (Vs, i, (/, par)(if(xt i, (/, par) C [0, *]).

Let 6 G Af — N and let 5f, h G M be such that g is a Paris sequence for
h in 6, lh(g) = i/, ZA(ft) = u. Let J C e Λf, J < v, and let / be the cut
sup{# I i G J} = {a G M | (3i G J)(α < ^ )}. Finally, put

for j = 0,..., u — 1 {par j is as above). The operation df is suitable for 6, </, A, J
if

(1) .; < j ' < u implies Bj D Bj> and
(2) each Bj is closed under L'-definability from Bj U J, i.e. if x is i'-definable

in [0,6] by a standard formula from some elements of Bj U/ then x G Bj.
(Consequently, J C e Bj.)
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3.14 Lemma. Let M, 6, g, Λ, J be as above and let if be suitable for 6, #, Λ, /
in M. Then for each standard k such that M t= k < lh(h), I is fc-restrainable
in [0,6].

Proof. The proof is easy since almost everything is in the definitions. Let Bj
(j = 0,...,) be as above. Then, evidently, Bj D Bj+ι, hj G Bj, and by
assumption, Bj -< [0,6]. Thus each Bj+\ •< Bj. The condition (2) in 3.12
gives, for each i 6 N and each j < fc,

lΛ)] Π df(b,i,gi,parj+1) = 0;

thus there is no x such that x £ Bj+i hx $.1 and x < hj {x would be in a
DEF{h)i,gi,i>arj)). Moreover, hj itself is not in Bj+\ since if it were, Aj_i
would also be in ί?j+i. Thus I < hj < Bj+\ — /. D

3.15 Corollary. Under the above notation, if u is standard and u = fc, then
/ N B Γ ^ i ; if u > ΛΓ then / N Pil.

(c) Paris Sequences of the First Kind

These are the Paris sequences in the sense of Π.2.24.
We slightly reformulate the definition and reprove a theorem from there

(Lemma 3.17 below). The main result is Theorem 3.20 exhibiting an indicator
for models of BΣfc+i and Theorem 3.23 (an indicator for models of PA).

3.16 Definition (IΣχ). Let iyg < b and let par be an increasing sequence
of elements of [0,6]. c € dfι{b,i^g,par) if c < 6 and there is a formula
φ(x,y) 6 I/, φ < i, such that for some parameters e from [0,#] U par
evaluating y, c is either the minimal or the maximal element of [0,6] satisfying
φ(x,e) in [0,6]. (Clearly, dfλ is Δ\ defined.)

3.17 Lemma (JΣΊ, cf. Π.2.26). Let u > 0 (dimension), let u > u be such that
2" > i/4, let c > 2 and let 6 be such that [0,6] -> (u + 2)2+ 1 (see II.2.7; each

/ : [0,δ]u + 1 -» c has a homogenous set Y such that c < minY < 2πύnY <
card(Y)). Then in [0, 6] there are g of length v and h of length u such that g
is a Paris sequence for h w.r.t. dfi.

Proof (cf. Π.2.26). We are going to define a function F : [0,6]u + 1 -> c such
that if Y is the homogenous set as above and β = (/30,...,i8w) € fΓ]"*1

then for h = (/?χ,... ,βu) there is a Paris sequence g of length v. For each
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β € [0,6] t t+1 define a sequence (gι \ i < v) (not depending on βo) as follows:

par? = {βj+ι,...,βu)9

^ 0 = 0 ,

gi+1 = max^M^,-, j>αrf) Π [0,

We want to have

[βj,βj+ί\ Π i/i(δ,i,yi,pαr i + 1) = 0

for j = 0,.. . ,u — 1.
Claim 1. The last condition for j = 0 guarantees </i+i < ySo and for

j = 1,..., u — 1 guarantees that ^ is a Paris sequence for ( f t , . . . , /?u). (Cf.
IL2.26).

Define F(β) as follows: F(/3) = (j,i) if (j,i) is lexicographically the
smallest element of it x i/ such that

[βj, βj+l] n ^/i(6, i, £i, par j) = 0 if there is such (j, i)

Otherwise F(β) = (w,0). Clearly, F can be understood as a mapping into c.
Let Y = {y, I i < e] be homogenous as above.

Claim 2. The common value of F on [ y ] w + 1 is (w,0). We prove the claim
by contradiction. Assume F(β) = (j,i) for a 0 € [F] w + 1 and j < u. Let
(<7ι I i < i') be the sequence corresponding to β.

(1) Observe that [β^βj+i]| Π dfx{b,i,gu paτj) φ 0.

(2) For our i, f̂,- < /9o This is clear for i = 0. For i > 0 observe that for

t < i and j < j we have [fe^T+i] Π d/χ(δ, it9i^Varl) = 0; in particular, take

i = i — 1 and j == 0 and see Claim 1 above.
(3) Since the sequence (α, | % < v) does not depend on /?o> we may conclude

that g{ < yo (yo is the smallest member of Y).
(4) Therefore (1) implies that [βj, βj+{\ Π d/χ(δ, i, y0, pαr ̂  ) έ̂ 0. Since β E

[ y ] w was arbitrary we have [yuVt+\] Π df^ί.yQ.parj) ψ 0 for each ί such
thatj < ί < e — t ί + j — 1. Among those intervals [yM/ί+i] there are (|y|—u)/2
disjoint intervals, each intersected by an element of dfi^i^yo^parj). Thus
to get a contradiction, it is sufficient to show the following.

(5) |tZ/i(M,yo,pαrj )| < (I*Ί - u)/2. To obtain this, observe that there
are at most (i + 1) formulas < i and each may take parameters from a
set of cardinality yo + u + 1; each pair (formula-parameters) can give at
most two elements to dfx(...). Thus \dfλ{.. .)| < 2(i + l)(y 0 + u + 1)(*+1) <
2i/(yo +u + i)y. On the other hand, ( | r | -tι/2) > (2^° -u)/2 > 2*"> - 2 (since
yo 5: c > u). Thus we have to prove

2^°"2 > 2u(y0 + u + iγ.
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Put x = y0 + u + 1; it suffices to prove 2aj"1i""4 > xv or (stronger) 2aj~ t i~4 >
x2v. It is easy to show that this holds e.g. for x = 2V and all bigger x (using
2" > i/4). But y0 + u + 1 > 2/0 > c > 2". This completes the proof of Claim 2.

Thus JF(j0) = («,0) for all 0 e [ r ] w + 1 . This implies, as in (2) above, that
9i < A) for all i < v\ and evidently, g satisfies the disjointness conditions
from the definition of a Paris sequence for (βι,...>βu). This completes the
proof. Π

3.18 Remark. If we assume in the previous lemma that c > 2 then we may
find a Y as above and growing exponentially, i.e. yt + 1 > 2yi. (This follows
from II.2.13).

3.19 Lemma. Under the notation of 3.13, if if is dfi (as defined in 3.16) and
J = N then df is suitable.

Proof. The condition 3.13 (1) is satisfied, since clearly u C υ implies
dfι(xyiygi,u) C c?/i(a:,ι,grt ,v). Also I C e Bj is clear. And if p 6 N and
α i , . . . , αp £ Bj, and α is defined from α i , . . . , ap by a standard formula φ
then one easily writes down a standard formula φ witnessing, for some stan-
dard number k, that a E dfi (6, ky g^, parj). This shows closedness of Bj under
Skolem functions. D

3.20 Theorem. For each k > 1, the function

(or = 0 if such a does not exist)

is an indicator both for models of IΣ^ and for models of BΣ^+i in IΣχ.

Proof. Let M N IΣ\ and let a < b 6 Λf.
(a) First assume that there is a cut a < I < b such that / 1= IΣ^. By

Π.1.9, for each n, I f= (3y)([α, y] -^ (ifc + 2)^ + 1 , thus for each n, M t= (3y < 6)

([α» y] —• (Λ + 2)^+ 1) and by overspill we get a non-standard c < b such that

M N [α, y] -^ (t + 2)£+1. Thus in M, y(α, 6) is non-standard.

(b) Now assume F(α, b) > N in Λf. By Π.2.7 (or, better: by an analysis
of the proof of Π.2.7) there is a non-standard c such that M )F 22v < c
and [0,6] -£ (* + 2)J + 1 . Apply 3.17 and 3.18: we get g,h such that h =

(/lo,. , hjς^i) and g is a Paris sequence of length v for h w.r.t. rf/j in 6; h
is a fc-tuple of elements of a set of indiscernibles of exponential growth and
non-standard cardinality contained in [α,ί>]. Thus / = {j^[0,9i] is short and
fc-restrainable in [0, b]. By 2.21-22, / t= BΣk+ι. •
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3.21 Corollary. Let k > 1.

(1) IΣk does not prove (Vz,z)(3y)([x,y] -* (k + 2)£+1).

(2) The functions Fjt>n(x) = miny([a;, y] -+ (k + 2)£+ 1) (n = 1,2,...) form

an envelope for IΣk-provably recursive functions.

Proof. (1) follows immediately from 3.10 (i).
(2) follows easily from 3.10 (iv). D

3.22 Remark (IΣλ). (a) Recall Π.2.16: if [α,δ] -> (e + l)e

d and d = c3 then

[ α , 6 ] ^ ( e + l) .

(b) Observe that II.2.12, together with the fact that for c > 7 we have
c > 1 + 2^/c, implies the following: c > 7 and [α, 6] —• (e + 2)*"1"1 implies

3.23 Theorem. The function

( , ) ( [ , ]
C *

is an indicator for models of PA in IΣ\.

Proo/. If α < b € M N IΣ\, a < I < 6, I C e M and 11= PA then obviously,

for each standard n > 0, I t= (Ξy)([α,y] -• (n + 1)J}); thus F(α,δ) is non-

standard.
Conversely, let Y(a, b) = d be non-standard; let u be non-standard such

that e = 26« < d. By 3.22, [α, 6] ^ (u + 2)«+ 1 and thus [α, 6] -^ (u + 2)^ + 1

for c = 22 t i. Apply 3.17: in [α, 6], there are g, h of length u such that g is a
Paris sequence for h in b w.r.t. i/j, and / = UjvΦ'ίfa] is short in [α, 6], By
3.14 (2), it is A?-restrainable in [0, b] for each fc G N and consequently I M PA.

Π

3.24 Corollary. (1) PA does not prove

(Vx,

The functions

n() ([,y}(

form an envelope for PA-provably recursive functions.

(d) Paris Sequences of the Second Kind

Here we exhibit another indicator for models of BΣk+\ and of PA^ using the
notion of α-large sets and the Schwichtenberg-Wainer hierarchy.
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3.25 Definition (IΣχ). Let g < b and let par be an increasing sequence of
elements of [0,6]. c G df2(b,g,par) if there is a formula y>(:r,y,z) 6 L' and
parameters e evaluating y such that

(1) ( v ? , e ) < 0 - l , and
(2) c is the minimal element of [0,6] satisfying φ(x, e, par) in [0,6].

3.26 Remark. Compare this with 3.16 (definition of dfi): there we had two
independent bounds for the formula and parameters distinct from par. Here
we have one point bound for the pair formula-parameters. The main property
of if 2 is that, for each 6,<j,pαr, the cardinality of if2(K g, par) is less than
g. (And clearly, if 2 is Δ\-defined.)

3.27 Lemma (IΣ\). Assume A C [α, 6] to be u>£-large, where u,v > 1, a > 2
and let par be an increasing sequence of elements of [0,6]. Then there is an
Aι C A and a h G -A, h > max A\ such that

(1) A\ is ωjjlj-large and

(2) if {g{ I i < v) is the increasing enumeration of A\

then

[(gi+1,h))ndf2(b,9i,par) = <t)

for each i < v — 1. (Remark: [(a?, y)] denotes the open interval with endpoints

Proo/. Let go = minA, fto ~ max A. We construct a sequence of intervals
\9h hi] (i = 0,..., 1/) such that yt < #t + i < Λ, + i < Λt as follows:
let A ΓΊ [fff ,Λf ] be ( 4;«-i}too-i).»te-i-l).ia r ge and assume the exponent
ίωtι-lK0O ~ 1) (<7i-l — 1) = α to be > 2. Then use the increasing enu-
meration of if2θ*,giipar) to define a decomposition of [</t,Λ, ] onto < gi
intervals [x, y] such that [(ar,ι/)] Π if2(K9>Par) = β Apply Π.3.21 (4) to ob-
tain a [0i+i,Λi+i] C [(gύhi)] such that AΠ [0t +i,fcί+i] is ω^K^-iJ-large
and bf| +i,ft t + i ) ] Π if2(b,gύpar) = 0.

Let u be the least number such that {ωJJ_i}(^o — 1) ( ^ - l — 1) < 1-
Take a gu (= ^ . . i + 1, say); then {gi — 1 | t < 1/} is ωJJ-1-large, i.e.
{« - 1 I 1 < f < 1/} is {<-£_! }(ffo - l)-large, thus {ωJ.iXlJ-large and
therefore ωj|lj-large. But then also {# | 0 < i < v - 1} is ω^lj-large. Put
Λ = Λ|,_i; then the assertion of the lemma holds. This completes the proof.

D

3.28 Lemma. There is an m such that IΣ\ proves the following: if α > m and
assumptions of 3.27 hold then gi+i > 29i for all i < v - 2.

Proof. If α > m for an appropriate m then for each gι there is an x <
gi < 2X such that 22* € ^ ( M ή β ) S df2(b,gi,par). (See the sublemma
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below.) Now assume gi+χ < 2gi\ then gι+\ < 22*, thus ftt +χ < 22* (since

[(#+1, fc +l)] Π df2(b,gi,par) = 0).
C W i. ^ + 1 < 2*, then ft, +i < 2* < 2^ < 2*+i.
C W jg. 2* < # + 1 , then Λf + 1 < 22" < 2*+*.
In both cases, ftj+i < /2(#t+i) ~ 1 (/2 is the second function of the

Schwichtenberg-Wainer hierarchy, cf. II.3.31), thus [<7i+i,At+i] is not u>2-
large. Thus α = {ω^^go - 1) . . . (&• - 1 ) < 1 (since [ # + i , At +i] is ωα-large
and a > 2 implies α —• 2). We get i + 1 = ι/ — 1 (<7, -f-i is the last element

of g). It remains to prove a sublemma to complete our proof.

3.29 Sublemma. There is an m such that IΣ\ proves the following: if b > g >
m then there is an a < g < 2a such that 22<* G df2(b, g, 0).

Proof. Let y?(#, y) define y = 22* for the standard pairing function we have
(φ>a) = α2/2 + ka + Λ for some Λr, Λ; find m such that a > m implies
ka + h < α2/2, then (φ,a) < a2. Further, let m > 37 which guarantees
that for g > m there is an a such that a? < g < 2α. (This works for g even;
for 0 odd the proof is analogous.) D

3.30 Lemma (IΣi). Let a > 2, A C [α, 6] α J-large; then there is an increasing
sequence h of elements of [α, 6] with lh{h) = w and an increasing sequence g
of elements of A with /A(flf) = v — u such that g is a Paris sequence for h in
6 w.r.t. df2'

Proof. Apply iteratively Lemma 3.27: put AQ = A, paru = 0; you get A\ C A
^Zl-large and a ft^-i € A, ftu-l > -^1 s110^ that for two consecutive
elements x,x* of A\ we have

Put paru_^1 = {ftti-i}. If we have A; C A, _ i , A, ω^lj-l
A, , and pαru_^ = (Λ^—j... Λw_-i) such that x,xf G A, , x < x1 implies
[(xf,hu-.i)] Π rf/2(^^ίJ>Λ^w-t-fi) = 0» then we can use 3.27 to get the same
with i replaced by i +1. Finally we get Au ω^~u-large (i.e. (v — tz)-large, thus
having at least v — u elements) and paru = (Λθί > ^ti-l) = A such that if
<7 = (^ I ί < v — u) enumerates Au (or: the first t; — u elements of Au) then
g is a Paris sequence for h in 6 w.r.t. df2. D

3.31 Remark. Note that by 3.28 if we assume a>m (where m is as in 3.28)
then we may conclude that the sequence grows exponentially.

3.32 Lemma. Let M (= IΣ\ be non-standard and let α,</,ft,6 be as in 3.30-
3.31. Assume v — u non-standard and let J C v — u be a cut; put / =
i € J} (cf. 3.13). Then df2 is suitable for g, ft, 6, / .
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Proof. Cf. the proof of 3.19. We verify that for Bj = \JieJ j
parj = (ftj,..., ftti-l)> Bj is closed under Skolem functions. Let α i , . . . , ap G
Bj (p G iV), let φ be standard and let c G [0,6] be defined in [0,6] by
φ from α i , . . . , α p . Assume a\...av G d/2(6,0i,parj); le* α» D e defined by
(̂ i> et) < 9q (Q € J) Ψi n ° t necessarily standard).

Thanks to exponential growth of g, there is a q1 = q + fc for some standard
fc such that the formula φ1 saying

. . . , xp)(f\ ψi(xu Vu parj) & φ(z, x))"

together with the juxtaposition e' of eχ,...,ep form a pair (y?',e') < gq;
clearly, φ1 defines c from e', par j in [0,6]. This shows that Bj is closed under
definable Skolem functions. D

3.33 Theorem. For each k > 1, the function

Zk(ay 6) = max([(α, 6)] is ω£-large), or

= 0 if such c does not exist,

is an indicator both for models of BΣk+ι and for models of IΣk in IΣ\.
Remark. This is a well-defined Λ\ function in IΣ\ since a + 1 > 0 and

therefore [a + 1,6 - 1] is not α>£~"α-large (prove this using Π.3.21 (5)). There
is a maximal c such that [(α, 6)] is ω£-large, since the property in question is
a Δ\ property of c.

Proof. Let M t= JΣ"χ, M non-standard, and let a < 6 G M.
(a) Similarly as in 3.20 we show that if there is a cut a < I <b such that

11= IΣk then Zk(a, 6) is non-standard.
(b) Conversely, assume c = Zk(a, 6) > N in M. Then 6 > N (by the

remark above) and we may also assume a > N (otherwise take N for J).
Apply 3.30: [a + 1,6 — 1] is ωk-large, therefore there are h = (Λo? ? hk^ι)
in [0,6] and a Paris sequence g for h w.r.t. d/2, # of length c — fc > N. By
3.31, # grows exponentially. Thus by 3.14, J = UnΦ'ίfa] ̂ s fc-restrainable in
[0,6-1] and therefore / 1= BΣk+1. D

3.34 Corollary. For k > 1, the functions fω^x {n = 1,2,3,...) form an
envelope for Ii7j.-provably total Σ\ functions.

Proof.

Unix) =: min(Zjt(a;, y) > n)

= min(max([(x,y)] is ω^_1-large) > n)

= min([(x,y)] is ωj^_1-large) = min([s + l,y)] is α;jf_1-large)
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3.35 Corollary. Let k > 1; then IΣ^ does not prove fωh to be total.

Proof. By the indicator theorem IΣk does not prove (Va?,*)(3y)([£,y] is ωj£-
large). By Π.3.34, this means that IΣk does not prove that each z, fω*h_x is
total. But this means that IΣk does not prove fωh to be total. D

3.36 Theorem. The function

Z(α, 6) = max([(α, b)] is α^Marge)
c

= 0 if such c does not exist

is an indicator for models of PA in IΣ\.

Proof. Clearly, if a < I < b and 11= PA then for each u,

JI=(3y)([α,y)]isα;2Marge).

Therefore Z{a, 6) > N. Conversely, if c = Z(α, b) > N then assume a > N;
by 3.30, there are g, h (h of length c) such that g is a Paris sequence of the
second kind for h of non-standard length c. By 3.31, g has exponential growth.
Thus by 3.14, there is an I Cβ M, such that for each k I is fc-restrainable in
[0,6-1]. Thus IϊPA. Π

(e) Farther Consequences

3.37 Theorem. For each fc, IΣ\ proves that (W)k implies {PH)k. (This is
Theorem Π.3.36; (W)k is (Vx,z)(3y)([xyy] is ω|-large) and \PH)k is the
fc-th instance of the Paris-Harrington principle:

Proof. Let M t= IΣ\ be non-standard satisfying (W)k, let k > 1, a E M - iV,
c € M - iV; we want to find a b such that M 1= [α, δ] -» (Jfc + 2)* + 1 . This will

clearly verify M t= (PH)^. We may assume M 1= c < α (otherwise change α
to c). Find a b such that M t= [α, 6] is ω|-large where e = c" + A; for some

non-standard i/ and put d = 22 in Λί, [α, d] is also α^-large.

Let / G M, / : [α, 6]̂  —> c; then clearly / is coded in [0, d\. Apply 3.30 and
3.31 with 6 replaced by d and with A replaced by [α, b)\ find g, h in [0, d\ such
that lh(h) = fc, ZΛ(̂ ) = c" and g is an exponentially growing Paris sequence
for h w.r.t. <J/2, consisting of elements of [α, δ].

Claim. There is a cut J <cv such that 7 = supj{yt | i G J} is regular up
to c.
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Proofof the claim. Enumerate all coded partitions of the set [0,6] into c parts
as \Jj<cQij, i € N (this system exists due to the countability of M). Define
a sequence {A{ \ i G N} such that Ao = A, for each i, card(A{) > cv"% and
for some j , A{+\ C A{ Π <ftj. Then put / = sup^min(A, ). I is a cut in [0,d]
and if U?<c 4; *s a c°ded partition of / then it induces a partition \Jj qij for
some i (dj = q^ Π 7). Take A{+ι and let At +χ C ςyo. Then clearly At +i ΓΊ /
is unbounded in J, thus dj0 is unbounded in I. This proves the claim.

We continue the proof of the theorem. Apply 3.14. Thus we have a chain

aeIQeKo^i <j Kk ^ [0,d];

by inspecting the proof of 3.30 we see that we may assume f £ KQ. (Put
= (/)•) Observe that b £ I and apply 2.24: we have Ko t= [α, 6] -> (fc +

and / E UΓo» thus in Ko and consequently in M, / has a relatively
large homogeneous set. This completes the proof. D

3.38 Corollary. For each fe, the following are equivalent over 1Σ\\
(i) Con(IΣk + ΪV(iTi)), (ii) (PH)k, (iii) (W)k.
(See II.3.36.)

3.39 Theorem. Each non-standard model of IΣ\ has a non-standard cut that
is a model of PA.

Proof. For each standard u, N 1= (3y)(Y(u^ y) > u), thus if M is non-standard
and M £ IΣχ then M 1= (3y)(F(u, y) > u). (Y is the indicator for PA in JΣΊ.)
By overspill, there is a non-standard c G M such that M t= (Ξy)(F(c, y) > c).
Let d be such a y; then in M, Y(c, d) is non-standard and therefore is a cut
c<I<d,I\= PA. D

4. Formalizing Model Theory

The main aim of this short section is to exhibit a proof of Paris's conservation
result (for all n, BΣn+\ is a iTn+2-conservative extension of IΣn, see Sect. 1)
in IΣ\. This implies that for each n IΣn+\ proves Conm{BΣ^χ) (since it
proves Co7i#(J££), see 1.4.34). This is a valuable piece of information on
the relation of fragments of PA; for example, it implies that IΣn+\ is not
interpret able in BΣn+χ.

Thus the section is a free continuation of Chap. I, Sect. 4 where we
formalized some parts of logic in IΣ\. Our present formalization consists
in formalizing Paris's proof of his conservation result; roughly, we show in
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IΣ\ that each model of IΣn has a satisfactorily elementary extension to
a model of BΣn+\ and that this implies the desired conservation. Thus
we shall see that important parts of the model theory of fragments can be
developed inside BΣ<ι. Central devices are the Low arithmetized completeness
theorem (cf. 1.4) and a consistency criterion (see below). The section has
the following structure: (a) some results on satisfaction and consistency, (b)
Paris's conservation result in BΣ<ι, (c) a proof of conservativity of ACAo over
PA.

(a) Some Results on Satisfaction and Consistency

Recall Chap. I, Sect. 4 (c); there we formalized model theoretical notions
in IΣ\ and after having proved the Low arithmetized completeness theorem
(1.4.27) we investigated (inside IΣ{) the language of arithmetic and defined
its standard model (the universe). For each fc, IΣ\ proves that the standard
model has a satisfaction for (Σk U 17fc)-formulas; but it follows easily by
self-reference that IΣ\ proves the non-existence of a full satisfaction for the
standard model (for a precise statement see below).

Now that we have studied non-standard models of fragments, we are ready
to continue the development of positive results in fragments by investigating,
in some appropriate fragment, non-standard models of arithmetic. The Low
arithmetized completeness theorem yields models with full satisfaction; but
other constructions need not. We present here a theorem enabling us to derive,
in IΣ\ (or in IΣ\(Γ) for some Γ). the consistency from the existence of a
model with partial satisfaction. This will be used in the next subsection
during our proof of Paris-Friedman's conservation theorem in IΣ\.

4.1 Theorem. For each fc, IΣ\ proves the following: there is no Sat G Σ%
such that Sat is a full satisfaction for the standard model. (Cf. 1.4.23 for the
notion of a full satisfacton.)

Proof, Let σ(z,e,p) be a Σjg formula defining binary 27j£-relations in IΣ\\
let, by the diagonal lemma IΠ.2.1, ψ(p) be such that IΣ\ h <p(p) =
-iσ(<p(p), [p],p) Now assume in IΣ\ that we have a p such that Sat = {(z, e) |
σ(z, e,p)} is a full satisfaction class for the universe. Then on the one hand,
φ(p) is equivalent to ~*σ(φ(p), [p]>p)> but on the other hand, by "it's snowing" -
it's snowing applied to φ, φ(p) = (φ(p), [p]) G Sat = σ(φ(p), [p],p), which is
a contradiction. D

4.2 Convention. In the rest of the subsection we assume that T is a theory
extending IΣ\ and Γ is a class of formulas such that T h Δχ(Γ) C Γ and
T h IΣι(Γ). Our favourite choice will be Γ = LL\ (i.e. low Σζ(Σχ)) and
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T = IΣi, cf. Chap. I, Sect. (c). Instead of saying that we work in T, just say
that we work in IΣι(Γ).

4.3 Theorem (JΣΊ(Γ)). If L is the language of arithmetic and (M, 5, Sat) is
a Γ-defined model for L where Sat is a satisfaction for (M, 5) and (££ Ul7*)-
formulas then the IZfc+i theory of (M, 5) is consistent.

Proof. Note that Sat uniquely extends to a satisfaction Sat1 for HA + 2 for-
mulas; but Sat' need not be Γ. The ϋfc+2 theory of (M, 5) is the set of all
-frjfe+2 sentences true in (Af, 5). The theorem follows by 1.4.26 (relativized to
IΣ\(Γ)) from the following lemma: D

4.4 Lemma (IΣι(Γ)). If (M, 5, Sat) is as in 4.3 then, for each finite set To of
-̂ ib-h2-formulas true in (Άf, 5, Sat), (M, S) can be expanded to a /"-defined
model (M, S1) of skolemizations of formulas from To (with respect to the
satisfaction guaranteed by 1.4.24).

Proof. Observe that theorem 1.4.33, stating that for n > 1, IΣn proves the
consistency of the set of all true 11^+1 s e ntences, is a particular case of our
present theorem 4.3: T = IΣni Γ = Δn, T h /ΣΊ(Γ), (M, 5) is the standard
model* with the Δn satisfaction for (Σ^+1 U #£+1) formulas*. Thus take
Jk = n - 1: we get T h Con*(2V(iT*+2), and k + 2 = n + 1. D

The proof of 1.4.33 is just a particular case of the proof of our present
lemma; the reader may generalize easily. (Hint: all least number operators
are understood as taken outside the model, not in the sense of the model.
Values of terms are well defined since all function symbols in question are
interpreted as /'-functions.)

4.5 Corollary. IΣ\ proves that if M = (M, 5, Sat) is an LL\ model and Sat
is a satisfaction for (Σ£ U JTjζ) formulas (k > 1) then the Π%+2 theory of M
is consistent.

Proof. By 4.3 using our favourite choice (cf. 4.2). D

(b) A Conservation Result in IΣχ

We formalize the considerations of Sect. 1 (f); in particular, we formalize the
proof of 1.61 in IΣ\.

4.6 Theorem (/ΣΊ). Let k > 0 and let (/£*,)* be the strong Skolem extension
of IΣl as described in 1.4.10. Let M* be an Llχ model of (IΣk)* with full
satisfaction and let M be the reduct of M* to the language of arithmetic.
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Then there is an LL\ model / of J?I7jJ+1 with satisfaction for Σ^, χ U UjJ, χ-
foπnulas such that I is a cofinal, (k + l)-elementary extension of M.

4.7 Corollary. II?i proves that, for each k > 0, l?27jj+1 extends JΣ£ J7JJ, 2-
conservatively. (See the remark following 1.61 and use 4.5 with (fc + 1) instead
of Jfc).

4.8 Corollary. For each k > 1, / £ * proves Con (BΣ%). (Since, by i T * h
Con(IΣl_χ) and, furthermore, /£*. h Conm(IΣl_χ) -+ Con*(BΣl).)

In the rest of the subsection, we elaborate the proof of 4.6.

4.9 Construction. We proceed in IΣ\. Our aim is to formalize the proof of
1.61. Let M* be as in 4.6 above. We shall carefully define an ultrapower K* of
M* using an ultrafilter U of definable subsets of Λf*. The care concerns not
only the verification that our construction works in J27i, but also that our
special choice of U will ensure that the cut / = sup#(Λf) (where K,M axe
reducts of ΛΓ*,Λf* to the language of arithmetic) will be Δ\ in M*, i.e. will
itself be LL\. We shall define low Δ2 satisfaction for K* using Los's theorem
and define an LL\ satisfaction on / for Σjg U ϋj.-formulas such that I -<& K.
An additional proof will show that even satisfaction for X^+i U Πk+ι on I
is Zii(M), i.e. LL\. The reader is advised to compare our construction with
1.65.

(1) ΛΓo will be the set of all parainetrical definitions of mappings of M*
into itself, i.e. of formulas φ(y,x,a) of the language of (IΣ%)* such that
Λf* N (Vs)(3!y)y>(a;,y,α) (a is a parameter from M). Clearly, KQ € Δ\(M*)
(here M* denotes the structure together with its full satisfaction) and hence
ΛΓo £ LL\. Similarly, B will denote the set of all parametrical definitions of
subsets of M, i.e. of arbitrary formulas φ(x, a). Again, B G Δι(M*).

Since IΣ\ proves IΣ\(LL\) and both KQ and B are unbounded, we
may work with increasing enumerations of. both sets; the enumerations are
Δι(M*). Thus let

#0 = {/l,/2,...}

B = {φ\,ψ2,. •}

(2) We shall construct a "generic sequence" of elements of B defining an
ultrafilter U. In the even steps, we shall deal with φfs and in the odd steps
we shall decide the membership to the cut /. Using IΣ\{LLi) we construct
by induction a sequence of formulas ctj(x) (containing parameters from M*);
for each j , Ωj(x) abbreviates /\2<j az(x). Put (XQ(X) = TRUE.

Step j = 2i + 1. Let Φ = (3y)(0x)(Ωj(x) k fi(x) < y).
Case 1. M* t= Φ. Then let ι/o be the least element of M* (in the ordering

of the universe) such that Λf* t= (Cx)(Ωj(x)&εfi(x) < yo) and put otj(x) =
/ ( ) <
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Case 2. Otherwise let aj(x) = TRUE.
Step j = 2i+2. If M* f= (Cx)(Ωj(x)kψi(x)) then aj(x) is ψi(x), otherwise

aj(x) is -i^ (a ).
Let us stress again that the sequence of α's is Δ\(M*) and hence LL\\ for

each j we have M* t= (Cx)aj(x). Let Ϊ7 be the set of all ψi such that in step
2% + 2 we have taken <*j(x) to be <pt (a;); again U G ^ii(M*).

(3) For f,g £ KQ put / = # # if the formula / = g belongs to U (in other
words, the set {x G M \ M t= f(x) = g(x)} is in U). We define / + g and
/.# "coordinate-wise", i.e. / + g is defined as the function associating with
each x the value /(x) + g(x) etc. Similarly for 0,5, <. Observe that =u is
a congruence for all these. Thus we have defined KQ as a structure for the
language of arithmetic with non-absolute equality. We may convert KQ to the
structure K with absolute equality by selecting from each equivalence class
of =tf its least element. Clearly, K G A\(M*).

(4) We define the full satisfaction for K as follows:

K 1= φ{h,...,/„) iff {x € M I M μ v>(/l(*), , /«(*))} 6 17.

This definition is Z\i(M*): recall that /i, . . . , fn are formulas of (IΣi)* and
so is φ(fι(x),...). In the above enumeration, the last formula is <pt , say. Thus
the left hand side above holds iff in step 2i + 2 of the construction of U, the
first case occurs (and ψ{ is put into U). We are obliged to prove that this is
indeed a satisfaction:

Lemma. The definition above defines full satisfaction on if, i.e. Tarski's
conditions hold true. (Easy.)

(5) We embed M into K by identifing each a € M with the constant
function on M with the value a (i.e. with the formula y = a). Then the
definition of satisfaction for K immediately gives M -< K. The proof of the
fact that M is not cofinal in A" is as in 1.66.

(6) Define

J = suP / c(M) = { / € K I (By G Λί)({* | /(* ) <y}e U)}.

By this definition, / is Σ\{M*)\ but it is even Δχ(M*) since / G / if for the
i such that / = /,- (in the enumeration of KQ above) we have Case 1 in step
2i + 1. Thus / is low Δ2.

(7) Now define satisfaction for ££Ui7jJ-formulas on / using the satisfaction
on K, i.e. put

11= v?(a) iff j r > φ(a)

for a G / and φ G ΓJJ U /7JJ; use the proof of 1.66 (3) to show that / is indeed
a satisfaction, i.e. Tarski's conditions hold true.

(8) Extend this to a satisfaction 1=' on J for £ £ + 1 U # £ + r We show that

)r is also Δχ(M*). It suffices to show that satisfaction for 27£+1 is Δ\(M*)

so let>' mean this satisfaction. Clearly, t=; is Σι(M*)\ we show that it is also
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Πι(M*). We know that AT is a model of IΣk (since M -< K and M t= IΣk)
and / is a cut in K. By underspill in if, for each JEJ, j-formula (3x)φ(x, y),

11= -(3a: V(x, α) iff (3b e K - I){K 1= - ( 3 * < b)φ{x, a)),

which is Σ\(K,I) and therefore i?i(M*).
(9) Now we may prove M -<k+l I exactly as in 1.66 (2), and I t= BΣ^i

as in 1.67 (i.e. in 1.22). This completes the proof of 4.27.

(c) Appendix: Another Conservation Result

We shall sketch a proof of the following

4.10 Theorem. IΣ\ proves that ACAQ is a conservative extension of PA.

Proof. We shall imitate the model-theoretic proof presented in III. 1.16. In
IΣ\ we have to deal with LL\ sets and a reasonably good satisfaction; this
needs some care.

In IΣiy assume ConΦ(PAΦ) and investigate PA* - the open Δι theory with
a language L* extending PA9 conservatively and such that for each formula*
φ(x,y) of PA* there is a A4*-provably equivalent open PAMormula*. Let
M be a full LL\ model of PA*. Extend M to a model K by adding (codes
of) parametrically Λf-definable subsets of M as sets (in such a way that the
set of all such sets is LLi). Define K t= X =Y iff M t= (Vx)(φ(x) = φ(x))
where X is defined by φ and Y by φ. Make K into a model with absolute
equality by the same trick as in subsection (c). If X is given by ψ(x) then
K N x G X means M t= φ(x) Define a predicate Set ranging over all sets of
if, a function L(X) selecting the least element of X if X is non-empty and
Λ(X, Y) selecting the least element of the symmetric difference of X, Y if it
is non-empty. Finally, for each open formula Φ(x,y, Z) of PA* add a function
symbol Fφ(yy Z) and the axiom

Set(Fφ(j, Z) & [#(«, y, Z) = x £ F#(y, Z).

Observe that this can be done in such a way as to make the resulting model
(denoted again by K) LL\.

Show that the open theory To of K implies ACAQ and Th(M) (the theory
of M). To is consistent by 1.4.26 (relativized; thus ACAQ + Th(M) is also
consistent. This completes the proof. D






