How precious also are thy thoughts unto me,
O God! how great is the sum of them! If I
should count them, they are more in number
than the sand; when I awake, I am still with
thee.

(Psalm 139, 17-18)
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Chapter I

Arithmetic as Number Theory,
Set Theory and Logic

Introduction

We are going to investigate axiomatic theories formulated in the language Lg
of arithmetic. Such a theory T is sound if the standard model N is a model of
T, i.e. all axioms of T are true in N. If T is sound then, trivially, each formula
provable in T is true in N. We confine our attention to theories containing
a rather weak finitely axiomatized theory @ (which will be defined in a mo-
ment) and shall study an infinite hierarchy of sound theories whose union
is called Peano arithmetic; the theories from the hierarchy are called frag-
ments of Peano arithmetic. In this chapter and the next, we shall elaborate
positive results on these theories, i.e. we shall show that the expressive and
deductive power of these fragments is rather big: our aim will be to show how
some amount of arithmetization of metamathematics yields the possibility of
speaking inside a fragment of arithmetic not only of numbers but also of finite
sets and sequences and of definable infinite sets of numbers. This is the main
result of Sect. 1. In Sect. 2 we shall study the structure of the hierarchy of
fragments, i.e. show various equivalent axiomatizations and several inclusions
among fragments. Section 3 is devoted to the development of some recursion
theory in fragments, notably to a proof of the Low basis theorem, which can
be viewed as a strong form of Kénig’s lemma. (The Low basis theorem will
be crucial in proofs of combinatorial principles in fragments; this will be done
in Chap. IL.) Finally Sect. 4 further develops metamathematics in fragments;
among other things, the Low arithmetized completeness theorem, i.e. a strong
form of the completeness theorem, will be proved.

Let us close this introduction with two remarks: first, the reader will find
here (in Part A) actual proofs of various theorems in fragments, not only
proofs of provability of these theorems. (Model-theoretic methods of proving
provability of a sentence in a fragment can be found in Chap. IV.) It is hoped
that the reader will feel comfortable in these fragments and will gain good
practice in proving theorems in them. If so, then he will agree that each
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fragment (as well as the whole of Peano arithmetic) captures a natural part
of the truth about N.

Secondly, the limitations of the axiomatic approach in capturing the truth
on natural numbers, i.e. the feature of incompleteness, will be studied in
Part B.

1. Basic Developments; Partial Truth Definitions

(a) Properties of Addition and Multiplication,
Divisibility and Primes

1.1 Definition. Q is the theory in the language Ly with the following axioms:

Q1) S(z)#0

(Q2) S(z)=8(y)—~z=y

(Q3) z#0 - (Jy)(z = S(y))
(Q4) rt+0==z

(Q5) z+S5(y)=S5(z+vy)

(Q6) zx0=0

Q7) z*xSy)=(zxy)+=
(Q8) g<y=(I)(zt+z=y)

Q is often called Robinson arithmetic. Note that thanks to our notational
conventions, (Q7) may be written equally well as z *x S(y) = zy + z (omitting
the parentheses and * on the right hand side); but since we are begining to
develop axiomatic systems of arithmetic, we shall be slightly pedantic for
some time. Later we shall again freely use our conventions. Peano arithmetic
results from @ by adding the induction schema

©(0) & (Vz)(p(z) — ¢(S()). — (Vz)p(z).

This is indeed a schema: for each formula ¢ we have an induction axiom.

Note that ¢ may contain free variables distinct from = as parameters. Peano
arithmetic is denoted PA.

1.2 Lemma. In PA, the axiom (Q3) is redundant.

Proof. Let ¢(z) be £ = 0V (Iy)(z = S(y)) and proceed in PA: ¢(0) is obvious
and ¢(S(z)) too; thus we have (Vz)(¢(z) — ¢(S(z)), and thus (Vz)e(z). O
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1.3. Particularly important fragments of PA result by restricting the induc-
tion schema to formulas ¢ from a prescribed class. This will be investigated in
details in Sect. 2; here we make only a few particular choices. Iopen, I X, I 2}
will denote the theory @ plus the induction schema for ¢ open, Xy, X7 re-
spectively. (We shall also investigate a theory with an extended language.)
Note that in Part A we shall develop mainly theories containing I X (and
contained in PA). This is because in X we can formalize a proof of the fact
that total A; functions are closed under primitive recursion (a careful formu-
lation is presented below). This is the most important feature of fragments
containing I¥; and makes them remarkably different from weaker systems.
Note also at this time that Chap. V deals with I Xy and related theories and
elaborates their specific problems. Iopen Will play only a marginal role in this
book.

1.4. Note that by (Q3), each non-zero number z has a predecessor, i.e. a y
such that S(y) = z. Thus we may define, in @, a total function P by the
following definition:

y=P(z)=.(z=0&y=0)V(z#£0&S(y) ==z).

We shall now prove several formulas in Q. Recall that for m € N, m is the
m-th numeral (cf. 0.28).

1.5 Lemma. The following formulas are provable in Q:

(1) z4+y=0—-.2=0&y=0,

(2) zxy=0—.2=0vy=0,

3) z+1=S(@),

(4) 0<z,

(5) S(z)<n¥l-z<h,

(6) S)+rn=z+n+1,

(M n<z—.z=nVn+1<z.

Proof. Proceed in Q. We prove (1)—(4). Take (1). If y # 0 then y = S(z) for
some z, thus z +y = S(z+2) #0. lf z # 0&y = 0 then z + y = S(2) for
some z. This proves (1). Ad (2): assume z,y # 0,z = S(u),y = S(v). Then
zxy = S(u)* S(v) = (S(u) *v) + S(u) = S(S(u) +v) #0. (3) is trivial.

(4) is obvious by (Q4). (5): If z + S(z) = n+ 1 then S(z + z) = S(R),
thus z + ¢ = 7. Note that (5) is a schema; for each n we have a proof. Also
(6) is a schema; we shall construct the desired proofs by induction. Observe
that we shall use no induction within the proofs (since we have no induction
in Q); we shall construct the (n + 1)-th proof from the n-th one. This will
often be the case. For n = 0, Q proves S(z) +0 = S(z) = z + 1. Assuming
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(6) we get Q- S(z)+n + 1= S(z)+S@) = S(S(z)+7)) =S(z+n+1) =
e+ Sn+1)=z+n+2

(7) In Q, assume 7@ < z &z # 7; then, for some z # 0, 2+ 7 = z. By
(6), we get ¢ = P(z)+n+1,thusn+1< . a

1.6 Theorem. For each n,m € N, @ proves the following:

(1) m+nrn=m+n,

(2) M*R=mMm*n,

(3) m#nform#n,

4) r<m=.z=0Vz=1V...Vz=n,
(5) z<mVa<z.

Proof. (1) We prove @ F m+7 = m + n by induction on n. For n = 0 we have
to prove @ + W + 0 = m, which follows by (Q4). Assume we already have a
proof of (1) and proceed in Q: m+n + 1 = m+S(R) = S(M+R)=m+n+ L.
The proof of (2) is similar.

(8) Next we show that m # n implies Q F ™ # . It suffices to assume
n < m. For m = 0 the assumption is vacuous. Assume the assertion for m
and let n < m + 1. Then either n = 0 and (Q1) gives @ F 7 # m+1 or
n = ng + 1 and we have @ - 7y # T by the inductive assumption; hence
QFm#m+1 by (Q2)

(4) We construct proofs of the formulas in question by induction on n.
For n = 0 see 1.5(1). Assume the assertion for n and consider n + 1. The
implication « is clearly provable using (1); thus proceed in @ and assume
z < n+1.If z =0 we are done; therefore assume z # 0. By 1.5(5) we get
P(z) < m,thus P(z) = 0V...VP(z) = i, which implies = IV...Vz = n + L.

(5) Q-0 < z by 1.5(4). Assume Q 77 < z Vz < 7 and proceed in Q.
If z <7 then z < n+ 1 using (4) and (1); if @ < z then, by 1.5(7), either
n=z,thusz<n+1,orn+1<z O

1.7 Remark. (1) Q - z+ 7 =k — 2 = k —n (for n < k); this follows by
iterated use of (Q2).
(2) Q proves

Fr4+y=k—
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]
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(by 1.6(4) using (1)).

1.8 Theorem. (X)-completeness of Q.) Let (z) be a Xy-formula with the
only free variable z and let N k (3z)¢(z). Then @ + (3z)¢(z).

Proof. 1t is sufficient to show for each ¢(z1,...,2n) € Xp that N E
@(k1,...,kn) implies @ & o(k1,...,kn). First show, using 1.6(1),(2), that
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for each term #(z1,...,zn) and each n-tuple k1, ..., k, of elements of N,

QFt(ky,... kn) = Val(t(ky, ..., Fn)

(thus, e.g. @ F (3 + 5) * 8 = 64). From this it follows, again using 1.6, that
our assertion holds for ¢ atomic and negated atomic. (Observe that if N
—~(k <) thenm < kand, by 1.6, Q- k<m — (k=0V...VEk =), thus
Q F —~(k < 7@).) The induction step for logical connectives is easy. Finally,
assume ¢ to be (Jy < z1)¥(y,21,-..,%n) and N F o(k1,...,kn); thus for
some kg < k1, N F :/)(ko,kl, lc,,) and, by the 1nduct10n hypothesis,
Q + (ko,...,kn). This gives Q i— @(k1,...,Epn). Similarly for -, i.e. for
(Vy < z)_";b(y’zl’ zn) O

1.9 Remark. Thus each theory containing @ is X'j-complete. (We shall show in
Part B that no axiomatized consistent theory containing @ is IT1-complete.)

1.10 Theorem. The following formulas are provable in Iopen:

(1) t+y=y+z

2) z+y+2)=(z+y)+=2
3) THY=Y*T

4) zx(y+z)=z*y+z*xz
(5) zx(y*z)=(z*y)*z
(6) z+y=c+z—-z=y

) g<yVy<z

(8) c<y&y<z—oz=y

9) (z<y&y<z)—z<2

(10) r<y=z+2<y+z
(11) 2#0&z*xz=y*xzoz=y

(12) z#£0 (2<y=c*2<y*2)

Proof. We shall now use the induction schema inside Iopen. At the beginning
we shall give detailed proofs; later we shall omit details. The important thing
is always to be sure that we use an instance of the induction schema given
by a formula belonging to the class for which it is assumed; in our case, an
open formula of the langauge Lg.

(1) We first prove (Vz)(0 4+ z = ) in Iopen. We use the induction axiom
given by the open formula 0 + = = =z; denote it by ¢(z). First, #(0), i.e.
0 = 0 follows by (Q3). To prove (Vz)(p(z) — ¢(S(z)), assume 0 +z = z
and compute as follows: 0 4+ S(z) = S(0 + z) = S(z). Thus by the induction
axiom we get (Vz)p(z).
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Second, we prove (Vy)(S(z) +y = S(z + y)). Let o(y) be S(z) +y =
S(z + y). The proof of (D) is easy. Assume ¢(y) and prove (S(y)) as
follows: S(z)+S(y) = S(S(z)+y) = S(S(z+y)) = S(z+S(y)). Thus we get
(Vy)(S(z)+y = S(z+y)). Compare this proof with the proof of 1.5(6): There
we constructed, by metamathematical induction, infinitely many proofs (for
each n, we constructed a proof of S(z) + 7 = z + n+1 in Q); here we
have a single proof in Iopen of (Vy)(S(z) +y = S(z +y)). Clearly the latter
formula implies each instance of the former schema. Now let us prove, in
Iopen, (Vz)(z +y = y + z). Let ¢(z) be z +y = y + z; we shall apply
induction for ¢. We have proved 0 +y = y + 0; assume ¢ +y = y + z and
reason as follows:

S(z)+y=S(z+y)=S@y+z)=y+S(z).

Thus we have proved (Vz)(¢(z) — ¢(S(z)); by the induction axiom we get
(Ve)p(z). )

(2) We prove (z+y)+2z = z+(y+2) by induction on 2. First, (z+y)+0 =
z + (y +0) = z + y is clear. Assume (z +y) + 2z = z + (y + z) and consider
(2 +)+ S(z). We get (z +y) + S(z) = S((& +v) +2) = S(a + (y +2)) =
z+ S(y+2) =z + (y + (S(z)). This completes the proof of (2). Note that
from now on we may write sums like z + y + z + u without parentheses.

(3) First prove 0z = 0 by induction on z; then prove S(z)*y = (z*y)+y
by induction on y; finally, prove z * y = y * £ by induction on z. (Let us
elaborate on the induction step for the second proof; assume S(z) *y =
(z *y) +y. Then

S(z)*S(y) =S(z)*xy+S(z)  (axiom (Q7)
=(z*xy)+y+S(z) (inductive assumption
plus associativity)
=(z*y)+S(y+2) (axiom (Q5))
=(z*y)+S(z+y) (commutativity (1))
=z*xy+z+ Sy (axiom (Q5))
=z *S(y) + S(y) (axiom (Q7)

plus associativity).)

(4) Prove (z 4+ y) * z = (z * z) + (y * z) by induction on z.

(8) Prove (z *y) * z = z * (y * z) by induction on 2. Thus products like
z *y* z*u (or zyzu) are meaningful.

(6) Prove z + 2 = y + z — = = y by induction on z. The induction step:
assume r+2 = y+2 — = = y and 4+5(2) = y+5(z). Then S(z+2) = S(y+2)
by (Q5) and = + 2z = y + 2 by (Q2); thus z = y.

(7) Prove z < y Vy < z by induction on z. (See the proof of 1.6(5).)

(8) Assumez <y &y < z;thusy =z+uandz = y+v. Thenz = z4u+v
and z =z +0; by (6), u+ v =0 and by 1.5(1), u =v =0. Thus z = y.
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(9) Easy using commutativity and associativity of addition.

(10) Use the same plus cancellation.

(11) We have to prove z # 0&z # y. = = *z # y x 2. By (7), we may
assume z < y. Thus we prove the following by induction on z:

r<y&zr#y&kz#0. o .zxz<y*rz&zxz#y*z.
Observe that this is an open formula of Lg; we may write it as follows:
(*) r<y&z#0. s r*xz<yxz

(see the next remark). Now r < y means y = z + u for some u # 0. Nothing
need be proved for z = 0. Assume () and consider S(z). We may assume
2 # 0, hence T * z < y* z, which means y * z = z * 2 + v for some v # 0. Thus

y*S(z)=y*z+y=zxz+z+utv=z*S(z)+(u+v)

and clearly u + v # 0; we get = * S(2) < y * S(2).
(12) The proof of 2 <y — z * z < y * z is easy. Recall () in (11) above
and observe that, by using (8), ~(z < y) is equivalent to y < z. Thus we get

2#0. = (z<y) o ~(zx2<yx2),

ie.
2#0 0 (z<y=z*x2z<yx*2z). O

1.11 Remark. (1) We have seen that Iopen proves that < is a linear order with
0 as the least element and that addition is monotone as well as multiplication
by a non-zero element. As we previously did above, we define ¢ < y as
z < y&z # y (the corresponding strict ordering); £ < y is equivalent to
(Ju)(u # 0&z + u = y). Furthermore, the ordering is discrete since for
each z, S(z) is the upper neighbour of = (and each non-zero element has a
predecessor).
(2) Iopen also proves z * 1 = z and, for each n, it proves

zxn=(..(z+z)+...)+z
n times.

The easy proofs are left to the reader as an exercise.

1.13 Definition (Iopen). (1) = divides y (notation: z | y) if (3z)(zz = y). (Recall
that this is shorthand for (32)(z x z = y).)
(2) z is prime (Prime(z)) if z > 1 and (Vu)(u|z. 2 u=IVu=z).
(B)z=z—yif(z>yandz+2z=y)or(z <yandz=0).
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1.14 Lemma (Iopen). (1) 2 |y iff (3z < y)(zz = y)
(2) Prime(z) if z > 1& (Vu < z)(ulz > .u=TVu=nx).

Proof. (1) Assumezly If y = 0 then for z = 0 we have z < y&zz = y; so
assume y # 0 and 2z = y. Thena:#O thusz>Tandz=2%1<zxz=y.
(2) Observe that for z > 1, u |« implies u < z. O

1.15 Lemma (Iopen).

(1) I|z, 2|z, 2|0, (z|yandy|z)—z|z;

(2) (zly&ylz)—mz=y, zly—z|yzy

(3) (zly&z|z) = z|(y+2);

(4) y#0— (Fu <z)3 < y)(z = yu +v) (division with a remainder).

Proof. (1)-(3) are easy. We prove (4). Let ¢(u) be the formula yu < z.
We have ¢(0) and for some u, e.g. for u = z + 1, we have —p(u) (since
yiz+1) =yz+y > & +y > z). By Iopen, there is a u such that yu < z
and y(u + 1) > z. Since < is a linear order and multiplication by a non-zero
number is monotone, u is unique; furthermore v < z. Put v = = — yu; then
z =yu+v and v < y (otherwise v = y+v,yu+y = y(u+1) < z, a
contradiction.) Clearly, v is uniquely determined. O

1.16 Lemma (Iopen).

1) z>ythenz—y=(z+2)—(y+2);
(2) fz>ythen(z—y)+z=(z+2)—y;
(3) (z~y)z=zz—yz

(4) z|z and z|y implies z|z — y.

Proof. Exercise. O

1.17 Definition and Lemma (Iopen). = is even if 2| z; z is odd if it is not even.
For each z, either z or z + 1 is even.

Proof. 0 is even; assume z # 0. Consider the open formula 2u < z and denote
it by ¢(u). Clearly, ¢(0) and for some u, ~p(u) (e.g. for u = ). Thus there
is an u such that 2u <z and 2(u+1) > . Then either 2u = £ or 2u =z —1,
and in the latter case 2(u+ 1) =z + 1. O

1.18 Theorem and Definition (pairing, Iopen). For each z, y, there is a unique
z such that 2z = (z + y)(z + y + 1) + 2z; this 2 is denoted (z,y). For each 2
there is a unique pair z,y such that z = (z,y).

Proof. Either 2|(z +y) or 2|(z +y + 1); thus 2|((z + y)(z + y + 1) + 22).
Therefore for some z, 2z = (2 + y)(z + y + 1) + 2z; clearly, this z is unique.
Now take any z and using Iopen, find an r such that r(r + 1) < 2z and
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(r +1)(r +2) > 2z. (Consider ¢(r) = r(r + 1) < 22.) Clearly, 2z — r(r + 1)
is even; let z be such that 2z = 2z — r(r 4+ 1). We have = < r (otherwise we
would have 2z > 2r, 2r < 2z — r(r + 1), r2 + 3r < 2z and r2 + 3r is even;
thus (r +1)(r +2) = r2 + 3r 4+ 2 < 2z, a contradiction). Put y = r — z; then
z+y=r,22=(z+y)(r+y+1)+ 2z, thus 2 = (z,y). 0O

1.19 Definition. Let T' be a theory containing Iopen. A formula ¢(x) is said
to be Xy, (IIy,) in T if there is a Xy, formula (II, formula) t(x) such that
T F ¢(x) = 9(x). Furthermore, ¢(x) is said to be Ay, in T if it is both Ty, in
T and IT,, in T.

1.20 Examples. z |y, Even(z), Prime(z), z = (z,y) are Xy in Iopen.

1.21 Theorem. Let T 2 Iopen. For each natural number n and any formulas
@, 9:

(1) if p,% are Ty(II,,Ay) in T then so are ¢ &3 and ¢ V ;

(2) if ¢ is Ap in T then so is ~p;

(8) if n >0 and v is Xy in T then so is (Iz);

(4) if n >0 and ¢ is IT, in T then so is (Vz))ip.

Proof. Fully analogous to that of 0.34. (For each n and each choice of ¢,%, a
T-proof is constructed.) O

*

Now we turn to IXy. Since IX) and related theories will be investigated
in detail in Chap. V, we prove (or state) only some few basic facts.

1.22 Theorem. (1) IX proves the least number principle for Xy formulas: i.e.
for each Xy formula IXy proves

(F))e(z) = (Fz)(e(z) & (Vy < z)~0(y)) -
(2) For each Xy formula, I Xy proves the following order induction:

(Vz))((Vy < 2)ep(y) = ¢(2)) = (Vz)p(z) -

Proof. (1) Assume (3z)(¢(z)& (Vz)(p(z) — (Jy < z)¢(y)) and apply in-
duction to the formula (Vy < z)—(y) to obtain a contradiction. (2) Apply
induction to the Xy formula (Vy < z)p(y). a

1.23 Definition (IX)). If z,y # 0 then gcd(z,y) is the maximal u such that
u|z and u|y; otherwise ged((z,y) = 0 (greatest common divisor).

Note that ged(z,y) exists since it is the least ¥ < min(z,y) such that
(Vo < min(z,y))(u +1< v = ~(v|z&v|y)).
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1.24 Lemma (IX)). 0 < y < z — (Ju < z)(Fv < 7)(ged(z, y) = zu — yv).

Proof. (0) Clearly we may assume y < z. Observe that if 0 < t < y and
t = zu — yv then there are u < y and v < z such that t = zu — yv. (To see
this first show u > y = v > z; thus if u > y then we can replace u by u —y
and v by v — z. Apply LXy.)

(1) Let z be the least number such that, for some u,v <z, zu > yv&z =
zu—yv. We show z = ged(z, y). First prove z | z. By 1.15(4), let = zs+t,t <
2. Clearly, s #0sincet < z<z.ft #0thent =z — 28 =z — (zu —yv)s =
z(1+yg—u) —y(zq —v) where g is the least number such that 1+yq > u and
zq > v. Then clearly 1+ yg—u <z, zq—v <z and we get a contradiction
with the minimality of z. Thust =0 and z |z.

(2) The proof of z |y is similar (note that z < y since y = zy — y(z — 1).

(8) Now if w|z and w|y then w|z (by 1.13(4)); thus w < z and 2z =
ged(z, y). This completes the proof. a

1.25 Lemma (I Xy). ged(z,y) =1 — (V2)(z |yz — z|2).

Proof. Assume gcd(z,y) =1 and y < z. Then, for some u,v < z,1 = zu—yv.
Now if z | yz then z | zuz — yvz, z | (zu — yv)z, z| 2. O

1.26 Lemma (I Xp). (1) For each = > 1, there is a y < = such that Prime(y)
and y|z. (2) If Prime(z) and = |yz then z |y or z | 2.

Proof. (1) follows by the least number principle (1.22). (2) Assume that x
does not divide y; since z is prime this means ged(z,y) = 1. Thus z |z by
1.25. O

1.27 Remark. The reader may move now to Chap. V where I X is investigated
in details. He will find there, among other things, a proof of the following
theorem claiming that in IXy exponentiation is Xy definable as a possibly
partial function:

There is a X formula ezp(z,z,y) such that IX proves the following:

(1) ezp(zhm’ y) & ezp(zg, T, y) — 21 = 22,
(2) ezp(1,2,0),

(3) czp(z, T, y) - ezp(zwa T, S(y))’

(4) ezp(z,2,9) &y <y — (3 )exp(, 2,y").

Many results of Chaps. I-IV are independent of this theorem; the reader
may postpone reading its proof. In subsection (c) of the present section, we
shall prove a weaker (and classical) result saying that there is a formula ezp
which is A; in I¥; and such that IZ) proves (1)-(4). This weaker result is
basic for Chaps. I-1V.
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(b) Coding Finite Sets and Sequences; the Theory I Xy (exp)

1.28. In this subsection we shall investigate a theory stronger than IX, and
having a richer language: we extend the language by a new unary function
symbol 2° for the z-th power of two. The extended language is denoted
Lo(ezp). Xo(ezp) formulas result from atomic formulas of Lg(ezp) by iterated
application of logical connectives and bounded quantifiers of the form (Vz <
¥), (3z < y). The theory IXy(ezp) has the following axioms:

(1) axioms of Q,

(2) two axioms for exponentiation, namely:

(3) induction schema for all Xy(ezp) formulas.

1.29. We shall need another class of formulas called X7 (ezp) formulas:
they result from atomic Lo(ezp) formulas by iterated application of logical
connectives and bounded quantifiers of the following form:

(Vz<y), (Azr<y), Vz<?¥), (Bz<?).

1.30 Theorem (IXy(ezp)). (1) z < 2% (2)z <y — 2° < 2¥; (3) 2 x 2V =
25+,

Proof. (1) is easy. (2) Use induction on y. Nothing is to be proved for y = 0.
Assumez <y — 2" <2 andz<y+1.

Case 1: ¢ < y is false; then necessarily z = y, 2% = 2¥ > y > 0, thus
Wl = 2V %2 =2V +2¥ > 2V =27,

Case 2: ¢ < y is true; then 2% < 2¥ < 2¥ % 2 = 2¥+1, Thus the induction
step is proved. (3) Induction on y. D

1.30 Lemma. The schema of induction for X§"F (ezp) formulas is derivable in
IXy(ezxp).

Proof. Clearly, it is enough to prove the least number principle for each
257 (ezp) formula.We claim that for each such formula ¢(x) there is a
Yo(ezp) formula po(x,y) and a term t(x) of Lo(ezp) such that IXp(ezp)
proves the following:

(*) (Vy 2 ¢(x))(p(x) = »o(x,9))

This is evident for ¢ atomic (£(x) = 0, po(xX,y) = ¢(x)). If (*) holds for ¢, o, t
then it holds for -, -y, t; if it holds for ¢1,10,%1 and p2,¥20,t2 then it
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holds for @1 & p2, 010 & P20, t1 +t2. Assume that we have p(x,u), po(x,u,y)
and #(x,u) satisfying the analogue of (*) and investigate ¥ (x) being (Vu <
2%)o(x,u) (where x = z,...). Then () holds for ¥{(x) being (Vu < y)(u <
2% — po(x,u,y)) and ¢'(x) being 2% + t(x,2%). (Note that IXo(ezp)proves
u < 2% — t(x,u) < t(x,2%).) This proves our claim.

To complete the proof of 1.30, let ¢,p9 € Z’gzp (ezp) be as in the claim
above. In IXy(ezp), assume ¢(x) and put y = #(x). Then we have po(x,y);
write it (21, 2,...,y). By the least number principle for I Xo(ezp) formu-
las, let z) be the least 1 such that po(z1,232,...,y); this 2] is the least z;
such that ¢(z1,22,...,). (Note that ¢(z},z2,...) < t(z1,22,...).)

1.31 Lemma and Definition (I Xy(ezp)). For each z, y, there are unique u < y,
v <1, w < 2% such that

y=2" 1 su 4+ 22 xv4w.

The unique v < 1 such that (Ju < y)(Fw < 2%)(y = 2" 1 xu + 2% x v+ w) is
called the z-th bit of y and denoted bit(z,y). We further define

z €y =bit(z,y)=1.
(Note that z € y is Zp(ezp) in IXo(ezp).)

Proof. By 1.15(4) (division with remainder), there are u < y and ¢ < 2%+!
such that y = 22*! xu 4 ¢; by the same theorem, there are v < g and w < 2%
such that ¢ = 2% x v + w. The numbers u,v,w are uniquely determined.
Moreover, u must be less than 2 since otherwise we would have ¢ > 2711, a
contradiction. - O

1.32 Lemma (IXg(ezp)). (1) z €y w2z <y. (2) y =0 — (Vz)(z ¢ y). (3)
y # 0 — y has a least and a largest element. (4) y < 2% = (Vz)(z €y =z <

u).

Proof. (1) bit(z,y) = 1 implies y > 2% > z. (2) follows from (1). Consider
(3): f y # 0 then we first claim that there is a largest z < y such that
2% < y; then it follows easily that z € y and z is the largest element of y.
Having (3z < y)(z € y) we get a least element of y by the least number
principle. Thus let us prove the claim. Let = be the least number such that
(V2 < y)(2* <y = z < z). Then clearly 2% < y and z is the largest such
number. (4) The implication — is obvious. To prove the converse, assume
y > 2% and let z be the largest such that y > 2%. Then y = 2* + w for some
w < 2%, which implies = € y; and obiously, z > u. m]

1.33 Definition (IXg(ezp)). zCy=(Vu<z)(u €z - u€y)
(Note that by 1.32, z C y is equivalent to (Vu))(u € z — u € y).)
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1.34 Lemma (I Xy(ezp)). (1) If w < 2% then for all z,
z€2’tw=.z€wVz=z.

(2) For each u,y,
y<2¥=yCca¥-1.

Proof. («) Clearly z € 2% +w by definition. Assume z € w, i.e. w = 2*+1xs+
2%+, < 2. Then 2 4w = 27 4+ 25145427 4t = 25+ (22—2-1 1 ) 4 2% 44
ie .z €2% +w.

(—) Assume z € 2% + w; then z < 2 (since 2% + w < 2°11). If z = 2 then
we are done; assume z < z. We have 27 + w = 22+l g 4 2% 4 ¢,

Claim. 2 +1xs > 2%, Otherwise 2°t1xs < 2% and since 27 = 27 +1427-2-1,
ie. 27+1 |27 we get 2211 x5 < 27 — 2%+1 But then 251 x5 4+ 2% 4+t < 27,
a contradiction. The claim is proved.

Thus s > 2?72~ and s < 2°~%; this implies that in dividing s by 27721
we get s =2""*"144 (¢g<2?72°1,

2% 4w =2"F1(2""""1 L) 4 2% 4+ =27 + 2" ug 4 2% ¢,
w=2"twg 42 +1,

and consequently z € w. This completes the proof of (1).
(2) By 1.31, it suffices to show

(i) z<u— bit(e,2%-1)=1,
(i) z 2> u— bit(z,2* -1) =0

But (ii) is obvious; let us prove
(*) (Vu)(Vz < u)(bit(z,2% —1) =1).

(Show that the formula following (Vu) is Z¢*P(ezp) in IXo(ezp).) Nothing
need be proved for u = 0. Assume (*) and consider u + 1: 2¥*t! —1 =
2% 4(2¥—1). Thus bit(u,2%+1—1) = 1 and, by (x), for z < u, bit(z,2%—1) = 1.
But by (1), bit(z,2% — 1) = bit(z,2%+! - 1). O

1.35 Definition (I Xy(ezp)). For each z,y, put

max(z) = the largest element of z if z # 0,
=0 for z =0 (cf. 1.34(3))
(S z) =9z+l _1
(<z)=2"-1
seq(z) = (< max(z)).
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Note that, by 1.34(2), u € (< z) iff u £ z. We further make the following
definition: y is a restriction of = to z (in symbols: Restrict(y,z,z)) if y < 2%
and (Vu < z)(u € ¢ = u € y). Note that this notion is T 7 (ezp) in
IXo(ezp)and that the latter theory proves the following: if Restrict(y,,z)
and z > 2% then (Vu)(u €z = u € y).

1.36 Theorem (IXy(ezp)-comprehension). For each Xj°F(ezp)-formula
¢(u,p), 1Zo(exp) proves

(Vz)(Fy < 2°)(Vu < z)(u € y = ¢(u,p)).
Proof. We apply induction on z to the formula
(*) (Fy < 2°)(Vu < z)(u € y = ¢(u,p)).

The case = 0 is trivial. Assume (*) and let y be as in (*). Consider z + 1.
If ¢(z, p) holds, then put y' = y + 2%; by the preceding,

Mu<z+1)(uey =wu<z&e(y,p).Vu=z)=¢(up)).
If ~¢(z,p) holds, then put ¥’ = y and argue similarly. ]

1.37 Theorem (I Xg(ezp)). If z C y then z < y.

Proof. Assume z C y and let us prove the following by induction on z:
(¥) (Vz' < 2°)(Vy' < 2%)(Restrict(z',z,2) & Restrict(y',y,z) = ' <y').

The case z = 0 is trivial (z' =y’ = 0). Assume () and consider z + 1. Let
Restrict(z",z,z + 1), Restrict(y”,y,z + 1). Put

f=2"-2%ifzez,
d=2"ifz¢z
and similarly for y’. Then Restrict(z',z,z), Restrict(y',y,2) and =’ < ¢

Iz ¢ zthenz" =2 <y <y by (). £z € z then 2 € y and
g” = z' + 2% <y’ + 2% = y" again by (*). This completes the proof. O

1.38 Corollary (IXy(ezp)-extensionality). If (Vu)(u € z = u € y) then z = y.
(In particular, the restriction of z to z is uniquely determined.)
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1.39 Theorem (IXy(ezp)). For any z,y, there exist uniquely determined
numbers zUy,zNy,z —y,z X y¥,|J z, P(z) having the following properties:

(union) (Vu)u€ezUy=.u€zVu€y)
(intersection) Mu)(ueznNy=.u€z&u€y)

(set difference) Mu)(uez\y=.uez&z ¢y)

(Cartesian product) (Vu)(u € z x y =.(Ju € z)(Iv € y)(u = (v,w))
(sum set) (Vu)(u € | Jz =. (v € z)(u € v))

(power set) (Vu)(u e P(z)=.uCz)

Proof. We always find a 2z such that the set in question is a Z'S”(ezp)—
definable subset of seg(z). Take the union and let z < y. Then seg(z) C
seg(y) and we put z = y; there is a w such that (Vu)(u € w = u €
seg(z)&(u € =V u € y)) (by comprehension). Thus u is z U y. Similarly
for zNy,z — y,|Jz. For z x y observe that u < z & v < y implies (u,v) <
(z+y+1)*(z +y+1) (say); thus there is a w such that

(V2)(z €w =.z € seg((z +y+1)?) & (Fu € z)(Fv € y)(2z = (u,v)).

Finally for the power set, observe that u C z implies u < z; thus there is a
w such that

(Vu)(u € w =.u € seg(z + 1) & (Vv € u)(v € z)). ]

Remark. Next we introduce some well-known notions concerning (finite) sets
and show that their obvious properties are provable in I Xy(ezp). Note that in
IXo(ezp)each number is a finite set (codes a finite set); thus instead of saying
“a finite set” we just say “a number”; but we call the reader’s attention to
properties definable using the membership predicate (as defined above).

1.40 Definition (I Zo(ezp)).
(1) z is a relation if z is a set of ordered pairs:

Rel(z) = (Vu € z)(v,w € u)(u = (v,w))
(domain) v € dom(z) = (Fu € z)(Fw < u)(u = (v,w))
(range) w € rng(z) = (3u € z)(3v < u)(u = (v,w))
(show that y = dom(z),y = rng(z) are 5T (ezp) in I Xo(ezp).)

(2) y is a linear order on z if Rel(y),dom(y) = rng(y) = = and y is
reflexive, transitive and dichotomic on z, i.e.
V.. )(w,v) €Ey&(v,w) € y. — (v,w) € 9),
(Va,v € 2)((u,v) € ¥V (0,u) € 9),
(Vu,v € z)((4,v) Ey&(v,u) Ey. o u=v).



42 1. Arithmetic as Number Theory, Set Theory and Logic
(3) y is a mapping of z into z if Rel(y),dom(y) = z,rng(y) C z and
(Vu € z)(Vv,w € z)((u,v) € y& (u,w) Ey. = v =w).
A mapping is an injection (or: is one-one) if
(Vu1,ug € 2)(Vo € 2)((u1,v) € y& (u2,v) €y — u1 = uz);

y is a bijection of r onto z if, additionally, rng(y) = .

(4) For each z, the natural ordering of z is the unique linear order y on
z such that, for each u,v € z, (u,v) € y = u < v. (Show the existence of y
using comprehension.)

1.41 Theorem (IXy(ezp)). (1) (Cardinality.) For each z, there is a unique
y = card(z) such that there is a bijection of z to (< y).

(2) (Pigeon-hole principle for finite sets.) If card(z) < card(y) then there
is no injection of y into =z.

(3) If y is a linear order on z # 0 then z has a largest and a least element
with respect to y.

Proof. One only checks that the usual proofs formalize in IXg(ezp).
(1) The desired bijection f, if it exists, satisfies f < 2(=+¥+1)*; thus we
may prove the following by Egzp(ezp)—induction on z:

(%) Ay < z)(Af < 2@#+D*)(f is a bijection of z to (< y)).

(Check that this is Zg°7 (ezp).)

For z = 0 we get y = 0; assume (*) for each < z and investigate 2. Let
u =max(z) and z =z - 2% thenz < 2, v € z = .v € 2&v # u and there
is a y satisfying (*). Let f be the corresponding mapping; we extend f to a
bijection g of z onto (< y + 1) by defining g(v) = f(v) for v € z, g(u) = y.
The mapping (relation, set) exists thanks to X7 (ezp)-comprehension.

To prove both the uniqueness of cardinality and the pigeon-hole principle,
we show the following by X7 (ezp)-induction:

=(3f < 2(22+1)*)(f is an injection of (< z + 1) into (< z)).

This is clear for z = 0. Assume (*) and let f be an injection of (< z +2) into
(< z+1). We may also assume that f(z + 1) = z (if not we change f for the
arguments z + 1 and f~!(z) using comprehension). But then the restriction
of f to (< z+1) is an injection of (< z + 1) into (< z), a contradiction. This
completes the proof of the induction step.

Consequently, if there is a bijection of (< z) onto (< y) then z = y.
Thus each finite set has its unique cardinality; and we get the pigeon-hole
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principle using composition of mappings. The fact that the composition of
two mappings that are finite sets is a mapping (and a finite set) follows by
comprehension.

(3) By induction on z; note that the universal quantifier (Vy) may be
bounded by 2(2max(2)+1)* g4 that Z'gzp(ezp)-induction applies. Assume the
assertion for all z < z and consider z; let u be the maximal element of z with
respect to the ordering < and let v € z = .v € 2&v # u. Then z < z and
if ¥ = yN(z x z) we see that ¢’ is a linear order on x. By the induction
assumption, r has a maximal element u’ with respect to y'. Then either u or
u' is maximal in z with respect to y. a

1.42 Definition (IZy(ezp)). Now we finally come to our definition of finite
sequences; they are naturally defined as particular mappings.

Seq(z) = (3z < z)(z is a mapping & dom(z) = (< z));
Seq(z) = . lh(2) = z iff dom(z) = (< z);
Seq(z)&u < Ih(z). = (2)y = v iff (u,v) € z;
Seq(z)&u > lh(z). = (2)y = 0;
Seq(z) > . w=z~(z) iff Vu<w)(u€w=.u€zVu=(lh(2),z));
for ~Seq(z), z ~ (z) =0;
@ is the empty sequence; [h(0) = 0;
(z) =0 ~ (z); (z1,- .-+ Tns Tnt1) = (T1,-- -, Tn) ™ (Tnt1)
(r=1,2,...).

Note that all notions defined are I (ezp) in I Zg(ezp).

1.43 Theorem. I Xy(ezp) proves the basic properties of sequences (as formu-
lated in 0.41): For Seg(s), Seq(s'),

(1) Ih(s) < s and (Vu < Ih(3))((8)u < 8);
(2) Seq(0) & Ih(0) = 0;
(3) (Yu < 1h(s))((8)u = (s ~ (2))u & (s ~ (2))in(s) = 2 &

&lh(s ~ (z)) = lh(s) +1;
4) if 1h(s) < Ih(s') and (Vu < Ih(3))((s)u < (s')u) then s < 8
6)) (Vu)(3v > u)~Seq(v) .

(Consequently, if s,s’ have the same length and the same corresponding
elements then s = s'.)

Proof. (2) is trivial: 0 is the empty mapping. All monotonicities of (1) and
(4) follow from the monotonicity of the ordered pair (z,y < (z,y)) and of
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membership (z € y — z < y). Indeed, if s # 0, Seq(s) and dom(s) = (< z),
then lh(s) = z and for some y, (z —1,y) € s. Thusz -1 < (z - 1,y) < s
and hence z < s. If (u,y) € s then y < (u,y) < s. This proves (1)

We prove (4). First observe that for each sequence s and each i < lh(s) we
have the shortening of s to ¢ (denoted by s | i for a moment) which results
from restricting the domain of s to (< 7). Existence follows by comprehension;
and s | Ih(s) is s. Assume lh(s) < Ih(s') and (Vi < Ih(s))((s)i < (¢')i)s
let us prove (Vi < Ih(s)((s | ) < (s’ | 7)) by induction on i. Note that
81 (G+1)=(s|d)+26:()) We get s < s' | Ih(s); but s’ | Ih(s) < ¢ is
obvious since s’ | Ih(s) C s'.

Proofs of (3) and (5) are easy. O

Remark. Since IXg(ezp) proves (z,y) < (z + y + 1)?, it also proves the
following: if Ih(s) = z and (Vi < z)((s); < z) then s < 2(&+2+1)*,

(c) Provably Recursive Functions; the Theory I3

We are going to investigate the theory Xy (@ plus induction for Xy formu-
las). We have two main goals in this subsection: first, to show that exponenti-
ation is definable in I %) in such a way that I Xy(ezp)becomes a subtheory of
IX,; and, second, to show that the class of all Xy definable functions (on N)
whose totalness is provable in IX; is closed under primitive recursion and
therefore each primitive recursive function is IX;-provably recursive. The
first goal is reached by developing, in some extent, an alternative weak (non-
extensional) coding of finite sets in IX; based on divisibility. This coding
could be fully developed, but we use it only to define exponentiation; then
it may be forgotten and the coding based on exponentiation may be used
instead. To reach the second goal, we prove more than stated: we show that
for each X -definition of a total function in IX;, we may construct another
X1-definition of a total function in IX; such that X, proves that the latter
function is the primitive recursive iteration of the former one. This will be
frequently used throughout the book (and will be strengthened in the next
subsection).

We start with some basic observations on IX. Trivially, IX; contains
IXy and ‘therefore proves the least number principle for Xy formulas. (We
postpone the proof of the fact that IX; proves the least number principle

for Xy formulas to Sect. 2.) Now we show that I proves collection for X
formulas.

1.44 Theorem. For each Xy formula ¢(z,y) (possibly containing parameters
distinct from u,v),

121k (V2 <u)(3y)e(z,y) = (Fv)(Vz < u)(3y < v)p(z,y).
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Proof. We proceed in IX;. Assume (Vz < u)(3y)p(z,y) and prove, by Xy
induction on w, the following:

(*) w < u— (I)(Vz < w)(Jy <v)e(z,y).

Nothing is to be proved for w = 0; assuming (*) for w and w+1 < u, let yg be
such that ¢(w,y¢) and put v’ = max(v,y’). Then we get (Vz < w +1)(Jy <
v)e(z,y). O

1.45 Corollary. (1) IXy proves collection for X formulas. (2) Formulas X in
IX, are closed under bounded quantification. (3) Thus formulas A; in 12
are closed under bounded quantification. (4) I X7 proves the following order
induction for each X formula ¢(z) (cf. 1.22):

(V2)(Vy < z)p(y) — ¢(2)) —= (Vz)p(2).

Proof. (1) by contraction of quantifiers. (2) Let ¢(x) be (Jy)po(x,y) where
o is Lo and x is 71, 9,.... Then the formula (Iz1 < z2)p(x) is £y in 12
(commute the existential quantifiers) and so is (Vz; < z2)p(x) since it is
equivalent to (Jv)(Vz1 < z2)(Jy < v)po(x,y). (3) is immediate. (4) Apply
induction to the formula (Ay < z)p(y) observing that the last formula is Xy
in IZ) by (2). O

Now we shall exhibit an auxiliary coding of sequences.

1.46 Lemma and Definition (IX). For each z, there is a least y such that all
positive u < z divide y. We write y = hull(z).

Proof. We prove (Vz)(Jy)(Vu < z)(0 < v — u|y) by X induction; the
existence of a least such y follows by the least number principle for Xy
formulas. .

For £ = 0 the assertion is vacuous. Assume (Vu < z)(0 < v — u|y) and
take y' =y * (z + 1); then (Vu <z +1)(u >0 — uly). 0O

1.47 Definition. = €¢ (y,2) ff (1 + (1 + z) *2)|y.

1.48 Lemma (Comprehension). For each Xy formula ¢(u) I X, proves the
following;:

(V2)(Jy, 2)(Vu < z)(u €0 (y,2) = p(u)).

(¢ may contain free variables distinct from u, y, z as parameters.)

Proof. We may assume = > 1. Let z = hull(z). We claim that foru < v < =z
the numbers 1+ (1 + u)z,1 + (1 + v)z are relatively prime, i.e. their greatest
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common divisor is 1. (This claim is proved below.) Using this we show the
following by X induction on ¢:
(t<z—-By)(Vu<z)(u<t&ep(u) > uecp(y,2)&

(*) &(u >tV -p(u)) — ged(y, 1+ (1+u)z) =1)].

For t = 0 take y = 1. Assume () and consider ¢ + 1. Let y be as in ().
Case 1: —p(t). Then (*) holds for t replaced by ¢t +1 and for y as it stands.
Case 2: ¢(t). Put y' = y* (1 + (1 +t)) * z. Then clearly ¢ €g (v, 2) and

u < t & p(u) implies u €g (¥',2). If u > tV-p(u) then ged(y,1+(14+u)z) =1

and ged(y,1 + (1 + t)z) = 1. Moreover, by our claim, ged(1 + (1 + u)z,1 +

(1+1t)z) = 1. Now if ¢ divides both 1 + (1 + u)z and y' =y * (1 + (1 +1)z)

then, by 1.25, c|y or ¢|1 + (1 + t)z; thus ¢ = 1 and we are done. It remains

to prove the claim. O

(Proof of the claim.) Assume u < v < z;then 0 < v—u <z and v —u|z.
Write uy,v; for 14u, 14+v and let ¢ be such that ¢|1+wuj 2z, ¢c|1+4v12. Then for
some a, b we have 1+u12z = ac, 1+v12 = be, (1+u12) | abe = a(1+v;2). Since
trivially (14u12) | a(14u12) we get (by subtracting) (1+u12) |a(viz—u12) =
a(v—u)z. Evidently, ged(1+4wuy2,z) = 1; thus, by 1.25, (1+u12) |a(v—u)|az.
By the same reasoning, (1 + u3z)|a, which together with 1 4+ uyz = ac give
l4+ujz=aand c=1. O

Remark. Note that the formula u €g (y,2) is Zg in I.X].

1.49 Definition (IX). (1) (y,2) o-codes a sequence of length z if for each
u < z there is a v < y such that (u,v) €g (y,2). If this is the case then
(y, 2)y is the least v < y such that u,v) € (y, 2).

(2) (y,2) is an ezponential sequence of length z (Ezseq(y, z, r)) if (y,2)
o-codes a sequence of length z, £ > 1, (y,2)p = 1 and, for each u < z — 1,
(¥s 2)ut1 = 2% (¥, 2)u.

(3) exp(z,v) if (Jy, 2)(Ezseq(y, 2,z + 1) & (y,2)z = v).

1.50 Theorem. (1) I.X; F (Vz)(3lv)(ezp(z,v)).

(2) The formula ezp(z,v) is A; in IX].

(8) If we define in IX; the function 2% by exp(z,v) then all axioms of
IXy(ezp) are provable in IX.

Proof. (1) First show in IX; that if Ezseq(y, 2, z), Ezseq(y’,7',z') and z < 2’
then, for each u < 2/, (y,2z)u = (¥',2')u (uniqueness). This is proved by
induction on u, the formula in question being Xy in IX;. Similarly we prove
that Ezseq(y,z,z) and u < z implies u < (y, z)y; furthermore, Ezseq(y, z,z)
and u < v < z implies (y, 2)u < (¥, 2)y-

Then prove the following by X induction on z:

z 21— (3y,2)Ezseq(y,z,7).
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(Note that the formula (3y, 2)Ezseq(y, z,z) is X1 in IX; by contraction of
quantifiers.) The assertion is evident for z = 1. Assume z > 1, Ezseq(y, z,z)
and (y,z)z—1 = ¢; put ¢ = (z,2q). By 1.46, there are ¢/, 2’ such that

(Vu < &)(u €0 (v ) = - (u €0 (3,2) & (3i < )(3v < u)(u = (i,0)) V
Vu=(z,2q)).

We get Ezseq(y',2',z +1).

(2) Clearly, exp(z,v) is X'y as defined; but since we have (1), —ezp(z,v) is
equivalent in IX; to (Jw)(z # v & exp(z,w)). Thus the result follows.

(3) We proceed in IX;. Clearly, 20 = 1. If 2% = v and 2! = w then we
have Ezseq(y,z,z + 1), Ezseq(y’, 7',z + 2), (v, 2)z = v, (¥, 2')e+1 = w; but,
by the claim in the proof of (1), (¥/,z')z = v and thus w = 2v. Thus the
axioms for 2% are provable. It remains to prove that induction for Xy(ezp)
formulas is provable. But this follows from the fact that each Xy(ezp) formula
is A; in IX;. Let us prove this fact.

To prove that atomic Xy(ezp) formulas are A; it suffices to show that for
each term t of Lo(ezp) and each variable z not occuring in ¢, the formula
t =z is Ay in IXq. This is clear for ¢ atomic and the induction step for S, +
and * is easy. (For example, z = t+ 3 is equivalent to (Ju,v < z)(u =t&v =
s&r =u+v);ifu=1tand v =sare Ay in I¥) thensoisz =t+s by
1.45.) Consider z = 2* and let the formula u = ¢ be A;. It is sufficient to
remember that z = 2% is A; in I X (see (2) above); z = 2¢ is equivalent to
Fu<Lz)(z=2%&u=1t).

For the rest of the proof it suffices to recall that formulas A; in IX; are
closed under connectives and bounded quantifiers. O

%

1.51 Discussion and Definition. (1) Recall that we have Xy, formulas and IT,
formulas; these are particular formulas of the language of arithmetic. Then we
have Xy, and ITj, sets of natural numbers; i.e. sets defined (in the standard
model N by X, formulas and IT,, formulas respectively). Ay, sets are sets
that are both X, and IT, (cf. Sect. 0). In 1.19 we defined a formula to be
Zn (ITn, Ay) in a theory T. Now we turn our attention to sets of natural
numbers defined by such a formula. Instead of saying that a set X is defined
by a formula that is X, in T we say that X is T-provably X, (similarly for
II,, Ay). This generalizes to X C Nk k=23,...

Clearly, if T is sound, i.e. N is a model of T and X is T-provably X, (4n
etc.) then X is Xy, (etc.). The converse need not be true, cf. Chap. IV, Sect. 3.

(2) A formula ¢(z,y) defines a total function in T if T + (Vz)(3ly)p(z, y).
We may then extend T by defining a new function symbol F' and the axiom
¢(z, F(z)). We may againcall the resulting theory T but care is necessary
when dealing with hierarchies of formulas, e.g. we distinguish Xp-formulas
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and Xy(ezp)-formulas. If the formula ¢ defining F in T is Xy, in T then we
say that F'is X, in T, etc.

Clearly, if ¢(z,y) defines a total function in T and T is sound then ¢
defines a total function in N. A function f : N — N is T-provably total if
it has a definition ¢(z,y) which defines a total function in T'. The function
f is T-provably Xy (etc.) if it has a definition which is Xy, in T. (This is a
particular case of (1).) The function f is a T-provably total Xy, function if
it has a definition ¢ which is Xy, in T and defines a total function in T'. In
particular we call f T-provably recursive if it is T-provably total X; since
we shall often be interested in I -provably recursive functions we shall call
them just provably recursive.

1.52 Lemma. Assume T' D Igpen. (1) If F is a function symbol X in T then
FisA;inT.

(2) If ¢ is A; in T" and F is a function symbol A; in T then the formula
(Fz < F(y)ypisA;inT.

Proof. (1) If p(z,y) is as above then the formula (3y’ # y)¢(z,y') is 1 in
T and defines the complement of F; thus its negation is II1 and defines F.
(2) Let ¢’ be (3z < F(y))y. Clearly, ¢’ is X (by contraction of quanti-
fiers). But un T, ¢’ is also equivalent to (Vz)(z = f(y) — (Vz < 2)¢), which
isIl{in T. O

1.53 Lemma. If T O Iopen then T-provably recursive functions are closed
under composition.

Proof. By contraction of quantifiers. a

1.54 Theorem. If T D IX) then T-provably recursive functions are closed
under primitive recursion. Thus each primitive recursive function is provably
recursive.

For T containing IX¥; the converse is also true; thus provably .recursive
functions are exactly all primitive recursive functions. The converse inclusion
will be proved in Chap. IV. The present theorem is an immediate consequence
of the following lemma:

1.55. Let T 2 IX; and let ¢(x,y) and 9 (x,u,v,y) be I} and define total
functions in T, i.e. T F (Vx)(3ly)e(x,y) and T F (Vx,u,v)(3y)d(x,u,v,y).
Then there is a ¥ formula x(x, z,y) such that

T+ (Vx,2)(3ly)x(x,2,y),
T F (vx)(Vy)(x(x,0,9) = ¢(x,y),
TH (an Z,Y, yl)(X(X, 2, y) & X(x7 z+1, yl)- - '(/)(X, 2,Y, yl)) .
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Thus if the functions defined by ¢, %, x are denoted by F, G, H respectively
then T+ F(x,0) = G(x) and T + F(x,z + 1) = H(x, z, f(x, 2)).

Proof. x just describes the course of values (Ezseq was a particular case):
x(x,2,y) = (3s)(Seq(s) & Ih(s) = 2 + 1&(s)o = G(x) & (s): = y &
(Vi < 2)((8)i+1 = H(x,3,(s)s)) -
Transcribing this with the help of ¢, is trivial but tiresome; clearly, x is
2y in T. IX; was used to prove (Vx, z)(Jy)x(x, z,y); uniqueness is easy to

prove and a pedantic elaboration of details of the proof of F(x,z + 1) =
H(x,z,F(x,z)) is left to the reader.

1.56 Remark. The lemma says (in contradistinction to 1.54) that inside IX;
we may define total A; functions from other A; functions by primitive
recursion. Note that this generalizes easily to primitive recursion on the course
of values, cf. 0.44.

*

We now describe some concrete consequences of the preceding lemma.

1.57 Lemma. In 1Y) we may define total A; functions X and IT (sum and
product of a sequence) such that X proves the following:

Yz =0if z =0 or ~Seq(z),
Z(s ~ (2)) = (Zs) + =,
IIz =1if 2 =0 or ~Seq(z),
I(s ~ (z))=(Ts) *x.

Proof. Left as an exercise. (Given s, prove by induction that for each : < Ih(s)
there is a sequence s' of partial sums of length i such that (s')g = (s)¢ and,
for j <i—1,(s")j+1 = (8')j + (8)j+1. Put X's = y if there is a sequence s’ of
partial sums of s of length lh(s) such that (s')jp((s) = y- Similarly for II.) O

1.58 Theorem. (1) In I¥; we may A; define general power and factorial
functions; i.e. total functions z¥ and z! such that the formulas z = z¥ and
z=1z! are Ay in IX) and I X proves the following:

2% =1 and 50 =zVx*z,
0! =1 and (S(z))! = «! * S(z).
(2) I X proves that there are infinitely many primes. In I ¥, we may define

an increasing A; enumeration of all primes.
(8) IXy proves the prime factorization theorem.
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Proof. (1) follows directly from 1.55. To prove (2) work in IX; and take any
z; we show that there is a prime p > z. Let z = hull(z), i.e. (Vu < z)(u|2)
and take z + 1. By 1.26, there is a p|(z + 1), but p is distinct from all u < z.
(This is the classic Euclid’s proof.) For each z, let Ip(z) be the least prime
number greater than z; by what we have just proved, Ip is a total A; function.
Thus the function

po = 27
Pz+1 = lP(Pz)

is A1 and total ~ both provably in IXj. This is the desired increasing
enumeration of all primes.

(3) A sequence s is a prime decomposition if all members of s are primes
and the sequence is non-decreasing, i.e. (s); < (8)i41 for all ¢ < lh(s) — 1.
We claim that for each > 0 there is a unique prime decomposition s such
that ITs = z. Existence is proved by induction: the prime decomposition
of 1 is the empty sequence §). Let z > 1 and assume (Vy < z)(y > 0 —
y has a prime decomposition.). Let p be the largest prime dividing z (it exists
by the least number principle for ¥y formulas) and take the y such that
z = p*y (divide = by p). Now y < z, so let s be a prime decomposition of y.
Then s ~ (p) is a prime decomposition of z. 0

1.59 Remark. (1) Prove the uniqueness of the prime decomposition of z as
an exercise.

(2) Many theorems of elementary number theory formalize easily in X}
together with their proofs; for example, the proof of Bertrand’s postulate
(saying that for each = > 0 there is a prime number p such that z < p < 2z)
as given in [Hardy-Wright] can be easily rewritten in IX;.

(3) Moreover, in Theorems 1.56, 1.57 IX; may be replaced by IXg(ezp)
but proofs then cost some additional effort since we do not have 1.54-1.55 for
IXo(ezp). Instead we have the following: I X (ezp)-provably total X5 (ezp)
functions are closed under bounded primitive recursion, i.e. if G, H, K are
IXo(ezp)-provably total ;" (ezp) functions, F results from G, H by primi-
tive recursion and F' is provably majorized by K then F is I Xy(ezp)-provably
total ;7P (ezp) function (and we have the corresponding lemma analogous
to 1.55). The reader may elaborate details as an exercise.

(d) Arithmetization of Metamathematics:
Partial Truth Definitions

Recall our investigations in 0.50-0.55 (beginning arithmetization of meta-
mathematics): we showed there that various logical sets, functions, etc. are
4 in N. As we promised there, we shall now strengthen these results and
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develop them further; we are going to show that logical notions (like formu-
las, terms etc.) are A; in IX; and that I X proves their basic properties. We
shall detail careful formulations; proofs consist more or less in checking that
informal proofs presented in Sect. 0 can be read as proofs in IX;. Our gain
will be twofold: We shall see that some reasonable parts of logic formalize in
I¥; and secondly, we shall be able to expand expressive possibilities of 1.5,
by introducing variables for Xy, (II,, A,) sets of numbers. This will be very
useful.

1.60 Theorem. Let T D IX, let At®, Op®, Ar® be formulas A, in T and
assume that T proves At®,0p® to be disjoint, At® non-empty and Ar® to
define a total function, i.e.

T F (Vz)(0p®(z) — (Ay)Ar®(z,y)), (write y = Ar®(z) for Ar®(z,y))
T+ (3z)(At*(z) & (Vy)(At*(y) — ~(Seq®(y) & Op*((¥)o))
cf. (0.50).

Then there are formulas Expr®, Appl® that are A; in T and such that T
proves (Ezpr®, Appl®) to be a free algebra of type (Op®, Ar®) generated by
At®, i.e.

T+ At*(z) — Ezpr®((z)),
T+ Appl®(o,s,y)

= (Op°®(0), Seq®(s) & Ih(s) = Ar®(o0),y = (o) ~ Concseq(s)),
T Appl*(0,5,y)& (¥ < Ih(s))(Bapr*(((s);) . — Eapr*(y),

and for each ¥ formula (z) (possibly with parameters),

T F (Vz)(At*(z) — o(z)) &
& ((Yo,s,y)(Appl®(0,3,y) & (Vi < Ih(3))p((s):) . = #(y)) —
— (Vz)(Ezpr®(z) — ¢(2)) -

Thus atomic expressions are expressions; applying an operation to a se-
quence of expressions of the appropriate length gives an expressions; each
non-atomic expression uniquely determines its components; and Expr is the
least X) set containing all atomic expressions and closed under application
of operations.

Convention. We shall identify atomic expressions (z) with atoms z if there
is no danger of misunderstanding. (This corresponds to the usual convention
of omitting superfluous brackets.)
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Proof. Define Appl®(o,s) = (o) ~ Concseq(s); we define w to be a derivation
formalizing the definition in 0.51; define

Ezpr®(s) = (3¢)(q is a derivation and s is its last element).
The rest of the proof consists in checking the proof of 0.51. (]

Now we could define a A; presentation of terms and formulas of an
arbitrary language; instead, we restrict ourselves to the language of arithmetic
leaving the general case to the reader as an exercise.

1.61 Theorem. In I ¥ we can define constants S°®, +°, *°, =*, <°, 0°, —°,
—*, V®, A; predicates Var®, Term®, Atform®, Form® and A; functions
Applterm®, Applform® such that basic properties of terms and formulas are
provable. More precisely, I X proves the following;:

(1) (Term®, Applterm®) is a free algebra over variables® and the constant
0° as atoms with the operations S® (unary), +°*, ** (binary);

(2) An atomic formula® consists of =* or <*® together with two terms:

Atform®(z) = (3s,t < z)(Term®(s) & Term®(t)
&.z=(=%s,t) Vz = (<% s,1)).
(8) (Form®, Applform®) is a free algebra over atomic formulas® as atoms

with the following operations: =* (unary), —° (binary), and each variable®.
(4) There are infinitely many variables®:

(Vz)(3y 2 z)Var®(y)).
(5) Terms® are disjoint from formulas®:
(Vz)~(Term®(z) & From®(z)).

In a still more transparent way this may be formulated as follows:
Write
z +° y instead of Applierm®(+°,(z,y)),
z +* y instead of Applierm®(x®, (z,y)),
S°(z) instead of Applterm®(S®, (z)),
t =°* s instead of (=°,1,s),
t <°® s instead of (<*,t,s),
—*(z) instead of Applform®(=°*, (z)),
z —° y instead of Applform®(—°,(z,y)),
(Y*u)z instead of Applform®(u,(z,y)) where Var®(u)

Then IX; proves the following:



1. Basic Developments; Partial Truth Definitions 53

* there are infinitely many variables®,

* each variable® is a term®,

* if t,s are terms® then t +° 3,1 %® s, $°(t) are terms®,

* atomic formulas® have the form ¢t =® s or t <® s where t, s are terms®,

* if ,y are formulas® and u is a variable® then z —°* y, =°z, (V*u)z are
formulas®.

Furthermore, for each ¥y formula ¢, I¥; proves the following:
IF ¢(0°%), (Vz)(Var®(z) — ¢(z)) and (Vt,s terms®)(p(t) & p(s) — p(S°(t),
o(t +°* 3),p(t *® s) THEN (Vz)(Term®(z) — ¢(z)).

Similarly for formulas®.

Proof. Choose concrete natural numbers ny, ..., ng such that IX; F -Seq(7;)
and put, in I¥y, §® = 77, +* = 73,...,V® = ng,v® = g (auxiliary); define
e.g. Var®(z) = (Jy < z)(z = (v°®,y)). Then apply 1.60 twice: once for 0® and
variables® as atoms and S°®,+°,*® as operations to get Term® and then for
atomic formulas® as atoms (Atform® as in (2))and ~®, —*® and variables® as
operations. O

1.62 Definition (IX;). Define vr®(y) = (v®,y) (y-th variable), nm*®(0) = 0°,
nm®(z + 1) = S®(nm®(z)) (z-th numeral). Clearly, this defines total A;
functions in IX;. We often write & instead of nm®(z).

1.63 Theorem. (Construction of a A; function by induction on terms.) Let G,
Hy, Hy, Hs be total A; functions in Y. Then there is a total A, function
in IX; such that I Yy proves the following:
F(z) = G(z) if Var®(z) or z =0°,
F(.’E +° y) = Hl(mv y)
F(z »* y) = Ha(z,y)
F(S*(z)) = H3(z) for z,y terms®,
F(z) =0 for ~Term®(z).

Proof. F' may be constructed by recursion on the course of values (cf. 0.44
and 1.56). 0

1.64 Remark. (1) In IX; we may define a total A; function assigning to each
term® u the finite set of its variables®:

Var_of*(u) = {u} if Var®(u),

Var_of*(u) =0 if u =0°,
Var_of (z +° y) = (Var-of *(z)) U Var_of *(y)),
Var_of *(z +® y) = (Var-of *(z)) U Var-of *(y)),
Var_of*(S*(z)) = Var_of*(z).
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(2) A completely analogous theorem on the construction of a A; function
by induction on formulas is now evident; for example, we may define the set
of all its free variables® of a formula® as follows:

Freevar®(u =* v) = Var_of*(u) U Varof*(v),
Freevar®(u <® v) = similarly,

Freevar®(=°z) = Freevar®(z),
Freevar®(z —° y) = Freevar®(z) U Freevar®(y),
Freevar®((V*w)z) = Freevar®(z) \ {w}.

Furthermore, in IX; we may define total A; functions Subst® (substitu-
tion), Val® (evaluation of terms) such that IX; proves the following:
(3) (Substitution into terms.)

Subst®(z,z,t) =t if Var®(z) & Term®(t),
Subst®(t1 +° t2,z,t) = Subst®(t1,z,t) +° Subst®(t2,z,t),

if t1,12,t are terms® and r is a variable®; similarly for x®,S°.
(4) (Substitution into formulas.)

Subst®(t1 =° ta,z,t) = (Subst®(t1,z,t) =* Subst®(t2,z,t)),
Subst®(=°z,z,t) = —°* Subst®(z,z,t),
Subst®(z1 —° 29,z,t) = (Subst®(z1,z) —° Subst®(z2,z,t)),
Subst®((V*u)z,z,t) = (Vu)zifu =1z,
Subst®((Vu))z, z,t) = (Vu)Subst®(z,z,t) if u £ z.

(5) (Value of a term.) If ¢ is a term® and z is an evaluation of its variables®,
i.e. a finite mapping whose domain consists of some variables®, among them
all variables® of ¢ then:

Val®(t,2z) = 2(t) if t is a variable®,
Val®(t1 +° t2,2) = Val®(t1,2) + Val®(t2,2)

similarly for *®,S® and *, S.

1.65 Remark. We have constructed a definition of sequences, terms, formulas,
etc. that are Ay in I¥; and such that basic properties (in particular, closure
properties) are provable in IXj. Our definitions define the corresponding
notions (sets, functions, etc.) in N; for example, ¢ is a formula iff N E
Form®[yp] (this was discussed in Sect. 0). But since our definitions are A; in
I%y we can use T)-completeness of 15 (see 1.9) to get the following:
(i) Foreach t € N,
tis a term iff N F Term®(?) iff I2)  Term®(?),
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tistj +tiff NET=(11 +° %) iff IZ) FT=1 +°13,
similarly for S, .
(ii) For each ¢ € N,
¢ is a formula iff N F Form®(p) iff IX - Form*(p),
pist=siff Nkpg=01F="3)if IZ1+p=(="3),
@ is o1 = @3 iff N F G = (71 —° 33) iff 15 F 3 = (71 —° 73),
similarly for ¢ < s, -, (Vy).
(iii) If t, s are terms, ¢ is a formula and z is a variable then

I2; | Subst*(%,%,3) = Subst(t,z,s),
IX) + Subst®(p,7,3) = Subst(p,z,s).

1.66 Lemma. If ¢(zg,...,2y) is a term whose variables are among zy,...,Tn
then

1% Ft(zg,...,zn) = Val*(%, 2(zg,...,Zn)),

where 2(z9,...,Zn) is the finite mapping associating with each variable® z;
the number z; (i =0,...,n).

Proof. Construct the corresponding IX;-proofs by induction over subterms
of t: if t is z; then IXh F z; = z;;if tis t1 +42 and I Xy F ¢; = Val®(%;,2))(i =
1,2) then I F ¢; + ta = Val®(; + 22, 2), etc. |

1.67 Remark. Note that this may also be expressed as follows: write v(w/u)
for Subst®(v,u,w) and v(wy/uq,...,wn/uy) for iterated substitution. Then

I+ t(xov cee ,zn) = Val(f(i()/ﬂ7 s ai'n/_j—n-, ﬂ) .

In particular, for ¢ without variables we get IX) + ¢t = Val(f), e.g. 3+ 7 =
Val(3® +° 7°) = 10.

1.68 Lemma. There is a formula X3(z) (saying: z is a X§-formula®) such that
(1) Z3(z) is a Ay formula in IX; and
(2) IXy proves the following:

(i) Each atomic formula® is X,

(i) X3 formulas® are closed under connectives® and [bounded quantifiers]®;
(3) Furthermore, for each Xy formula ¢(z), I X, proves the following:
(iii) If each atomic formula® satisfies ¢ and formulas® satisfying ¢ are closed
under connectives® and [bounded quantifiers]® then each Xg formula® satisfies

®.

Proof. Formalization of bounded quantifiers is clear: (V®u <°® v)z is just
(Vou)(u <®* v —°* 2) The proof is completely analogous to the proof of 1.60
(A1 definition of expressions). O



56 1. Arithmetic as Number Theory, Set Theory and Logic

1.69 Lemma. There are formulas X3(z), ITj(z) with two free variables (read:

z is a Xy formula®, similarly for IT) such that (1) both Zj(z) and ITj(z) are

A; in IX;, and (2) IX; proves the following:

(i) fory =0, Z§(z) = OIy(z);

(i) Iy ,(z) iff there is a variable®u < z and a Xy formula z such that
z = (V*u)z;

(iii) similarly for Z7_,.

Proof. Exercise. O
We are now ready for a definition of satisfaction for Xy formulas.

1.70 Theorem. There is a formula Satg(z,e) which is Ay in I¥; and such
that Xy proves Tarski’s satisfaction conditions (cf. 0.6) for Xy formulas®,
i.e. IX, proves the following:

(i) Satgp(z,€) — z is a T formula® and e is an evaluation® for z,
(i1) if z is X and z = (u =° v) then

Satg(z,e) = Val®(u,e) = Val®(v,e)

and similarly for z = (u <® v);

(iii) if z is Z§ and z = (~°u) then Sato(z,e) iff ~Satg(u,e) and similarly for
z=(u - v));

(iv) if z is ) and z = (Vw1 <* wa)u) then Satg(z,e) iff for each ¢
evaluation of u coinciding with e on Freevar®(z) \ {w1} and such that
€/(w1) is defined and €'(w1) < €/(w2) we have Satg(u,€’).

The proof is in 1.71-1.73.

1.71 Definition (1X). (1) g is a partial satisfaction for X formulas® < p and
their evaluations® by numbers < r (in symbols: PSato(g,p,r)) if ¢ is a finite
mapping whose domain consists of all pairs (z,e) where z is X3, 2 < p, e
is an evaluation® for z, e C (< p) x (£ r), range(q) C {0,1} and Tarski’s
conditions hold for ¢ whenever those things in question are defined, i.e. for
each (z, e) € dom(q), |
(1) if 2 = (u =° v) then g(z,€) = T iff Val®(u,e) = Val®(v,e), similarly for
z=(u<*v);
(iii) if z = (—*u) then g(z,e) = T iff g(u,e) = 0, similarly for z = (u —° v);
(iv) if z = ((V*w1 <°® wa)u) then ¢(z,e) = T iff for each ¢’ C (< p) x (£ q)
as in (iv) above we have g((u,e') = 1.
(Note that e is assumed to be defined only for (some) variables® y such
that y < p and evaluates them by numbers < r.)
(2) Sato(z,e) iff there are g, p, r such that PSato(q,p,r) and g(z,e) = 1.
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1.72 Lemma. (1) PSatg is Ay in IX}.

(2) IX; proves that if q1,qy are partial satisfactions for X3 then they
coincide at the intersection of their domains.

(3) IX proves that for each p,r, there is a g such that PSato(g,p,r).

Proof. (1) Recall that A; includes 55 (ezp) and also recall 1.52(2). For
example, dom(q) is characterized as follows:

(Vx € dom(q))(3z,e < z)(z = (2,€) &e is an evaluation®
for z2&z < p&e<r)&
(Vz,e < H(p,r))(e is an evaluation® for z &
&z<p&ke<r.—(z,e) € dom(q))

where H(p,r) is a term majorizing all such (z, e); take e.g. (p+ r +2)%. The
rest is left as an exercise.
(2) In IX; we prove the formula

PSato(q1,p1,71) & PSato(g2,p2,2) —
— (Ve < q1)(both ¢1(z,€) and g2(z, €) defined — ¢1(z,€) = g2(z,¢))

by induction on z (in the form 1.45(3)): if ¢1(z, ¢) and g2(z, €) are defined and
z is atomic then the conclusion follows by the definition of PSaty; if z is =®u
are u —° v then by the inductive assumption, ¢ (u, €) and ga(u, €) are defined
and equal (and the same for v); thus ¢1(z,€) = g2(2, €). If z is (V*wy <°® wa)u
and g;(2,e) is defined then e(wsz) is defined and e(w2) < r; thus if ¢’ C (<
p) X (£ r) is a finite mapping coinciding with e on all free variables® of u
except possibly wj, assigning to w; a value < e(wz) and undefined elsewhere
then ¢;(u, ¢') is defined, and by the induction assumption, ¢ (u, ¢') = ga(u, €’).
Thus ¢1(2, ¢) = a2z, ¢).
(3) We prove in 1% the formula

(*) (Hq)PSato(q,p,r)

by induction on p, with r a parameter. Nothing has to be proved for p = 0;
assume (*), let PSato((g,p,r) and take u = p+1. If u is neither a X§ formula
nor a variable® then we have PSato(q,u,r); if u is a variable® then we have
to extend g to a ¢’ such that ¢’ is defined for all pairs (2, e) where z is a X3
formula®, z < p and e is an evaluation for z, e C (< u) x (£ r). Therefore
e may be defined for u but the value is irrelevant for ¢'(z,€) since u cannot
occur in z. Thus put ¢'(z,e) = g(z,e |) where e | means the restriction of
e to arguments different from u. Show using comprehension that ¢’ exists;
PSato(q',u,r) is evident.

If u is a X formula then we have to discuss several cases; but note that
now u is not a variable® so we have only to investigate only evaluations
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e C (< p) x (< 7). We need to extend g to a ¢’ such that ¢'(u,e) is defined
for all e just mentioned.
(i) u is atomic, u = (¢ =* s): define

q'(u,e) =1 iff Val®(t) = Val®(s),
¢'(u,e) = 0 otherwise,

qd'(2,¢€) = g(z, ) if defined.

¢’ exists by comprehension.

(ii) u is =®v; since v < p, ¢(v,e) is defined for all e in question. We put
d'(u,e) =1 —g(v,e), ¢'(z,€) = g(z, €) if defined. Similarly for u = (v —=° w).

(iii) u is (V*wy <® wa)v. If e C (5 p) X (L r)is an evalua.tion for u and
a = e(w3) then extend ¢ by defining ¢'(u,e) =T iff foralle’ C (< p) x (<)
evaluations for v coinciding with e on Freevar®(v)\ {wl}, defined also for w;
and assigning to w; a value ¢'(w1) < a we have g(v,e') =1; othermse put
d'(u,e) = 0. (Furtherinore, ¢'(z,e) = g(z,e) if defined.) Agam ¢’ exists by
comprehension. This completes the proof. O

1.73 Lemma (I X;). (1) Satp is Ay in I X,. (2) IX; proves Tarski’s satisfaction
conditions for X§ formulas® and Saty.

Proof. (1) As it stands, Saty is clearly X;. But by the preceding lemma, ¥
proves (assuming that z is a formula® and e is an evaluation®) Satg(z,e) to
be equivalent to

(Vq,p,r)(PSato(q,p,r) & q(z,€) defined — ¢(z,e) =1).

Thus Satg is II; in IX;.

(2) The only thing to check is the condition for bounded quantifiers.
Assume z = (V*w; <°® w2)u and Sato(z,e; thus assume PSat(p,q,r) and
¢(z,e) = 1. Then z < p and for each ¢’ C (< p) X (< r) such that €’ coincides
with e on Freevar®(u) \ {w;} and €'(wg) < e(w;) we have g(u,€') =1, ie.
Sato(u,e’). We have to get rid of the condition ¢/ C (< p) x (< r). But if
¢ is as above except for the last condition then the restriction e” of e to
Freevar®(u)U {w1} does satisfy the condition ¢” C (< p) x (< r) and for each
¢',p,r’ such that PSat(¢’,p’,r') and both ¢'(u,e’) and ¢'(u,e")) are defined,
we have ¢'(u,e’) = ¢'(u,e") (since ee/,e” coincide on relevant variables®).
Thus we have Satg(u,e”) and Satg(u,e'). We have proved the implication to
in 1.70(iv); the converse implication is easy. This completes the proof of the
lemma and of 1.70. a

1.74 Definition. For each n > 0 we define in IX; predicates Sat znand Sty
as follows:

Saty o(z,e) = Satpo(z,e) = Sato(z,e);
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given Saty ,, we define

Sat;rni1(2,€e) = . [z has the form (V*z)u where u is X,
e evaluates free variables® of z and for each
evaluation e’ for u coinciding with e
on Freevar®(u) \ {z} we have Saty n(u,e')].

Similarly for Satg n41 (from Satpy).

1.75 Theorem. (1) For each n < 1, Sats , is Ly in IX] and Satp,y is Iy, in
I>.

(2) IXy proves Tarski’s satisfaction conditions for Satgy, and X5 for-
mulas ® as well as for Saty;, and II; formulas®; i.e. it proves analogs of
1.70(i)-(iv) and, in addition,

(v) if m < n, zis T}, and z = (3°z)u then Satgpn(z,e) iff there
is an evaluation® e’ of u coinciding with e on Freevar®(z) and such that
Satp n(u,e');

(v)) f m < n, zis II), and z = (V*°z)u then Satpn(z,e) iff for all
evaluations €' of u coinciding with e on Freevar®(z) we have Saty n(u,e');

(v”), (v’) similarly for Satmn.

Proof. (1) is obvious from 1.70 by induction on n. Also (2) is easy to prove
from the definitions. O

1.76 Corollary (“It’s snowing”-It’s Snowing-Lemma). If o(z¢,...,zy) is 2y
then
IX1 F o(z0,...,2n) = Sat g n(@(20/70,. - ., Tn/Tn,0).

This formalizes Tarski’s example: the sentence “it’s snowing” is true iff it’s

snowing. Recall that B(z¢/Zg,...) is an abbreviation of

Subst® ... Subst®(Subst® (@, vr®(0), 29), vr*(1),£1),... vr®(R), &n) .

1.77 Remark. Observe that 1.70 is just a theorem in IY; to prove it we
needed only a finite fragment of X (since each proof of a single theorem uses
finitely many axioms). Similarly, for each fixed n < 1, Tarski’s satisfaction
conditions for X}, (or II)) are expressed by finitely many sentences (or just
one - take conjunction). Thus only a finite fragment of 1X; is needed to prove
them. This fact will be used in the next section to show finite axiomatizability
of some fragments of arithmetic (including I.X1).

1.78 Definition. We shall close this long section by extending the expressive
possibilities of theories containing IX; by introducing variables for some
definable possibly infinite sets of numbers. Let n be a fixed natural number.
We make in IX the following definitions:
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(1) cisa(code of a) XY set® iff cis a T, formula® and its only free variable®
is vr®(0) (the 0-th variable®).

(2) T €gnciff cisa I set® and Sat5n(c, [z]) (where [z] is the evaluation
assigning z to vr®(0)).

(3) II), sets and z €p1,n ¢ are defined dually.

Note that the formula = €59 ¢ is A in IX; and, for n > 1, the formulas

T €Egn € T €Enp c are Xy and II,; in X respectively. Given n we may

introduce new variables in I X ranging over Iy, sets. If n is clear from the

context we may use just X,Y,.... The following lemma serves as an example

of its usage.

1.79 Lemma (IX;). For each X} total function® F' there is a X7 total
function® G such that G(0) = 0 and, for each z,G(z + 1) = F(G(z)).

Proof. Very similar to the proof of 1.54, with the only difference being that
now we have one proof in IX; for all total X7 functions®, not a schema of
theorems with infinitely many proofs. a

1.80 Remark. Note that if ¢ is a X, formula whose only free variable is zg
(the 0-th variable) then I.X; proves that @ is a X}, set and that

T €x,n P = Satzn(,[2]) = ¢(2).
(cf. “it’s snowing”-it’s snowing Lemma 1.76).

1.81 Definitions Continued. Let n > 0 be fixed. In IX; we define a A7, set to
be a pair (c,d) where cis a X}, set, d is a IT), set and (Vz)(z Exnc =T €Enn
d). Observe that the formula saying that = is a A}, set is I, in IXy. We
may define £ €4, (¢,d) in the obvious way; again, this formula is II5,41 in
IX,. But observe that IX; proves the following:

e = (c,d) & Ay, -set(e) —
(Vz)(z Eane=TExnc=T€ERnd).

Furthermore, z €5, cis Xy and z €1, d is ITy, in 15,

1.82 Remark. Let us summarize what we have done in the present section. We
first introduced Robinson’s arithmetic @ and proved it to be X;-complete. We
further introduced Iopen and proved in it some high-school laws for numbers:
associativity and commutativity of addition and multiplication, distributiv-
ity, cancellation, monotonicity, etc. Furthermore, we exhibited the pairing
function in Iopen. Then we showed in IXy some properties of divisibility
(and left thorough investigation of X to Chap. V). In IXy(ezp) we devel-
oped a coding of finite sequences and finite sets and proved some basic facts
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about finite sets and their cardinalities. Then we turned to IX;; we showed
that IX;-provably recursive functions are closed under primitive recursion
and then we developed arithmetization of metamathematics in this theory.
We defined terms® and formulas® and proved their basic properties. Our final
development has been a definition of partial satisfactions; for each n we have
the formulas Saty 5, and Satp, with provable Tarski’s properties. This en-
ables us to introduce variables for Ty, sets, etc. (for any fixed n). This basic
apparatus will be used throughout Chaps. I-IV.

2. Fragments of First-Order Arithmetic

Recall that in Sect. 1 we already investigated some fragments of first-order
arithmetic, notably IXy(ezp) and IX;. Now we are going to investigate sys-
tematically fragments obtained by postulating a number-theoretic principle
as a scheme for all formulas of a certain class. In subsection (a) we shall deal
with fragments based on induction, the least number principle and collec-
tion; in subsection (b) we shall study various other principles. Recall also-
that in Sect. 1 we exhibited satisfaction for X,-formulas (II,-formulas) for
any fixed n. In subsection (c) we shall use this device to show that most of
our fragments are finitely axiomatizable; then we shall generalize and show
that under some assumptions we can exhibit in I ¥y a reasonable satisfaction
for the relativized arithmetical hierarchy; namely for formulas X, in a set
X. In subsection (d) we apply this to particular fragments; this will give us
techniques very useful in the following section. Subsection (€) is an appendix
presenting an alternative approach to fragments in the logic without function
symbols. Results of this section will be used throughout the book.

(a) Induction and Collection

2.1. Here we shall investigate the following four axioms that we met already
in Sect. 1:

(Ie) ©(0) & (Vz)(p(z) — (S(z)) = (Vz)p(x)
(I'y) (V2)[(Vy < 2)¢(y)) = ¢(2)] = (Vz)p(z)
(Le) (3z)p(z) — (3=)(p(z) & (Vy < 2)-p(y))

(Bp)  (Vu)[(Vz < u)(Fy)e(z,y)) = (Fv)(Vz < u)(Jy < v)p(s,y)]

They are called the successor induction aziom given by ¢, the order in-
duction aziom by ¢, the least number aziom given by ¢ and the collection
aziom given by ¢ respectively.

Both the axioms of induction and the least number principle appear to
be sufficiently clear. Let us give a verbal formulation of collection: think of
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¢(z,y) as defining a multi-valued function @: ¢(z,y) says that y is a possible
value of @ for z. Call & total beneath u if each £ < u has at least one possible
value. Call & cofinal on u if for each v there is an z < u such that all possible
&-values of z are bigger than v. B, says: if @ is total beneath u then it is not
cofinal on u.

2.2 Some Classes of Formulas. Recall ¥,, and II,, formulas. If ¢(zg...z})
is any formula then an instance of ¢ is ¢(11,...,t;) wWhere t; are terms, ¢;
free for z; in ¢. Zp(yp) is the smallest class of formulas that (1) contains all
atomic formulas and all instances of ¢ and (2) is closed under connectives
and bounded quantification. X, (¢) formulas are defined from Xy(¢) formulas
in the same manner as Ty, was defined from Xj; thus a XZy(p) formula
consists of a block of n alternating quantifiers, the first being 3, followed by
a Xo(p) formula. (LX) is the union of all Zyy(p), ¢ being Xy, Similarly
for II,(Zy) etc.

A formula v is Xyn(p) in a theory T if there is a Ty(¢) formula x such
that T I 9 = x. A formula ¢ is Any(p) in T if it is both Zy(p) in T and
In(e)in T.

Observe that for each ¢(zg ... z)) there is a formula 1(u) with exactly one
free variable such that each Xy(¢) formula is Xy(¢) in T' and vice versa (we
assume T' D IXy(ezp) for simplicity): take p(u) to be

(3zo S u)...(3zg S u)(u=(zo,...,z) &p(zg,...Tk)) .
2.3 Theories. Recall Q). For some technical reasons (see below) introduce also

a theory Q' defined as @ plus the axiom z < Sz (Note Iopen F z < Sz.) We
shall study the following theories:

IZn =QU{Ip |y € Ty},
I'Sp,=Q U{l'v|pe Zn},
LEan,U{IAP'(PEEn}.

Similarly for IT, I'T', LT, where I" is IT,,, So(5y) etc.
(Caution: IA, has not any meaning yet, see below!) Further we define

BI'=I1XyU{By |p €I}
for I as above, i.e. we have BX,, BII, etc. Note that by definition BI"
contains IX.

IA, is Q together with the scheme

(Va)(o(z) = n(z)) » Io
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for each pair o € Xy, m € IT, (thus the axiom says: if o and 7 are equivalent
then induction holds for & — and obviously also for IT). Similarly LA,,.
In 2.4-2.5 and 2.7 we formulate the principal facts about these theories.

2.4 Theorem. For each n, the following nine theories are mutually equivalent:

Izm IHfh IZO(EH)’
I,En, I,Hn, I,EO(SYI)’
LY,, LII,, LXy(X,).

2.5 Theorem. For each n,

(1) IXp41 = BXpp1 = I5,;

(2) BYp41 & BIl, & LApy1 = [Ap4a,

(3) For each Xp,-formula ¢, the formula (Vz < y)¢ is Ty, in BX,,.

(Here => means “contains” (i.e. “proves all axioms of”) and < means “is
equivalent to”.)

Remark. It is unknown whether IA,, and LA,, are equivalent; all the other
arrows will be shown to be strict in Chap. IV (the theories in question are
not equivalent).

2.6 Definition. Let ¢(zo,...,z) be a formula. Define in IX: q is a 2-piece
of ¢ if ¢ is a finite mapping, dom(q) = (< 2)F*1, range(q) C {0,1} and

(Vzg < 2)...(Vzi < 2)(g({z0,...2k)) = 1= p(z1...2k)) .

¢ is piecewise coded in T' D 1% if T proves (Vz)(3g)(q is a z-piece of ¢).
We often write “p.c.” for “piecewise coded”.

2.7 Theorem. For each n > 1,
(1) each Xo(Xy) formula ¢ is p.c. in I Xy;
(2) if ¢ is Ap41 in BE,41 then ¢ is p.c. in BX ;.

In particular, each X, formulais p.c. in I.X,. Note that by 2.5 (3), formulas
Ap+1 in BXy 4 are closed under bounded quantifiers.

This completes our list of facts. In the sequel we shall present a series of
lemmas that proves all the above theorems.

2.8 Lemma. (a) For each ¢, Ly = I'-y is provable in predicate logic (trivial).
Thus I'Yy & LI, and I'ITy, & L2y,
(b) IZy & LYy & I's,.

Proof. The second equivalence is obvious from (a); for IXy = LX)y see 1.22.
We prove LYy — IXy. Assume ¢ € Xy and let us work in LY. Assume
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#(0), (Vz)(¢(z) = ¢(S(z))) and (3z)~¢(z). Then there is an z such that
—p(z) & (Vy < z)p(z). But = # 0 since ¢(0), thus z = S(y) for some y; by
@', y < z, thus ¢(y) and therefore p(z) — a contradiction. O

2.9 Lemma. In BX,, ¥,-formulas as well as II,-formulas are closed under
bounded quantification.

Proof. Evident for n = 0. Assume the lemma for n and consider BX,, ;1 and
a Yp41 formula (Jy)e(z,y). Then

(x)  BZnprk (Vo <u)(Fy)e(z,y) = (Fv)(Vz < u)(Fy < v)p(e,y)

and the formula following (3v) on the right hand side of (x) is II, in BXy,
by the induction hypothesis. [m]

2.10 Lemma. BX,, ) < BII,.
Proof by contraction of quantifiers, cf. 1.45. O
2.11 Lemma. IX, 1 = BX, ;.

Proof. For n = 0 see 1.44-1.45; proceed by induction on n. Assume the lemma
for n — 1, let ¢ € IIy. In I X1 assume (Vz < u)(Fy)¢(z,y). Prove

(Vo < w)(3)(Vz < v)(Jy < De(z,)

by induction on v; note that, by BXy, the formula (Vz < v)(Jy < t)p is Iy,
in our theory (call it a) and consequently the formula v < u — (It)a is T4
in I X, 41 so that induction can be used. 0O

2.12 Lemma. (1) IX, & I'Y, and similarly for II, and Xy(X,). Thus
I¥X, & LII,, and IIl, & LX,,.
(2) IS, & IM,.

Proof. (1) For n = 0 see above. Consider n > 0. First work in IX,. Let
(Vz)[(Vy < z)p(y) — ¢(z)); then we get (Vz)(Vy < z)p(y) by induction,
observing that (Vy < z)p(y) is yp, in IXy,.

Conversely, work in I' Zy; note that we have IX, thus basic properties
of <, § are provable. Assume ¢(0) and (Vz)(¢(z) — ©(S(z)). We prove
(Vz)[(Vy < z)p(y) — ¢(z)] by cases: If z = 0 we have ¢(z). If z > 0 then
z = §(z) for some z, thus (Vy < z)p(y) = ¢(2) = ¢(S(z)) = ¢(z). By order
induction we get (Vz)p(z).

(2) Trivial for n = 0. Let ¢(z) be IT, and work in IXy; assume ¢(0),
(Vz)(¢(z) — ¢(z + 1)) and —p(a). Prove the following by induction on z,
observing that the formula for which induction is used is Xy,:

(Vz)(z £ a = —p(a - 2)).
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(cf. 1.13-1.16; in greater detail we could write (Vz)(z < a — (Ju < a)(z+u =
a& —p(u)). But then we get —p(a — a), thus —=p(0), a contradiction). O

2.13 Lemma. Let n > 1. (a) Each Xy, formula is piecewise coded in I.X,. (b)
Each ¥Y¢(X,) formula is piecewise coded in IX),.

Proof. (a) IX, F (Vz)(3¢)(g 2-piece of ¢). Indeed, g is the least y such that
y is a mapping of (< z)¥ into {0,1} and

(Vzo < 2),...,(Vo < 2)(p(zg...2) 2 g( < z0...7H > ) =1);

¢ exists by LIT,.

This proves (a).

(b) Let ¢, ¥ € Ty; then IX, proves the following: If ¢, have a z-piece
then ¢ &9, ~¢, (3z < y)p have a z-piece.

This follows easily by X7 (ezp) — comprehension. Assertion (b) follows
from the above by induction of the complexity on the Xy(X,) formula in
question. O

2.14 Lemma. I, = I1Xy(XZy).

Proof. Trivial for n = 0, thus let n > 0, let ¢ € Xo(Xy) and work in IX,;:
we show Ly. Assume ¢(a) and let g be a z-piece of ¢ (with respect to the
variable in question), z > a. (Use 2.13.) By IX], let ¢ be the least number
such that (¢); = 1; then obviously (g); is the least element z such that ¢(z).
We have proved LYy(Xy); the proof of IXy(Xy) from LEy(Xy) is the same
as the proof of 2.8 (b). (]

2.15 Lemma. BY, 1 = IX,.

Proof. Trivial for n = 0; thus assume n > 0 and work in BX,, ;. Note that
we may assume IX,,_; (induction on n). Let p(z) be Ty, o(z) = (32)¢(z, 2).
In BX,4+1 assume ¢(0), (Vz)(¢(z) — ¢(z + 1)). Let a be given; we prove
(Vz < a)p(x). We have the following:

(Vz)(p(2) = p(z + 1)) —
(Vz < a)[(32)¢(z,2) = (Fw)y(z +1,w)] —
(Vz < a)(Fw)(V2)(¥(z, 2) — ¢(z + 1,w)) —
(Fv)(Vz £ a)(Fw < v)(Vz)(P(z, z) = Y(z + 1,w)).

Fix such a v; we may also assume (Jw < v)p(0,w). Then prove (Vz <

a)(3w < v)y(z,w) by induction on z using IXy,_1.

2.16 Lemma. BX 11 = LAp4g.
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Proof. Work in BX,, 1. Assume (Vz)[(3y)¢(z, y) = ~(32)¥(z, z)], where ¢, 9
are IT,,; furthermore, assume (3y)y(a,y). We have

(Vz)(3y)(#(z,y) V ¥(2,y)), hence for some w,
(Vz < a)(Fy < w)(p(z,y) V ¥(z, y))(by BX,4+1), thus
(Vz < a)((F)e(z,y) = (Fy < w)p(z,y)).

Then we have (Jy < w)p(a,y) and we may use IX), (preceding lemma), thus
LII,, (2.11). Thus there is a least ' < a such that (Jy < w)p(d',y); but then
d' is the least number such that (3y)p(a’,y). This completes the proof. 0O

2.17 Lemma. LA, 41 = BXp4.

Proof. By induction on n. Work in LA,41, let (Vz < a)(3y)8(z,y), 0 being
II,. Put ¢o(z) = z < a&()[0(z,v)&(Vu < v)-0(z,u)& (Vz between
z,a)(Jy < v)0(z,y)); thus ¢(z) means that the least witness for z majorizes
the least witness for all 2z such that 2 < z < a. Observe that ¢ is Xp41;
for n = 0 this is evident, and for n > 0 it follows by BXy. But ¢(z) is
equivalent to the following formula ¢(z): ¢(z) = z < a & (W)[0(z,v) — (V=
between z, a)(3y < v)6(z,y)], thus: each witness for z majorizes the witnesses
in question. Now t(z) is IT, 41 (for analogous reasons) and therefore LA,
applies: let zg be the least element satisfying ¢ and 6(z9, yo).

Claim. (Vz < a)(Jy < yo)0(z,y). Indeed, the statement holds for = be-
tween ¢ and a by definition; if there is an ¢ < z¢ such that (Vy < yo)—0(z,y)
then take the largest such x possible —z is the least element such that

Tz <zg& (Vz' < z0)(z <z’ — (3y < v0)b(z,y)),

which is Ap41. But then we have ¢(z') &z’ < z — a contradiction. a

2.18 Remark. (1) The proof of LAp 41 = IAp41 is easy and left to the reader
(cf. 2.8).

(2) The reader may check that Theorem 2.4 follows from 2.8, 2.12 and
2.14; furthermore, Theorem 2.5 follows from 2.9, 2.10, 2.11, 2.15, 2.16, 2.17
and 2.18 (1). In addition, Theorem 2.7 (1) is proved in 2.13. Thus it remains
to prove 2.7 (2); this is done in the following lemma.

2.19 Lemma. If n > 1 and ¢ is Ap4q in BX, 41 then 2 is piecewise coded in
BEn+1

Proof This is proved mmxla.rly to 2.13 (a): given z, the desired z- p1ece of (z)
is the least ¢ such that ¢ is a finite mapping, dom(q) = (< 2)k, range(q) C
{0,1} and (V2o < 2)...(Vzx < 2)(p(20-..2k) = ¢({zo-..2¢)) = 1). The
condition in question is easily shown to be A,4; in BXy4+1, thus LA,
applies. This completes the proofs of our theorems. a
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(b) Further Principles and Facts About Fragments

2.20 Principles - continued. Let us introduce three new principles:
Strong collection Sep:

(Vu)(Fv)(Vz < u)[(Fy)e(z,y) = y < v)e(z,y)]
Regularity Rep: '
(Cz)(Ty < w)p(z,y) = (Fy < u)(Cz)e(z,y)

where (Cz) is (Vw)(3z > w) — the quantifier “there are unboundedly many”
Pigeon hole principle PHP(p):

(Vu)=[(Ve < u)(3ly S u+De(z,y) & (Vy <u+ 1)z < u)p(z, y)]

We offer the reader the following verbal reformulations: Sy may be under-
stood as saying that the partial multivalued function on (< u) defined by ¢
is not cofinal on its domain. Ry says that if unboundedly many z’s have a
value beneath u then there is a y < u which is a value of unboundedly many
z’s. PHP(yp) just says that ¢ cannot define a one-one mapping of (< u) onto
(<u+1).

2.21 Principles - completed. We shall introduce three more principles, all
asserting the existence of some sequences. Since we defined sequences in
IXy(ezp) we are obliged to relate these principles to theories containing
IXy(ezp); our choice will be IX;.

The first principle is called the finite aziom of choice (FAC(y)) and claims
that if a multivalued function is total beneath u then there is a sequence s
which selects for each z < u one of the values of z (i.e. (s)z is the selected
value).

(Vz < u)(Fy)e(z,y) — (3s)(Seq(s) & Ih(s) = u + 1

& (V= < u)p(z, ()z) -

The last two principles concern approximations of functions. Let us begin
with informal formulations; we shall show how to obtain the corresponding
formulas. Say that ¢ defines a partial function if (Vz, y, 2)(¢(z, y) & ¢(z, 2) —
y = z) (abbreviate this PFUN(y)); say that ¢ defines a total function if
(Vz)(3'y)p(z, y) (abbreviate this TFUN(y)). Write y = F(z) for ¢(z,y) for
a moment. Call a finite sequence s an approzimation of F if for each i such
that ¢ + 1 < Ih(s) and each z < (s);, y = F(z) implies y < (s)i+1. The
principle of approximation for a total function says that if ¢ defines a total
function then this function has arbitrarily long approximations; similarly for
partial functions. Write Approz ,(s) for

Seq(s) & (Vi)(Vz)(i + 1 < lh(s) &z < (); & (2, ) = ¥y S (8)i41) -
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The principles are as follows:

(P,) PFUN(p)— (Vz)(3s)Approz (s)&Ih(s) = z),
(T,) TFUN(p)— (Vz)(3s)Approz ,(s) & lh(s) = 2).

Note that both (P,) and (T,,) are meaningful in I2; (even in IXo(ezp); Seq
is used). This completes our list of principles; obviously, for each ¢ all the
above principles are true in N.

2.22 Theories. (1) Theories based on S, R and PHP are assumed to contain
IXy:
SI'=1XyU{Sp|p €T},
RI'=I2yU{Ryp |p €T},
PHP(I') =1XyU {PHP(p) | p € I'}.

Here I' stands for Xy, IT,, and possibly Zo(Zy).
(2) Theories based on FAC, T, P are assumed to contain IX;:

FAC(I") =I1X,U{FAC(p) |p €I}
T(I)=I2U{Ty|peT}
P(IN=IX1U{Pp|peTl}.

Thus we may use the notion of finite sequences. Note that in Chap. V a
theory of finite sequences in IXy will be elaborated; having this we could
discuss also the principles FAC, T, P over I1Xy. But we shall not investigate
this now. Our results are contained in the following three theorems:

2.23 Theorem. For each natural n:

(1) SZp41© Sy & [Zn4

(2) PHP(Xo(Zn)) & IZnt1

(3) forn>1, PHP(Xy41) ¢ BXy41; furthermore, PHP(X;) = BX);.
(4) R¥p41 ¢ RIl, & Bll,yy & BEgyo.

2.24 Theorem.

(1) Forn>1, BY, 11 & FAC(Zp+1); and IX; & FAC(XY).
(2) Forn>1, T8 41 = PEpy1 = TX,.

(8) Forn>0,IX,41 ¢ TX 41 & T, and PY,+1 & PlII,.

2.25 Theorem. Each Yy(Xy) formula is Ap41 in I Xy,
2.26 Remark. The structure of our fragments is visualized in Fig. 1. We shall

show in Chap. IV that all inclusions are strict and that theories incomparable
in the figure are incomparable as theories, i.e. neither includes the other.



2. Fragments of First-Order Arithmetic 69
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!
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Fig. 1.

The subsequent series of lemmas proves our three theorems.

Overview. 2.23 (1) proved in 2.27-2.29, (2-3) in 2.30-2.33, (4) in 2.36-2.44
and uses 2.24 (1); 2.24 (1) proved in 2.35, (2-3) in 2.45-2.48 and uses 2.37;
2.25 is proved in 2.49-2.50 and uses 2.23 (1).

2.27 Lemma. IX 1 = SIIy.

Proof. Let ¢ be IT,, and work in I X, ;. Let u be given; let g be the (u 4+ 1)-
piece of (Fy)p(z,y) (cf. 2.13). We prove (Fv)(Vz < a)((¢): =1 — (Fy <
v)p(z,y)). This is achieved easily by proving the following sentence by in-
duction on z2:

(*) z <u— ()(Vz < 2)((9)z =1 — (Fy S v)p(s,y))-

This is clear for 2 = 0. Let v satisfy (¥) w.r.t. z and let 2z + 1 < u; if
=(Jy)e(z + 1,y) then v satisfies (*) for u + 1; if p(z + 1,y), then (*) holds
for z + 1 and max(v, y) instead of z,v. This completes the proof. 0O
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2.28 Lemma. SIT, = SZp41.

Proof. Contracting quantifiers (cf. 2.10). - O
2.29 Lemma. STy, = I X,4.

Proof. By induction on n. Recall that SIT,, contains I Xp. Let ¢ be II,. Work
in SIT,; assume (Jy)p(0,y) and (Vz)((3y)e(z,y) — (Fy)p(z+1,y). Take any
u and use SIT, to get a v such that (Vz < u)((Jy)e(z,y) — (Fy < v)(z,y)).
Then use I X, to prove (Vz < u)(3y < v)p(z,y). a

2.30 Lemma. IZ,..H =4 PHP(Zo(En.l.l)).

Proof. (=) follows by Lemma 2.13 (b): if ¢ defines a mapping of u + 1 into
u then its (u + 1)-piece is a finite set function and using comprehension we
obtain the mapping in question as a finite set. But ¥ proves the pigeon
hole principle for finite sets, see 1.41.

Conversely, assume PHP(Xy(Zyn+1)) and let ¢ be a Xy, 1-formula violat-
ing IX41: let a be such that

#(0) & (V2)(p(z) = ¢(z + 1) & p(a).

Define, for z < a, f(z) = ¢ — 1 if =p(z) and f(z) = z otherwise. Then f is
Z0(Zn+1)-definable and violates PHP(Xy(Xp+1)). O

2.31 Lemma. PHP(X,4+1) = BXn41.

Proof. We shall construct the proofs by induction on n; this allows us to
assume BX, if n > 0. Let n be given and work in PHP(Xp41).

(1) First prove I Xy,. This is immediate if n = 0 (since PHP(Xy4+1) extends
IXy). If n > 0 imitate the proof of 2.30 (<=), ¢ being now Zy; by BX,, the
function f is now Xy, definable and PHP(Xy ;) gives the result.

(2) Now assume that By is violated for a ¢ € II,;; we want to de-
duce a contradiction, which will complete the proof. Put ¢'(z,y) = (32 <
y)e(z,z) &y = (z,2); then By' fails and z1 < z2 < u& p(z1,y2) implies
y1 = y2. Thus (Vz < u)(3y)¢'(z,y) but (Vo)(Iz < v)(Vy < v)-¢/(z,y). By
IX,,, for each z < u there is a least y such that ¢'(z,y); denote it by m(z).
Clearly, m is one-one on (< u). For z,2’ < u put 2’ = F(z) if m(z) < m(z')
and ~(3z” < u)(m(z) < m(z") < m(z")).

(3) We show that F is X, ;1. Indeed, since m is £9(Zy) and we have IX,,,
m is piecewise coded; thus for each z, {(z,y) | z S u&y < z&y = m(z)}
is a finite set. (Say that the set codes m on (< u) x (< z).) Thus 2’ = F(z)
is equivalent to (3¢)(¢ codes m on (< u) x (£ 2)&(Jy,y < 2)g(z) =
y&q() = o/ &~ <u)@ < )al@") = v by <y < ¢
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The formula “g codes m on (< u) X 2” is Ap41, the second conjunct is
Aj; thus the whole is X4 1.

(4) F is total on (< u) and there is an z9 < u such that F maps (< u) onto
(£ u)—{z0}. Indeed, there is the least y such that (Iz < u)¢'(z,y) (by I Ly;
the formula is IT, in IXy). If ¢(z0,y) then y = m(zg) and y ¢ range(F).
For each z’ < u different from z¢ there is an ¢ < u such that ' = F(z): to
see this assume z’ # 79, y = m(z') and let ¢ code m on (< u) x (< y). The
desired z is easily obtained from ¢ using I%;.

(5) F is one-one: trivial from the definition. Thus F maps (< u) one-
one onto (< u) — {zo} and F is Xy 41. Changing F inessentially we may
assume zg = u, thus range(F) = (< u — 1) and we have a contradiction with
PHP(Zp41). ]

2.32 Lemma. (BXy 41 + PHP(Xy)) = PHP(Zn41).

Proof. f 8(z,y) = (32)¥(z,y, 2) is Ty4+1 and definesin BY,,; a 1-1-mapping
of (< a) to (< a — 1) then find a ¢t such that the formula (3z < t)¥(z,y,2)
(which is IT, in BXy41) defines the same mapping. O
2.33 Lemma. For n > 1, BY,, 11 = PHP(Zp4,)

Proof. In the theory in question, we have IXy,, which implies PHP(II,) by
2.30, and 2.32 gives the result. O

2.34 Remark. Note that 2.23 (1)~(3) has been proved. Before we prove 2.23
(4) let us discuss FAC.

2.35 Lemma. 1Y) + Bll,, & FAC(Ily).
Remark. If m = 0 then IX + Bl is IXq;if m > 0 it is BXy,.

Proof. (=) In 1%y + BIly, assume (Vz < u)(y)e(z,y), ¢ € IIm; thus for
some v we have (Vz < u)(Jy < v)p(z,y). Prove the following formula by
induction on z:

(Vz < u)(3s < 20F D )(Ih(s) = o + 1& (Vi < 2)p(i, (5)))

(cf. the remark in 1.43). Observe that the formula in question is A; for
m = 0 and is Ay, for m > 0; thus the corresponding induction axiom is at
our disposal.

<« is evident. O

Remark. Observe that FAC(II,,) = FAC(Zp+1) (cf. 2.10); thus 1.24 (1) is
proved.
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2.36 Definition. Given a formula ¢, the following formula (that can be denoted
MFUNS(yp)) says that ¢ defines a monotone function on an initial segment:

(Vz,y1,y2)(e(2,y1) & (21, y2) = y1= y2)
(Vz1,91,T9,y2)(21 < 22 & p(21,Y1) & p(T2,¥2) = ¥1 <y2)
(V:z:l,a:2,y2)(zl < T2 &QO(.’CZ, y2) - (ayl)‘P(zl, yl)) .

2.37 Lemma. For each formula 6(z,y) € II), there is a ¥, € II), such that
(IX4 + BII,,) proves the following:

(a) (YVz < a)(Jy)8 = (Vz < a)(3y)¥o.

(b) o defines an increasing function on an initial segment. (Note once
more that if m = 0 then the theory in question is IX; if m > 0 then it is
BIl,.)

Proof. For m = 0, 1¢ says: y is the function associating with each z¢9 < z the
least yo such that 6(zg, yo). For m > 0 let 8(zq,yo) be (Vz)A(zo, Yo, 2)-

We make the following definitions. A superwitness for z is a pair (y,s)
where 6(z,y) (i.e. y witnesses (Jy)p(z,y) and s is a sequence of length y such
that for each z < y, (s); is the smallest u such that =\(z, z,u) (this sequence
witnesses for each z < y that —6(z, z) holds; altogether, (y, s) witnesses that
y is the least element satisfying 6(z,y)). Write SW(z, (y,s)) for “y is the
superwitness for z” and observe SW{z, (y, 3)) € IIy,. Now define SSW(z, q)
(g is a super-superwitness for z) if ¢ is a sequence of length = + 1 such that
for each 2z < z, (g), is the superwitness for 2. Observe that BII,, proves the
following

(1) SW(,t)& SW(z,t') -t =¢;

(2) SSW(:z: 1) & SSW (z,t') = t = t/; '
(3) z<a'&SSW(a',t') = (SSW(z,t) =t is the restriction of ¢ to (< z));
(4) (Vz < a)(Fy)b(z,y) = (3t)SSW (a,t).

To prove (4), observe that <« is trivial; let us prove =>. Assume (Vz <
a)(Jy)0(z,y); then (Vz < a)(Jw)SW(z,w), since (i) by LI,,, there exists
the least y such that 6(z, y), (ii) again by LIIy,, for each z < y exists the least
u such that -~ A(z, z,u) and by FAC(IIy,), there is a sequence s associating
with each z < y this least u. Applying FAC(IIp,) to (Vz < a)(3w)SW(z,w)
we gain directly the sequence which is the desired super-superwitness. The
lemma now follows easily. 0O

2.38 Definition (I.X). If 4g(z, y) defines an increasing function F on an initial
segment then call a sequence s a code of the primitive recursive iteration of F
if (s)o = 0 and for each z such that z + 1 < lh(s) we have (s)z4+1 = F((s)z).
(In symbols: CPRI,(s).)
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2.39 Lemma. Let g be IIy,; (124 + BIl,,) proves the following: If ¥ defines
an increasing function F on an initial segment then
(a) (Vz < a)(Jy)po — (3t > a) CPRI, (1)
(b) Let K(a) be the constant sequence of length a whose each member is
a. Then
(3t > K(a))CPRI, (t) = (V2 < a)(Jy)¥o -

Proof. (a) Note that CPRIy,(t) is Iy, and we have LIIp,(LII; for m = 0.)
Let s be the maximal code of the primitive recursive iteration of F' such
that s < a; let u = lh(s) — 1 and v = (8)y. Clearly, v < @ and if w is such
that 1g(v, w) then let ¢ be the concatenation of a with the element w, i.e.
t=3s ~ (w). Thent > s, thust > a.

(b) Assume —(Vz < a)(3y)¥o. Then evidently each primitive recursive
iteration t of F is less than K(a). O

2.40 Lemma. Let 19 be II,;; (IZ4 + B, ) proves the following: if 1¢ defines
an increasing function on an initial segment then

(Vz)(3y)po = (Ct)CPRI, (¢).
Immediate from the preceding.

2.41 Lemma. For each 6(z,y) € IIy, there is a 1(t) € Iy, such that (IX; +
BIlp,) & (Vz)(3y)8 = (Ct)p.

Immediate from the preceding.
2.42 Lemma. BY ;12 = R¥p; 41

Proof. Assume —(Jy < a)(Cz)0(0 € Eyp41). Using BIl4q show (3t)(Vy <
a)(Vz > t)-8, i.e. -(Cz)(Iy < a)b. O

2.43 Lemma. RIIy = IX,.

Proof. Recall that by definition, RIIy contains IXy. In RIIy, assume
(32)¢(a, z) where ¢ € Xy. Trivially,

(Vz < a)(Fw)(Vu > w)[(3z < u)p(z,2) = (3z < u+1)p(z,2)].
Applying RIIj we get
| ~(Cu)(3z < @)](Fz < u + 1)p(s, 2) & ~(3z < u)p(z, 2)]
thus
Bt)(Vu > t)(Vz < 2)[(Fz < u)p(z,2) = (Fz < u+1)Y(z,2)].
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Hence
(Vz < a)[(F2)p(z, 2) = (32 < t)(z,2)].
Thus I Xy gives the desired minimum. O

2.44 Lemma. RIl,, = Bl

Proof by induction on m; thus we may assume BIly,. (For m = 0 this
follows from 2.43.) Let é(z,y,2) be Xy, and consider (Vz)e(a:,y,z) Work
in (RIIm, + Blly,); assume

(Vz < a)(Fy)(V2)0(z,y,2).

By 2.37, let ¥o(z,y,2) € Iy, be such that g defines an increasing function
on an initial segment and

(V9)(Vy < 9)(32)~8(z, v, 2) = (Vy < 9)(32)vo(2, 9, 2) - (*)
Then we have the following;:
(Vz < a)(Ty)(V2)8(z,y,2) — by (*))
(Vz < a)~(Vy)(3z)o(z, y,2) = (by 2.40)
(Vz < a)~(Ct)CPRI y,(z,t) — (by RII,)
=(Ct)(3z < a)CPRI 4 (z,t) — (definition of C)
(39)(Vt > ¢)(Vz < a)~CPRIy(z,t) — (logic)
(3q)(Vz < a)(Vt > )~ CPRI yy(z,t) — (cf. 2.39)
(3g)(Vz < @)(Ty < q)(V2)~¢o(z,y,2) — - (by (%))
(Ag)(Vz < a)(Fy < q)(Vz)b(,y, 2).
This completes the proof of BII;41. 0O

Remark. Note that the proof of 2.23 (4) is complete. We turn to 2.24 (2)—(3).

2.45 Lemma. 1Y, = TX,

Proof. Let ¢ be Xy 11 and work in I¥,, 11 + TFUN(p), i.e. assume that ¢
defines a total function F. Then ¢ is A4 in our theory. Define

G(z) = (miny > z)(Vu < z)(F(u) < y).

G is total, monotone and Ay, 41; show by the usual technique that its primitive
recursive iteration H(0) = 0, H(z + 1) = G(H(z)) is total and Anyg.
Moreover, H is piecewise coded; from this it is easy to conclude that for each
z, the restriction of H to (< z) is a finite set h; but h is an approximation
of F of length = + 1. O
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2.46 Lemma. TX 11 = I X, 4.

Proof. Trivial for n = 0 by our definition of T'X;; thus assume n > 0 and
work in TXy, 41 + IXy. First prove BIl,. Let ¢ be II, and assume (VY <
u)(3y)¥(z,y). Define F(z) = (miny)y(z,y) for z < u, F(z) = 0 otherwise;
F is A,41 in our theory. Let s be an approximation of F, lh(s) > u + 1.
Then (8)y > u, thus (Vz < u)(Jy < (8)u+1)¢(z,y). BII, follows.

To prove IZny1 take ¢ € Zny1, () = (Fy)x(z,y) and assume ¢(0)
and (Vz)(¢(z) — ¢(z + 1)). For each z, let G(z) = y if y is a sequence of
length (z + 1) and for each ¢ < z, (y); is the least z such that x(z,2). G is
a function (possibly partial) and is A, 41 in our theory. If G is bounded, i.e.
y = G(z) implies y < w, then we get (Vz)(3y < w)(y = G(z)) by IAn+1,
which is at our disposal (thanks to BXy41); thus assume G unbounded.
Thus (V)(3z,y)(y = G(z) & (z,y) > v). Define H(v) to be the least pair
(z,y) such that y = G(z); then H is A,y in our theory and H is total. Let
s be an approximation of H of length z 4 1; then s is a sequence of increasing
pairs (z,y) such that y = G(z). Thus if (z,y) = (s); then z > 2z, y = G(z)
and therefore y gives witnesses for each i < z; thus (Vi < z)(3y)x(s,y) and
¢(z) follows. O

2.47 Lemma, T(IT,) & T(Zn41) and P(IT,) & P(Zp41).

Proof. Assume T(IT,); note that we may also assume IX,, (for n = 0 by
definition, for n > 0 as the induction hypothesis on n). Let (32)6(z,y, 2)
be ¥, +1 and assume that this formua defines a total function F. Define
G(z) = (y,q) as: g is a superwitness (for n = 0: a witness) of y = F(z) (cf.
2.37), i.e., for some z, s, ¢ = (2,s), we have 0(z,y,2) and s is a sequence
witnessing minimality of z. Then G(z) is II,, total and majorizes F'; each
approximation of G is an approximation of F. Thus T(II,,) gives T(ZXp+41).

Now assume P(II,); then T(II,), thus T(Xp41). Let F be Xpy1 and
partial; as above show that there is a IT,, function G with the same domain
majorizing F'. Each approximation of G is an approximation of F. 0O

2.48 Lemma. Forn > 1, IX,, 1 = PXY, = I%,.

Proof. By 2.47, P(Xy,) & P(II,—1); so assume T'X 11 and let ¢ be II,,_1 and
define a partial function G. Then the trivial totalization of G (H(z) = G(z)
if defined, = 0 otherwise) is Ap41, and thus has approximations of arbitrary
length; each of them is an approximation of G.

The second statement is trivial since PX, = TX,. This completes the
proof of 2.24 (2)—(3). O

Our last task in this subsection is to prove Theorem 2.25. This is dome in
the following two lemmas.
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2.49 Lemma. For each Xy(y)-formula ¥ there is a formula ¥ of the form

(%) (Qiyr < 21) ... (Qryk < 2k)P0(Z1,5- -1 Y1y- - -5 215--2)

where Q1, ..., Qi are quantifiers, ¥y is a boolean combination of instances of
¢ and atomic formulas, the sets of variables {z1,...}, {y1,...}, {#1,...} are
pairwise disjoint and the equivalence ¥ = ¥’ is provable in Iopen. (We call
(*) the bounded prenez normal form of ¥.)

Proof. First show that ¥ is equivalent to a formula ¥, consisting of a block
of bounded quantifiers followed by a boolean combination of instances of ¢
and atomic formulas. To this end check that analogues of the following hold
for bounded quantifiers: renaming of bound variables, de Morgan rules and
factoring out a quantifier ) from the antecedent (succedent) of an implication
whose succedent (antecedent) does not contain free occurence of the variable
bound by Q. Caution: it is important that bounded quantifiers use non-strict
inequalities; i.e. if u is not free in x then

(Fu<v)(x = ¢) =(x = (3u < v)p) is provable in Iopen but
Fu<v)x—¢)=(x— (Fu<v)p) isnot

(think of v = 0; we need (Vv)(3u)(u < v) to be provable).
) has a clash of variables if there are variables z,y, z such that ¥; has
the form

...(leSy)...(szSz)...!I"(J,

i.e. z is both the bound in one quantifier and the quantified variable in a
quantifier further out. It remains to show that ¥; can be made clash-free.
To this end let ¥y be a subformula of ¥; having a clash and such that each
proper subformula of %3 is clash-free. Thus ¥; is

(%) ' @y <21)...(VWi <v1)...9
and similarly for 3 instead of V. But () is equivalent in Iopen to
(le Sz)...(Vyi < Z)...(y'- <wn —)!po)

and similarly for 3.
Iterated use of this procedure gives the result. . O

2.50 Lemma. If ¢ € Xy, and ¥ is Zy(y) then ¥ is A4 in IX,.

Proof. Trivial for n = 0; thus assume n > 0. Assume % has the form
guaranteed by 2.49 and apply propositional calculus to %p; then we get an
equivalent formula ¥” of the form

(Qy < 2)(A(0i Vi)

where o; are X, and 7; are IT,. Write o; as (Jy)ooi(x, y)-
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Using SXy, bound all (Jy)’s:
(39)(Va, ... < max(z)) A (oi — (Jy < g)o0i(x,v)).
Then ¥" is equivalent in Iopen to

(39)(@1,21 £ 21) .. . (Qpzk < 21)(A(Jy £ @)ooi V),

the conjunction is IT,, in IXy, and the whole last formula is Xy 41 in IXy.
But this suffices since - is also Xo(Xy) and therefore Xy, 41 in IXy,. This
completes the proof of the lemma (and of 2.25). O

(c) Finite Axiomatizability; Partial Truth Definitions
for Relativized Arithmetical Formulas

The aim of the present subsection is two-fold: first, to show that for n >
0, IX,, BX,4+1 and PX, are finitely axiomatizable; we show this using
partial truth definitions elaborated in Sect. 1 (d). Second, we shall extend
our possibility of dealing with infinite sets inside fragments of arithmetic by
showing that, under some conditions, we may speak in IX; of sets Xy-defined
from a given set (and quantify over such sets). This will give us very useful
meansof expression.

2.51 Discussion. Let us survey our sets and membership in arithmetic. First,
we defined in IXy(ezp) the memebership predicate € with respect to which
numbers behave like hereditarily finite sets; in particular, I Xg(ezp) proves
comprehension for __Z'S P (ezp) formulas. Furthermore, given any formula ¢(z)
with just one variable, we may introduce a constant (A, say) for the set of all
numbers satisfying ¢ together with an ad hoc membership predicate € such
that £ € A just means ¢(z). Analogously for formulas with more variables
— we may introduce a constant for the relation defined by ¢. In particular,
assuming that ¢(z,y) defines a total function (which we denoted TFUN(y))
we may write y = F(z) for (z,y) € F, which in turn just means ¢(z,y). More
generally, our ¢ may contain free variables distinct from those displayed; they
act as parameters. In this case we may consider the parameters to be just
codes for the corresponding classes; if ¢ is ¢(z, par) then £ € X4y (or even
z € par) means simply ¢(z, par). A particular case of this is given by partial
truth definitions: if Sat(z,e) is a formula which is a partial satisfaction for
I'-formulas (e.g. Xn-formulas) then we may take I'-formulas with exactly one
free variable for codes of I'-sets as we did in Sect. 1 (d). In this last case we
have double profit: first, we may quantify over I'-sets and second, we have
“it’s snowing”-it’s snowing lemma saying, roughly, for each I'-formula ¢(z)
that: the I'-set coded by ¢ consists exactly of all numbers z satisfying (z).
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2.52 Theorem. For n > 0, each of the theories IX,, BX,41, PX, is finitely
axiomatizable.

Proof (sketch). Let n be given. We show that I, is finitely axiomatizable.
Observe that the assertion “Saty n satisfies Tarski truth conditions for Xy-
formulas” is a conjunction of finitely many conditions (one for atomic for-
mulas, one for each connective, two for the bounded quantifiers and two for
unbounded ones, say). Thus it is a single formula provable in IX; let I, be
the finite subtheory of IX; making this formula meaningful and provable. In
I, we can express the single sentence saying

(VX Z2-set®)

) [0 €5n X & (¥2)(@ €50 X = S(2) €50 X)) = (V)@ €50 X))]
(each X?-set satisfies induction). Observe that this is in fact one particular
instance of Xp-induction (since €y ,, is Xy, thus (*) is provable in IXy,;; on
the other hand, each instance of Zy-induction follows from Iy, + (*). Indeed,
take a Yp-formula o(z,y) (y being a parameter); then @ = Subst®*(3,7,7)
is a X}-set — a formula® with one free variable. Adding possibly one new
axiom we may prove Satn(%,{(Z,2),(7,9)}) = Sat,',(i'p", {@,2)}) = o(z,y)-
Now the class X coded by @’ is inductive by (); this gives I,. (|

2.53 Definition (1X). A set X is piecewise coded (p.c.), if for each u thereis a
sequence s of zeros and ones of length u such that (Vi < u)((s); =1 =1 € X).

Remark. This is in fact a scheme of definitions, depending on the chosen
notion of a set and membership (cf. 2.51). Recall also Def. 2.6 (a formula is
piecewise coded in a theory T D IX;). Evidently, the relation is as follows:
¢(zg,...,zn) is p.c. in T iff T proves that the set of all n-tuples (=, ...,zn)
such that ¢(zg,...,zn) is p.c.

2.54 Definition. (1) Let X be a new variable and let new atomic formulas be
the old ones plus t € X where ¢ is any term. Xy(X) formulas result from new
atomic formulas using connectives and bounded quantifiers.

(2) Copy the definition in I 2, i.e., define §(X*®) formulas in the obvious
way. Clearly, ¢ is a Xo(X)-formula iff IZ7 F [ is a £§(X*®)-formula).

(3) Analogously for Xy(X), IIn(X), Za(X®), In(X*®). '

2.55 Main Theorem. (Satisfaction for X3(X*®)-formulas.) There is a formula
Saty x(2,c) such that I X proves the following:

If X is p.c. then Satg x obeys Tarski truth conditions for §(X*®) formu-
las with X*® interpreted as X. Furthermore, under this interpretation each
Z3(X*®) set is p.c. and hence satisfies the least number principle. Under the
assumption “X is p.c.”, Satg is A1(X) in IX}.
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2.56 Remark. Clearly, this is again a scheme dependent on which notion of
sets and membership is used. We can summarize the theorem by saying that
in I; we can define satisfaction for sets Xy definable from a set X provided
X is p.c. Thus for a p.c. set X, we have coding for Xo(X) sets; they are all
p.c. and hence satisfy the least number principle. The enigmatic formulation
saying that Satg is A;(X) under the assumption of X being p.c. means,
pedantically, the following: we have a ¥;(X) formula Setg and a IT1(X)
formula Sat’ and I%) F [X p.c. — Satg x = Satj x].

2.57 Corollary (Satisfaction for X'3(X*®) formulas and IT3(X*®) formulas.) For
each k > 0, there is a Xp(X)-formula Saty  x(z,e) such that IX; proves
the following;:

If X is p.c. then Saty ) x obeys Tarski truth conditions for Xp(X*®)-
formulas, X*® being interpreted as X.

Similarly for ITi(X).

(Obviously, Satz i x is constructed from Satg x — or more precisely, from
the two forms of Satg x, exactly as Saty ; was constructed from Saty.)

Caution. Nothing is claimed on X} (X*®)-sets being p.c.!

2.58 Corollary (“It’s snowing”-it’s snowing lemma). If ¢(zg, ..., z}) is n(X)
then IX proves the following:

If X is p.c. then [p(20,...,zk) = Sat 5 n x(P(£0(Fo, --.),0).

The rest of the subsection elaborates the proof of 2.55 and contains some
additional technical devices.

2.58 Definition (IX). ¢ is a partial satisfaction for X§(X®)-formulas® < p,
their evaluations by numbers < r and partial interpretation of X by a string
s of zeros and ones (in symbols: PSaty(q,p,v,s) if ¢ is a finite mapping
whose domain consists of all pairs (z,e) where z is Z3(X®), 2 < p, e is an
evaluation for z, e C (< p) x (< v), range(q) C {0,1}, lh(s) > rP and Tarski
conditions hold for ¢ whenever defined, i.e. we have the same conditions as
in 1.71 and, in addition, (v) if z is t € X® where ¢ is a term® then g(z;e) =1
iff (s) Val(t,e) = L.

Remark. (1) Note that general power z¥ is definable in IX; by the usual
inductive conditions, see 1.58.

(2) Prove in IX; that if t is a term®, t < p and e its evaluation® by
numbers < r then Val(t,e) < rP; this follows from the fact that under our
assumption on e, Val(t,e) < rth()| which is proved easily by induction on
Ih(t). Thus the condition lh(s) > rP guarantees that (s)yyy(t,e) is defined.

2.59 Lemma. (1) PSaty is Ay in I2;.
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(2) IX; proves the following: If PSaty(g,p,r,s), PSaty(¢’,p',r',s') and s
coincides with s’ on the intersection of their domains then then ¢ coincides
with ¢’ on the intersection of their domains.

(3) Furthermore, 1.2 proves: for each p,r, s such that s is a string of zeros
and ones and lh(s) > rP there is a ¢ such that PSatg(q,p,r,s).

Proof is fully analogous to the proof of 1.72. To get (3) prove the following
by induction on p (r and s being parameters):

Ih(s) > rP — (3¢)PSat®(g,p,,S). ]

2.60 Definition (IX). Let X be p.c. Define Satg x(z, €) iff there are ¢, p, 7, s,
such that s is a piece of X, PSaty(q,p,r,s) and g(g(z,€) = 1.

Note that Satg x(z,e) implies that z is a X§(X®)-formula and e is its
evaluation®.

2.61 Proof of the Main Theorem 2.55. We prove that the formula Satg x(z,€)
has the properties stated. Work in I.X;. First observe that for z € X§(X*®), e
its evaluation®, and assuming X to be p.c. (so that we have arbitrarily long
pieces of X) Lemma 2.59 implies the following;:

(%) ~Satg x(z,e) iff there are ¢,p,r,s such that s
is a piece of X, PSaty(q,p,r,s) and g(—°*2z,e) =1.

This shows that Satg x obeys Tarski condition for negation. Looking from
outside IX; observe that the definition of Satg x is X'1(X) in IX) and (*)
gives a II;(X) definition of Satp, under the assumption that X is p.c. The
proof of other Tarski conditions is similar and is left to the reader.

Work again in IX; and assume X p.c. Then we may speak on X3(X*)
sets, X*® being interpreted as X (briefly, speak on X§(X) sets). It remains to
be shown that each X3(X) set is p.c. But this is now trivial: if z € Z§(X*®)
is a formula® with exactly one free variable® and w is arbitrary, then the
w-piece of z is easily obtained from any ¢ such that PSat}(q,p,r,s), where
P> 2z, r > w and s is a satisfactorily long piece of X. This completes the
proof. O

We close this subsection with a lemma on X7(X) formulas which will
be useful later. Recall that having proved 2.55 we also have Saty , x and
Satrgn,x (cf. 2.57).

2.62 Lemma. There is a formula WSatyz; which is A; in I¥; and such that
I3, proves the following: for each X p.c., each z € Z}(X*®) with exactly one
free variable and each z, the following are equivalent:
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(i) Satg 1 x(z,[z]) (where [z] is the evaluation of the free variable of z by z);

(ii) (3s piece of X)WSaty 1(z,z,s);

(iii) (3w)(Vs piece of X longer than w) WSaty 1(z,z,s). Furthermore IX;
proves WSatg 1(2,2,8)&s C s’ — WSatyg1(z,z,s') (monotonicity).
WSatx 1(2,z,3) is read: s witnesses the satisfaction of z by z.

Proof. WSaty 1(z,x,8) says: there are u,z; < z such that z = (3°u)z,

23 € X§(X*®) and there is a y < s such that for some ¢,p,r we have:
PSaty(q,p,r,s) and g(z1,[z,y]) = 1 (with the obvious meaning of [z, y]).

Clearly, this is equivalent to saying that there are u,2z; < z as above and

a y < s such that for all ¢,p,r such that PSatj(q,p,r,s) and ¢(z1,z,y) is

0

defined, we have g(z1,z,y) = 1. The rest is evident.

(d) Relativized Hierarchy in Fragments

Here we shall investigate sets p.c. in I ¥y, andin BX,, 1 (n > 1). In particular,
we show that BX,, 1 proves all Xy, ] sets to be p.c.; we introduce low Ap41
sets in BX 41 (in 2.69) and prove their basic properties (2.71). The concept
of alow A4 set plays a very prominent role in the next section in connection
with the analysis of provable forms of Konig’s lemma. Finally we exhibit a
class of sets called X 7(Xy) sets meaningful in 15, (2.73); we show that
IX,, proves each X;™*(Zy) class to be p.c. and Ap41. This will be useful for
generalizing results on Konig’s lemma proved in BX, 1 to results in IXy,.

2.63 Lemma. (1) IX, proves each X} set to be p.c. (2) IX, proves that A},
total functions are closed under primitive recursion. (3) BXy,41 proves each
A} 41 set to be p.c.

Proof. Imitate the proof of 2.13 (a) (but now working inside IX;: we just
prove one theorem with a universal quantifier over all X} sets): Let X be a
X set and let z be given: the z-piece of X is the least sequence s of length
2+ 1 such that (Vi < 2)(z € X — (s); = 1). (Alternatively, you could derive
our assertion directly from 2.13 (a) using the fact that the formula Satyz 1 is
21 and therefore piecewise coded in IX].)

(2) Routine.

(3) Imitate the proof of 2.19 inside BXy41. a

2.64 Definition (IX;). (1) A set X is unbounded if (Vz)(Iy > z)(y € X), i.e.
(Cz)(z € X).

(2) A set X has the order-type of the universe (o.t.u.) if for each x there is
a sequence s of length = enumerating increasingly the first z elements s, i.e.

Seq(s)&Ih(s) =z & (Vi < z)((s)i € X) & (Vi < j < z)((s)i < (8);) &
(Vi <z)(Vy < (s)i)(y € X — (3 < i)(y =(s);)-
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2.65 Lemma. For n > 1, IX,, proves that each A}, unbounded set has o.t.u.

Proof. If X is A?, unbounded then the function F(z) = (least y)(y € X &y >
z) is Ap, total; thus the function G defined by primitive recursion to be

G(0) = min X
G(z +1) = F(G(z))

is Ay, total and G is the increasing enumeration of all elements of X. G
is p.c.; thus for each z, the restriction of G to (< ) is a set — the desired
sequence s. O

2.66 Corollary (of 2.63). (1) In I Xy, we have satisfaction for Z§(Xy,) formulas
and therefore may quantify over X§(Xy) sets. I Xy, proves that each Z3(X})
set is p.c.

(2) In BXy41, we have satisfaction for X§(A} ;) and therefore may
quantify over Z§(A} ;) sets. BXy 41 proves that each X§(Ay ) set is p.c.

Remark. Compare (1) with 2.7 (1) or 2.13 (b): there we had a schema, here
a single statement. A schema analogous to our present (2) is possible but
cumbersorme.

2.67 Theorem. (IX] + BXy;, m > 1). (1) Each X§(A3,) set is a A}, set; thus
X0 (A4y,) sets coincide with Ay, sets.
(2) X3(A7,) sets coincide with 7, sets.

Proof. A quick way to prove this is to find (actual) formulas o(z, par) € T,
and 7(z, par) € I, and to show in IX) + BXy, that if X is Z§(A7,) then
for some par, 2 € X is equivalent both to o(z, par) and to n(z, par). The
result follows by the “it’s snowing”-it’s snowing lemma. Thus assume X to be
Z3(Y) where Y is Aj,; let z be the Z§(X')-formula defining X from Y and
let u € X, v € I, both defining Y. Observe that the formula “s is a piece
of Y” can be written both as o1(s,u,v), 01 € Xy, in BEy, and m1(s,u,v),
m € IIyy in BY;, e.g. 01 is

(Vi < 1h(8))((8)i =1 — Sat g m((u,[i]) & (s)i =0 — ~Satg m(v,1)).
Now
z € X = (3q,p,r, 3)(s piece of Y & PSat(q,p,r,s) & q(z,[z]) = 1)
and
z ¢ X =(3¢,p,r,3)(s piece of Y & PSat(q,p,r,s) & ¢(2,[z]) = 0).
This completes the proof of (1).
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(2) is easy: by (1), a Z7(4y,) set can be defined by a formula of the form
(3°u)z, where z is Ap,; in the usual manner (3°u)z may be replaced by a
X1-formula (contraction of quantifiers). O

2.68 Corollary. For n,m > 1, BZntm proves that each X} ,(A47,) set

satisfies the least number principle and is p.c.

2.69 Definition (BX 41, n > 1). A set X is low A, 1 if it is A, +1 and each
T((X) set is also A7 ;.

Remark. This notion comes from recursion theory. Note that sets Ag defin-
able in N are exactly all sets recursive in K (the Xj-complete set), i.e. sets
X such that dg(X) < 0’ (dg is the Turing degree). A Ay set X is low if
(dg((X)) = 0, i.e. the jump of the degree of X is as small as possible. A
reader not familiar with the notions involved may disregard this remark.

2.70 Remark. The definition of a low A}, set is meaningful in BXp 1
(n > 1) since this theory has satisfaction for £7(A}, ;) formulas. Obviously,
in BXy, 41 we may quantify over low A7, sets: they are just some particular
A}, sets. Let us generalize: we may speak on low A}(X) sets if we know
that A}(X) sets are p.c.

2.71 Theorem. The following equalities are expressible and provable in
BXi(m > 2):

low A7, = low A3(low A},) = low A3 (Ay,_1)
Al(low 4y,), Z3(low A3) = ),

Proof. Work in BXy,. We know that low A$, sets are p.c. (since A%, sets
are); therefore each set Xj-defined from a low Aj, set X is p.c., thus also
A} (X) makes sense. Moreover, if X is low A}, and Y is A}(X) then Y is
A7, (since it is I} in a IT7(X) set, i.e. £} in a A},-set, i.e. T}, and similarly,
Y is II,) and thus Y is p.c. We have proved A(low A},) C Aj7,. But then
low A3(low A},) C low Aj,. This completes the proof a

*
In the rest of this subsection we discuss 1Yy, instead of BXy41.
2.72 Theorem (IZy,, n > 1). Each Z3(Z7) set is a A3 ) set.

Proof. Similar to 2.67, we find formulas o(z,c,z) and n(z,c,z) Znp41 and
Iy 41 in IXy, such that IX), proves the following:
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If X, is X3-defined by ¢ € I and Y; is T} (X*®)-defined by z from X,
then (Vz)(z € Y = o(z, ¢, 2) = 7(z, ¢, 2)).

By the “it’s snowing”-it’s snowing lemma we get that Y; is a A} ; set.
Details follow.

Now, IX,, proves

(*) z €Y, = (3)(s is a piece of X & (g, u,v)(PSat(q,u,s)
&g(z[z]) = 1)
= (Vs)(s is a piece of X, — (Vg, u,v)(PSat((q,u,s)
& q(z[z]) defined — ¢(z[z]) =1).
Here “s is a piece of X” is Xy(Satz ), therefore Xo(Ly) in IXn; by 2.25, it

is Apy1 in IXy,. Hence the formula (3s)(...) in (%) is Xy in I X, and so
(Vs)(...) is IT4; in IX,. This completes the proof. ]

2.73 Definition (cf. 2.54). (1) Let X be a new variable and add t € X (¢
a term) to the atomic formulas. X3P (X) formulas result from new atomic
formulas using connectives and bounded quantifiers of the form (Vz < y),
(Vz < 2Y¥) and similarly for 3.

(2) In IX define X;P(X*) formulas copying the definition.

2.74 Theorem (cf. 2.55). There is a formula Satg’z} (2, €) such that I Xy proves
the following:

If X is p.c., then Satgz} obeys Tarski truth conditions for X577 (X*®)
formulas with X*® interpreted as X, and each X7 (X) set is p.c. and thus
satisfies the least number principle. Under the assumption “X is p.c.” Satﬁ?}
is A1(X) in IX,.

Proof. We shall define PSat; " (q,p,r,s) (partial satisfaction) analogously to
2.58, but we must be sure that if g is defined for a formula (Vu < 2¥)¢(u,...)
and an e evaluating v by some z then g will be defined for the evaluation ¢’
extending e and evaluating u by any number < 2*. To achieve this make the
following definitions:

qd(z) is the quantifier depth of a formula: gd(z) = 0 for open formulas,
qd(zl & z9) = max(gd(q1), ¢d(22)), d(—2) = qd(2), qd((Vu < 2°)2) = qd(2) +

2“ is the iterated power of 2 : 2§ = z, 27 v+l = 2%,

Then require in the definition of PSatozP that g(z, e) be defined whenever
z <wuand 2“;?‘53) < v; the rest is the same as in 2.58, in particular, v* < lh(s)
is assumed. Given this, it is easy to prove the following:

- PSato is 4; in IZ'l,

- if PSato (gi,ui,v4,8;) (i = 1,2) and s1 coincides with sy where defined
then ¢; coincides with g2 where defined;
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— for each u, v and each string s such that lh(s) > v, there is a ¢ such that
PSatg®(q,u,v,s).

Then Sat,, o % (z,€) is defined as

(3¢,u,v,s) (s is a piece of X, PSaty " (q,u,v,s) and g(z,e) =1);

assuming X p.c., Sat;i;(z, e) is equivalent to (Vg,u,v, s) (s is a piece of X
and PSaty™(q,u,v,s) and ¢(z, ) defined — ¢(z,e) = 1). O

2.75 Corollary. We may introduce Sat % 5 n x in the obvious way and for each
exp

n prove in IX; the following: if X is p.c. then Sat’ 5 and Sat " 17 nX obey
the respective Tarski truth condition.

Consequently, we have the corresponding “it’s snowing”-it’s snowing lem-
ma.

2.76 Theorem. I X, proves that each £¢F(Zy,) set is p.c. and is Apt1.

The proof of the fact that each X =P set is p.c. is routine and uses the finite
partial satisfactions. To prove that each E’Omp (Xn) set is Ap41, first show that
each (actual) £3"7(Zy) formula is Aqqq in IZy, (generalizing 2.49-2.50) and
then imitate the proof of 2.72.

2.77 Definition. (1) In the above exponentiation may be replaced by any total
A function H; moreover, in X, we may define X to be a Xj(Zy,) set if
for some total A; function H and some Ty, set Y, X is Zf(X). We have
satisfaction for Xj(Xy) sets obeying Tarski truth conditions.

(2) We may define low Z°7 (Z) sets (or low Z§(Zyn) sets) in IXy: a set
X is low ZH(Z,) if it is ZF(Z,) and each Zj(X) set is T (Zy,). This is
useful for generalizations of the low basis theorem in the next section.

(3) From here on out we shall write LLy, instead of low X§(Zy) (n-very
low sets).

2.78 Lemma. For n > 1, I X, proves IX(LLy,) and BX (LLy), i.e. induction
and collection for Xy (LLy) sets.

Proof. This follows from the obvious modification of 2.76 (for Z'O(En) sets
rather than X7 (Zy) sets) and the fact that each 1 (LLy) set is a T§(Zn)
set: we get induction. Collection follows from induction in the usual way. O

Caution. In saying “X is 1(LLy)” we mean that for some LLy, set Y, X is
Z1(Y).

2.79 Theorem. For n > 1, IX, proves Ay(LLy) = LLy, i.e. if Z is LL, and
Y € Ai(Z) then Y is LLy.
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Proof. Let Y,Z be as above and let X € XZy(Y). Then, for appropriate
21(Z)-formulas® ¢, 9, we have

Y = {y | (3s piece of Z) WSaty 1(¢,y,5)},
~Y = {y | (3s piece of Z)WSatyz 1(¥,y,3)}-

(For WSat see 2.62.) Using BXy(LLy) we get a common bound:
(Vy < a)(3s piece of Z)(WSat g (p,y,s) V WSatg,1(¥,y,5))-
Thus, for some A; formula 6,
t is a piece of Y = (3s piece of Z)é(t,s).
Now X € X1(Y); i.e. for some p € Z1(Y),

X ={z | (3¢ piece of Y) WSat(p,z,t)}=
={z | (3s piece of Z)(3t)(8(t,s) & WSaty 1(p,z,t))} .

This shows that X € £1(Z). Thus Z1(Y) C £1(2) € Z§(Zn) and conse-
quently Y € LL,,. We have shown A;(LLy) C LLy. O

2.80 Corollary. (IXy). If Z € LLy,, then A1(A1(Z2)) = A1(2).

(e) Axiomatic Systems of Arithmetic
with No Function Symbols

There are various situations in which it is useful to work with fragments of
arithmetic formalized in a language having no function symbols. We shall
encounter such situations repeatedly in this book. In the present subsection
we prepare the necessary formalism.

2.81 Definition. L' is the language with a constant 0 (zero), binary predi-
cates =, <, S (equality, less-than, successor), ternary predicates A, M (ad-
dition, multiplication). Bounded quantifiers are defined in the obvious way;
formulas of L’ with all quantifiers bounded are called bounded’ formulas or
Yy-formulas. X}, and II}, formulas result from X{-formulas in the obvious
way.

2.82 Remark. We describe a rather weak axiom system called BA'. The main
idea is that S, A, M may describe partial functions and that there may be
a largest element (top). The functions defined by S, A, M have to satisfy
the usual inductive conditions whenever the values in question are defined.
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Since we do not want to spend much time polishing the axiom system we
shall make no optimization (minimalization) of the number of axioms.

2.83 Definition. BA' is the theory in L’ having the following axioms:

(1) Axioms saying that < is a discrete linear order with the least element 0.
(2) S(z,y) iff y is the upper neighbour of z w.r.t. <.

Further axioms say that A and M define binary operations, possibly partial.

(3) Induction properties of A and M:
A(z,0,2)=z2==x
S(y,y') & S(z,2') = (A(z,y,2) = A(z,y',2'))
M(z,0,z)=2=0
S(y,y") & A(z,z,2'). = (M(z,y,2) = M(z,y,2')

(4) Commutativity and associativity of A and M, distributivity, monotonic-
ity of addition, monotonicity of multiplication by a positive number, the
relation of < to addition: z <y = (Ju < y)A(z, u,y).

Caution: equalities are understood to be saying “if one side is defined then

the second is too and both sides are equal”, e.g.

A(z,y,z) = Ay, z,2),
(Fu)(A(z,y,u) & A(u, z,w)) = (Fv)(A(y, 2,v) & A(z,v, w))

(associativity); monotonicity for A reads
(A(z,2,u) & A(y,2,v)) = (z Sy=u<v).
(5) Schema of induction for Xj-formulas:

(¢(0) & (Vz,y)(¢(2) & S(2, ) = ¢(¥))) — (Ve)p(2)

2.84 Remark. (1) The reader may try to get rid of (parts of) (4) by proving
some of these axioms from the remaining ones in analogy to the corresponding
proofs in Iopen-
(2) Show that BA’ proves the least number principle in the usual way.
(3) Prove the following in BA':

(A(:E, Y, Z)&yo < y) - (320 < Z)A(xa Yo, ZO)
A(z,y,2) = (2 < 2&y < 2)

(M(z,y, z)&yo < y) — (320 < 2)M(z,yo,20)
(M(z,y,2)&2#0) > (< 2&y < z)

(or just accept these formulas as further axioms).
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2.85 Definition. (a) IX{ results from BA' by adding the axiom “S, A, M
define total functions” ((Vz)(3y)S(z,y) etc.). It follows that there is no top
element ((Vz)(3y)(z < y)). I X}, results from 5 by allowing any Z;,-formula
¢ in the induction schema; similarly I17},.

(b) TA' is arithmetic with a top — the extension of BA’ by the axiom
“there is a top element” ((3z)(Vy)(y < z)).

2.86 Lemma. T A’ proves induction for each L'-formula.
Proof. This is evident: each quantifier can be bounded by the top. O

2.87 Remark. Clearly, in IXy we may define S, A, M in the obvious way
(S(z,y) = y = S(z), A(z,y,2) = z = z + y, etc.); then we obviously get
1%y + 1%} and similarly IZ, + IZ},. On the other hand, in IXj we have
axioms stating that S, A, M define total functions, thus we may introduce
the operations S, +, *. To prove I 2‘6 F IXy, etc., we need the following.

2.88 Lemma. For each bounded formula ¢(x) there is a bounded’ formula
¢'(x,y) (with one new free variable) and a constant k such that I} (enriched
by the function symbols S, +, *) proves

/_\y > zF = o(x) = ¢'(x,y).

Proof. The only problem is with atomic formulas and this leads us to terms.
For each term ¢ and new variables y, z let z =y t be defined as the following
example shows:

z=y (21 +z2)* 23 18
(Bwi < y)(3wa < y)(A(z1, 2,0, &M(wl,ma,wz)&wz = z);

then z =y t is bounded’ and if % is the term t understood to be a natural
number then _
Iy Fy> (maxx)* — (z=t=z=yt).

(Observe that if ¢ consists of n symbols then k > n; and if x is the tuple of
variables in ¢ then IX’ I ¢t < (maxx)".)

Let t; = t2 be atomic and let k be this formula interpreted as a number.
Then
154 F (maxx)f <y — (t; =t2 = (I < y)(2 =y t1 & 2 =y 12))

and similarly for ¢; < t5. This shows the constructions of ¢’ for ¢ atomic.
The induction step is easy. O
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2.89 Theorem. For each n, IX! + IX,.

Proof. By the preceding, for any Zj-formula ¢ and the corresponding ', we
have
IZhFe(x) = (W) A\ 2f <y = o) =¢'(x,9)
i
= @)\ =¥ <y&e®) =¢'(xy).
i

In I X}, assume ¢(z,...); we find a least z such that ¢(z,...); this will show
LY, and thus I . Let z,... be given and take a y such that (zF < y & ...);
then we get ¢/(z,...,y). By LX) (provable in I X)) we get a least z such that
¢'(z,...,y); by the above equivalence, this is the least z such that ¢(z,...).

For IX!, (n > 0) reason similarly; by the above equivalence (and by
contraction of quantifiers), cach Ly-formula is X}, in IX],. a

2.90 Corollary. Since all of the reasoning above is formalizable in 12 we get
IZ) F Con®(IXZ}) = Con®(1X}°)

for each n.

3. Fragments and Recursion Theory

Introduction. In this section we shall first prove in IY; two advanced theo-
rems concerning the arithmetical hierarchy: the limit theorem for Ag functions
(subsection (a)) and the low basis theorem, which is an effective version of
Konig’s lemma (subsection (b)). The classical Konig’s lemma says that an
infinite (countable) finitely branching tree has an infinite branch; in arith-
metic, we have to assume something about the arithmetical complexity of
the tree and the conclusion is the existence of an infinite branch of a certain
complexity. (See below for details.) Both the limit theorem and the low basis
theorem are heavily used in Chap. 2. In subsection (c) we elucidate the status
of the theorem saying that each infinite Xy set contains an infinite A; subset.
Finally, in subsection (d) we formulate Matiyasevi¢’s theorem in IX;.

(a) Limit Theorem
3.1 Definition (IX). Let F be a total function; c is the limit of F' (notation:

¢ = limg F(s)) if (3t)(Vs > t)(F(s) = ¢). Similarly for G(z) = lim, F(z, s),
etc.
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3.2 Uniform Limit Theorem for Functions. I X} proves the following: there is
a total A; function F of three arguments such that for each total As function
G of one argument we have

(Va)(G(z) = lim(F(e,,5)),

where e is a code of G (i.e. a code of the Ay relation y = G(z)).

3.3 Corollary (IX). (1) For each A total function G of one argument there is
a A total function F of two arguments such that (Vz)(G(z) = lim, F(z, 3)).

(2) In particular, for each Ay set X there is a total binary A; function F'
such that for each z,

zeX Eli:nF(z,s) =landz ¢ X =li§nF(:1:,.s) =0.

3.4 Proof - Part 1. We first deal with Ay sets. We proceed in 1. Let X be
As and let

z € X = (Ju)(Vo)p(z,u,v,¢€)
z € X = (Vu)(Iv)y(z,u,v,e)
where ¢(z,u,v,e) = Satg(eo,[z,u,v]), ¥(z,u,v,e) = Satp(es, [z, u,v]) and

e = (ep,e1); e naturally codes X and ¢, are A;. Define (omitting the
argument e throughout)

F(z,s) = 1= (Ju < 8)[(Vo < 8)p(z,u,v) & (Vu' < u)(Tv < s)y(z, v, v)],
F(z,s) =0 otherwise.

Clearly, F is A; and total.

We prove
(1) :tEX—)lignF(:z:,s)=1
2) 1:¢X—)1i§nF(z,s)=0.

Assume z € X and let ug be any number such that (Vv)e(z,ug,v); by
BX, there is an sg > ug such that (Vu' < ug)(Jv < sg)¥(z,ug,v). Then for
each s > sg we have F(z,s) = 1.

Now let = ¢ X, thus (Ju)(Vv)-~¢(z,u,v) and (Vu)(Iv)-p(z,u,v). Let ug
be such that (Vv)-1(z, ug,v) and let sg > ug be such that (Vu < ug)(Iv <
80)p(z,u,v). Now let u be arbitrary; we show that for each s > sg, u does
not witness the formula defining F(z, s) to be equal to 1. If u < ug then we get
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(Fv < 8)-p(z,u,v); and if ug < u then we get (Fu' < u)(Vv < u)-p(z,u’,v)
(namely u’ = ug). Thus (1) & (2) have been proved. O

Proof — Part 2. Now let K be a unary total Ay function; by 3.4 there is a
total A; function G such that

y=K(z)= lim G(z,y,8) =1 3)
y # K(2) =lim G(,y,5) = 0. (4)

Let V(s,y,z) =min{r <s|r > y&(Vt)(r <t < s — G(z,y,t) = 1}.
V(s,y,z) = s + 1 if the above is undefined.

Note that the interval (V(s,y, ), s) is the longest interval ending with s on
which G(z,y, —) is constantly equal to 1.
Put F(z,s) =y if

[(Vy’ < S)(V(S,y',:l:) 2 V(S,y,l‘) and
M < 9)(V(s,y,z) > V(s,y,2))].
Thus F(z,s) = y means that y is the smallest possible number among
y' < s having the maximal possible interval (...,s) (subinterval of (y,s))
on which G(z,y,—) constantly equals to 1. We claim K(z) = lim, F(z,s).
Let K(z) = yo and let sp > yp be such that s > sp implies G(z,yp,s) = 1.
Furthermore, using BX; assume s; > sp to be large enough to satisfy

(*) (V' < s0)(y' =y — (3s < s1)(s > 50 & G(2,y,5) = 0)).
Then for s > s; we have F(z,s) = yo: V(s,y0,z) < s but for all other y’ < s

we have V(s,y’,z) > s¢ by (*) and for y' > s¢ since V(s,y’,z) > ¢/. This
completes the proof. O

3.6 Remark. The proofs 3.4-3.5 are due to Svejdar; observe that they prove
the limit theorem as a schema in BY; (IX; is not necessary).

(b) Low Basis Theorem

3.7 Definition (I.X). A tree is a set T of finite sequences containing with each
sequence all its initial segments:

Tree(T) = (Vs € T)(Seq(s)) & (Vs,t)(Seq(s)&s Ct&teT —seT).

T is finitely branching if for each s € T the set of all upper neighbours ¢
of s (i.e. s Ct € T and lh(t) = lh(s) + 1) is bounded. T is A;-estimated if
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there is a A; function F such that (Vz)(Vs € T)(lh(s) = z — s < F(z)).
(Evidently, a A;-estimated tree is finitely branching.) A subtree BC T is a
branch of T if B is linearly ordered by the relation “being an initial segment
of” (i.e. by inclusion).

3.8 Low Basis Theorem (IX). Each unbounded A; tree which is A; esti-
mated has a low Xj(2;) unbounded branch.

3.9 Remark. (1) The theorem will be proved in this subsection; for the notion
of low X§(X1) sets (or LL; sets) see 2.77-78. In particular, recall that 1%
proves induction and the least number principle for Xj(X1) sets, so that the
notion of LL1 sets makes sense.

(2) Recall 2.65: if T is A1 and unbounded then it is o.t.u. (of the order
type of the universe). Moreover, if Z is an LL; unbounded branch through a
A tree then Z is also o.t.u. — cf. 2.78: we have IX1(Z) and may relativize
2.65.

(3) Thus if T € A; is a Aj-estimated unbounded tree and B is an LI
unbounded branch through T then B determines a total function

Z(z)=y=3s < F(z+1))(s € B&(3)z =)

(where F' is an estimator for T'). Clearly, Z is A;(B) and hence LL; by 2.79.
Call Z a branch function. Conversely, an LI, branch function determines an
LLq branch.

3.10 Corollary. Let k¥ > 1. (1) IX) proves that each T' € LLj which is an
unbounded LLj-estimated tree has an LLj unbounded branch. (In particular,
.each Ay, Ag-estimated unbounded tree has an LLj unbounded branch.)

(2) IX)4q proves that each T € LLj which is an unbounded finitely
branching tree has.an LLj4; unbounded branch.

(3) BX; proves that each T' € A; which is an unbounded Aj-estimated
tree has a low Ag unbounded branch.

(4) BX)41 proves that each T € low Ag,y which is an unbounded
low A q-estimated tree has a low Ag4) unbounded branch.

(8) BZk42 proves that each T € low Ag4q which is an unbounded finitely
branching tree has a low Ag49 unbounded branch.

3.11 Remark. (1) follows by relativization since I X proves IX;(LL;) and,
furthermore, IX; proves low X§(Zy(LL;)) C LLj. (Easy; first prove
ZH(B1(LIR)) C F5(Zh))
(2) follows from (1) for k+1: observe in I X} that a LL, finitely branch-
ing tree is IT;(T)-estimated, thus Ay -estimated and LLj-estimated.
(3) follows from 3.8: In BXy we know that each LL; set is low Ay. Having
(3) we get (4) and (5) analogously to (1) and (2).
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3.12 Lemma (IX;). Let T be a A;, unbounded, A;-estimated tree; then there
is an s € T of length 1 such that T, = {t D s |t € T} is unbounded.

Proof. First observe that a Aj-estimated A; tree is unbounded iff for each
z, there is a t € T of length z (thus being unbounded is IT; for such a tree).
Without loss of generality we may assume that the elements of T of length 1
are (0),(1),...(a — 1); assume that all T(;}, ¢ < a, are bounded, i.e.

(Vi < a)(3h)(Vs < F(h))(Ih(s) = h — s ¢ T(y)
(where F is a A; estimator of the tree). By BX,
(3Rr)(Vi < a)(Vs < F(h))(Ih(s) = h — s & Ty),
thus T has no elements of length h and therefore is unbounded. 0O

3.13 Remark. We are now going to prove the low basis theorem. Recall the A;
formula WSat such that IX; proves, for each X p.c., each X7(X*) formula
z with just one variable, and each number z,

Sats 1 x(2,[z]) = (3s piece of X)WSaty (2,2,3);

WSat(z,z, s) reads “s witnesses the satisfaction of z by z” (see 2.62 for more
details; we shall omit the superscripts X, 1). If X is a function (i.e. a particular
binary relation) such that for each u, the restriction X [ u exists as a finite
sequence (which implies that X is p.c.) it is convenient to change slightly the
notion of witnessing by replacing “piece of” with “restriction of”; thus for
the new A; predicate (which we still call WSat) we have in IX;:

If X is a function as above, 2 € XJ(X*®) (one free variable) and z is
arbitrary, then the following are equivalent:

Sa't}l',l,z(z’ [$]) )
(3z)(3s = X | z) WSat(z,z,s),
(z)(Vy > z)(Vs = X [ y) WSat(z,z,s).

In this subsection we shall use this modification of WSat.

3.14. We start the proof of 3.8. We work in IX;; the proof is an inspection
of a usual recursion-theoretic proof. Let T be a A; unbounded tree, let F
be a A; estimator for T'. For technical reasons assume that F' also estimates
the full dyadic tree, i.e. for each sequence s of zeros and ones of length e,
we have s < F(e). The construction proceeds in steps. In step e, we define
two strings s, and ce of length e; s, will be a piece of the desired branch Z,
and c, information about a truncation of T' enforced by previous steps. We
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use a A; enumeration (pe,a.) of all pairs consisting of a X}(X*®)-formula
with one free variable and of a number. In step e we decide whether ¢, will
be satisfied by ae and Z, or not. For each e, let (€) be the finite set of all
sequences less than F(e) (s € (e) = Seq(s) & s < F(e)). Clearly, Xj(X) sets
are closed under the quantification of the form (3s € (e)), (Vs € string(e)).
Two sequences s,t are called compatible if s Ct or ¢t C s.

For s,c € (e) let T(e,s,c) = {t € T | (t compatible with s)& (Vi <
e)((e)i = 1 — - WSat(p;,ai,t))}. Obviously, T(e,s,c) is Ay, and so is
T'(e, s, c) where T'(e,s,c) = {t | t € T(e, s,c) &~ WSat(pe,ae,t)}. Finally,
let cond(e,c,s’,c’) be the following condition (saying how to extend (s, c) to
(s,¢)):

(s,c€ () &(s',d €(e+1)&(sC s’ &cC )& (Case 1V Case 2), where

Case 1. T'(e, s, c) is unbounded, ¢/ = ¢ ~ (1) (concatenation), and s’ =
s ~ (i), where ¢ < F(e + 1) is minimal such that T'(e, s, ¢) is unbounded
over s —~ (i) (and s’ = 0, say, if such an 7 does not exist);

Case 2. T'(e,s,c) is bounded, ¢ = ¢ ~ (0) and s’ = s —~ (i) where
i < F(e+1) is minimal such that T'(e, s, ) is unbounded over s ~ (i), s' =0
if such an i does not exist. (When we say that a tree 7" is unbounded over
to, we mean that {t € T” |t D ¢y} is unbounded).

Observe that cond is X§(Z1) (since, as we know, “T' is unbounded” is ITy,
see above).

3.15 Fact. (1) If T(e, s, c) is unbounded then (3s’,c')cond(e, s, c, s, c').
(2) If T(e, s, ¢) is unbounded and cond(e, s, ¢,s',c'), then T(e +1,s',c') is
unbounded (and contains s').

3.16. Define
Path(e,s,c) = s,c € () & (Vi < e)cond(i,s [ i,c [1,8 [ (1 4+ 1),c [ (1+1))

(where s [ i is the initial segment of s of length ¢, etc.). Observe that Path is
25 (Z1).

3.17 Fact. If T is as above, then
(Ve)[(3!s, c)Path(e, s, c) & (Vs,c)( Path(e, s, c) — T(e, s, c) is unbounded)].

(This can be proved by induction, since [...] is Zg(21). The induction step
follows by 3.15.)

3.18. Define Z(z) = y = (Is,c € (z+1))(Path(z+1,s,¢) & (s)z = y). Clearly,
Z is a Xj(X) total function; it is a branch through T.

3.19 Lemma. Satyz 1 z(e,[ac]) iff for the unique s, c satisfying Path(e, s, c)
we have Case 2, i.e. T'(e, s, ¢) is bounded.
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Proof. Note that, by 2.22, Saty 1 z(pe,ae) is equivalent to the existence of
a piece t of Z such that WSat(ipe,ae,t). Assume Case 2, i.e. T'(e, s,c) is
bounded, and let ¢ be a piece of Z longer than a bound for T'(e, s, c). Then
t € T(e, s, c) and WSat(pe, ae,t); thus Saty 1 z(pe,ae). Now assume Case 1.
Then we can prove for each i > e

(Vs', ¢ € (i))(Path(i,s', ') = = WSat(pe, ac, s'))

by induction on i (since the formula in question is £§(Z1)). Thus there is no
piece t of Z such that WSat(pe, ae,t). O

3.20. Consequently, Z is low 2§(X1); we have
Sats,1,7(pere) = (3, € (e +1) | (Path(e, 5,0) & (c)e = 0),
or, in still more detail, given ¢, a, let e = e(p, a) iff (p,a) = (pe, ae); then

Satg1,z(p,a) =
= (3'3’ cE (e(% a) + 1))Path(e(<p, a)7 3, c) & (c)e(¢,a) = 0) .

This completes the proof of the Low basis theorem.

3.21 Remark. An inspection of the proof gives the following in IXy: if T is
a dyadic unbounded A; tree (i.e. elements of T are sequences or zeros and
ones) then T has a low X;"7(X;) unbounded tree.

(c) Infinite A; Subsets

In this subsection we pay attention to the fact that in BXy, (m > 2) we have
two notions of infinity for Xy, sets: being unbounded and being o.t.u. (cf.
again 2.64-65). We show that 12y, proves that a Xy, set is unbounded iff it
is o.t.u. (m 2 1); and obviously, IX proves that if a Xy, set is o.t.u. then it
is unbounded. But in general, BX,, does not prove that each unbounded Xy,
set is o.t.u., thus our notions differ, even for Xy, sets (m > 2) The well-known
recursion-theoretic fact that an infinite Xy, set has an infinite A,;, subset has
two formalizations in BX,, — for our two notions of finiteness. We shall show
that both formalizations are provable. (For m = 1 we have to add something
to make quantification over T sets possible — let us just add IX).

3.22 Theorem. (a) I X proves that each unbounded X; set has an unbounded
A; subset.

(b) For n > 1, IX, proves that each unbounded Xy set has an un-
bounded Ap41 subset.
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Proof. For n > 0 work in IZ ., ) and let z € X = (3y)¥(z,y) where ¢
is II, (for n = 0, ¥ is A;). For each u, let F(u) be the v > u such that
(3y)¥(v,y) with the smallest possible witness, i.e.

F(u) =v = (3w)(®(wo), (wh) & (w)o =v>u&
& (3w’ < w)($((w')o, (W) & (w')o 2 u).

Then F is a total Y41 function (due to LI, or LA;), hence a Anyqq
function, and for Y = range(F) we have v € Y = F(v) = v (<= is trivial;
conversely, if F((u) = v then F(v) = v by the definition of F') and Y is clearly
unbounded. Thus Y is a Ap41 unbounded subset of X. O

3.23 Theorem. For n > 1, IX,, proves that each unbounded X, set is o.t.u.

Proof. For Ay, sets see 2.65. Let X be X, unbounded; recall that X is p.c. By
3.22 and 2.65, let Y C X be A, and o.t.u. and let s be the sequence of the
first = elements of Y. Let a be the maximal element of s and let ¢ be the piece
of X up to a + 1. Working with ¢ as a finite set and using I Xy let ¢t be the
increasing enumeration of numbers i such that ¢(z) = 1,ie. 1 € X &¢ < a.
Clearly, each element of the sequence s occurs in ¢, thus [h(¢) > z. Thus X
is o.t.u. O

3.24 Theorem. For n > 1, IX; UBJX), proves that each Xy, set which is o.t.u.
contains a A, o.t.u. subset.

Proof (a modification of a proof of J. Paris).
Let z € A = (3y)d(z,y) where 0 is IT,,_; (for n =0: 6 is Ap). Let

(u,v) € R = 0(u,v) & (Vw < v)-6(u,w),

thus R is Ay, (selector for 6). Consider R as a set of ordered pairs and let
F(a) = bif b is the increasing enumeration of the first a elements of R. F is
Ap; we show that it is total.

If a is given and c is the sequence coding the first a elements of A then, by
BII,,_1, thereis a d such that (Vi < a)(3y < d)8((c);, y). Thus if e enumerates
all elements of R less than (max(c),d) then e must have at least a members.
Thus F is total.

Let z € B = (3t < z)(Fv < F(2t + 1))6(z,v). Then B is A, and B C A.
Let a be given; F(2a+1) is a sequence enumerating the (2a+1) first elements
(u,v) of R. For at most (a + 1) of them we have u < (a + 1) (since R is a
function); i.e. for at least a of them we have u > a and v < F(2a + 1) and

hence (u,v) € B. Thus if s enumerates increasingly all elements of B less
than F(2a + 1) then lh(s) > a. O
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(d) Matiyasevié’s Theorem in I3y

Recall Matiyasevié(-Robinson-Davis-Putnam)’s theorem 0.48: it says that 2
subsets (or subrelations) of N coincide with 3 subsets (subrelations), i.e. with
subsets defined by purely existential formulas. (Each 3 formula is trivially a
X1 formula; thus one inclusion is trivial.) In this short subsection we carefully
formulate Matiyasevié’s theorem in IX;. Needless to say, the fact that this
important theorem is provable in IX; (and even in a weaker theory, see below)
is very interesting. But since we shall use this fact only once (in Chap. IV)
and since even a proof of the non-formalized Matiyasevié’s theorem is rather
lengthy but its formalization in 1Y is more or less immediate, we shall only
comment on the proof and shall refer to the literature.

3.25 Theorem. For each X¥; formula ¢(z1,...,z,) there is a 3 formula
¥(z1,...,2n) with the same free variables such that X I ¢ = 9.

Remark on the proof. Clearly, the theorem is proved by induction on the
complexity of ¢; the case of open formulas is obvious and so is the inductive
step for 3, &, V. (For Xy formulas ¢ one has to prove that both ¢ and —¢ are
equivalent to some 3 formulas.) The only non-trivial, but extremely peculiar,
case is that of a bounded universal quantifier — this is the heart of the proof
of Matiyasevié’s theorem. But realizing this, one can just read an accessible
proof (for example [Davis 73], to which we referred also for the proof of 0.84)
and check that everything formalizes.

Alternatively, one can consult [Dimitracopoulos 80] where a proof of
Matiyasevié’s theorem is elaborated even in I Xg(ezp). Detailed instructions
for the formalization are also contained in [Gaifman-Dimitracopoulos 82].

Since we have the satisfaction Saty ; which is itself a Xy formula, we get
the following

3.27 Corollary (IX7). Each X7 set is an 3° set, i.e. for each X} formula 2
there is an 3° formula w (both with just one free variable) such that-z and
w are equivalent:

(Vz)(Sat g (2, [2]) = Satg,1(w, [z]) .

(Let p(z,z) be an 3 formula such that 12y F Sat g 1(2, ) = p(z,z); in 12,
given z, let w be Subst®(p, z, 2), i.e. substitute the numeral® z for the variable®
Z in the formula® p.)
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4. Elements of Logic in Fragments

We have already developed some elements of logic in IX}: in Sect. 1(d) we
introduced formulas of arithmetic, £y formulas, etc., and given k, we defined
in IX; satisfaction of X}, formulas in the universe of all numbers. Moreover,
in Sect. 2 we investigated partial satisfaction for the relativized hierarchy;
satisfaction also concerned the universe of all numbers. We shall now extend
this in several respects: first, we allow an arbitrary language, not just the
language of arithmetic. Second, we shall discuss, inside IX, the notion of
provability; among other things, we shall be interested in the fact that in
IXY; we have Herbrand’s theorem. Third, we shall formalize in IY; some
facts from general model theory; among other things we prove a version
of Gédel’s completeness theorem (called the Low arithmetized completeness
theorem). Finally we apply these techniques and facts to the language of
arithmetic; among other things we show that for each k, IX;., proves
the consistency of IXj. A natural continuation is then to formalize, inside
I¥y, some facts on non-standard models of arithmetic; but this presupposes
that a (informal) model theory of fragments has been elaborated. Thus we
shall continueour present investigation of logic inside fragments dealing with
models of fragments constructed in fragments in Chap. IV.

In subsections (a), (b) we show how to prove some facts stated in Sect. 0
(0.3-0.21). Note that some model-theoretical proofs do not formalize (or at
least their formalization is not known) so that we shall have to use alternative,
more elementary proofs.

Note also that a reader hurrying to study Gédel’s incompleteness theorems
and related topics presented in Chap. III should read subsection (a) of the
present section; then he may switch to Chap. III.

(a) Arithmetizing Provability

4.1. We shall work in X7 but everything relativizes to I.X)(I") where I' is as
in Sect. 3. Recall that in I¥, total A; functions are closed under primitive
recursion (cf. 1.54). Recall also the theorem on the free algebra of expressions.
We now apply this theorem for the chosen construction of terms and formulas
of arbitrary A; language.

4.2 Definition. (IX1). A A; language L consists of mutually disjoint A; sets
Pred®, Fct®, Const® of predicates, functions and constants respectively and
a Xy function ar® associating with each predicate and function symbol its
arity (positive number). We further assume that Pred®, Fct® and Const® are
disjoint from an infinite A; set of variables® and from logical connectives®
and quantifiers®.
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The reader can supply without difficulties definitions of the A; set Term®
of terms and the A; set Form® of formulas in complete analogy to 1.61 and
can prove in IX the properties of formulas and terms analogous to those in
1.61.

Furthermore, we define the A set LogAx® of logical axioms and two A
relations-rules of inference, copying the definition in 0.10.

4.3 Definition (I1X). A theory is given by a A; language L and a set T' (not
necessarily A1) of formulas of L called special azioms, including equality
axioms® (defined in the obvious way, cf. 0.11). We call T a theory if L is clear
from the context. A finite sequence s of L-formulas is a T-proof® if for each
t < lh(s), (8)i is a logical or special axiom® or follows from some previous
members of s by a rule of inference. Note that if T is p.c. then the set Proof7.
of all T-proofs is in A3(T); in particular, if T is Ay then Proof7 is A;. We
write Proof(s,z) if s is a T-proof® and its last member is z. Prj(z) (or
T * z) means that z is T-provable, i.e. (Is)Proof 7-(s, z).

4.4 Lemma (I X;-compactness). If T +* z then there is a finite subset t C T
such that ¢t F* z.

Proof. (We do not assume T € Aj.) Let Proof(s,z) and let t be the set
of elements (s); of the sequence s such that (s); is not a logical axiom and
does not follow from previous numbers. Since s is a T-proof, ¢ C T'; and

Proof (s, ). 0O

4.5 Definition (IX7). A theory T is Aj-decidable or simply decidable if the
set of all T-provable formulas is Aj.

4.6 Fact (IXy). If T is A; then Prooff is Ay and {z | T F* z} is 2.
(Evident)

4.7 Definition (IX). T is consistent (in symbols: Conf.) if there is no closed
formula® z such that T F® z and T F* —-°z.

4.8 Remark. A switch to Chap. III is possible now.

4.9 Theorem (IX). Let T be a theory and let T F* (3%u)p(u).

Let ¢ be a constant® not in the language of T, let T! be T + ¢(c) (p(c) is
shorthand for Subst®(y,u,c)). Then T” is a conservative extension of T. If T
is decidable then T' is also decidable.

Proof. Copy the usual proof: given a T'-proof, replace each of its members
a(c) by p(z) — a(z) where z is a new variable. Show by X;-induction that
each ¢(z) — a(z) is T-provable. Thus we get: TV F* a(c) iff T F* ¢(z) —
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a(z) (thus T” is decidable if T is); in particular, if « is a T-formula we get
T F® (F*z)p(z) = a iff TH® a. O

4.10 Theorem (IX;). Each theory T has a conservative Henkin extension 1",
i.e. for each T'-formula ¢(u) with just one free variable there is a constant c
such that T' F® (3%u)p(u) —° ¢(c).

If T € A; then T' € A; and if T is decidable then so is T".

Proof. This seems to be a trivial consequence of the preceding theorem
but there are two difficulties: (1) First one has to construct a language L’
extending the language of L and a A; function C associating with each
L'-formula ¢ having just one free variable a constant C(y) (also denoted
¢,) not occuring in ¢. (If necessary, we replace L by an isomorphic copy so
that we have infinitely many non-members of L). This is easily achieved by
generalizing the notion of an expression: take variables and constants of L
as atoms and generate simultaneously terms, formulas and constants of L'.
(Define a derivation of a term, formula or constant in the obvious way and
prove all necessary facts). So assume we have L' and C. Extend T by adding
all axioms @(u) —* ¢(c,): the result is T'. It remains to be proved that T"
extends T conservatively. By 4.4 it suffices to show that for each finite t; C T
and for each finite set 5 of the added axioms, t; Uty extends ¢; conservatively.
We cannot prove this by induction on %3 since “extends conservatively” is ITp
and we work in IX). This is the second obstacle. But assume that p is a
(t1 U tg)-proof of a T-formula ¢ and prove t; F° ¢.

Let t, be the least subset of t3 such that t; Uty F* ¢ (we use LX1); if #/
is non-empty, 4.9 gives a smaller ¢’ such that ¢; Ut" I* . Thus ¢’ is empty
and ¢1 F® ¢. Moreover, iterated use of 4.9 gives a Ay function D associating
with each T'-sentence z a T-sentence D(z) such that T' *® z iff T F D(z);
thus if T is decidable then so is T". 0

We have presented a rather detailed proof to show for a relatively simple
example some difficulties that we may ecounter when formalizing metamath-
ematical proofs in fragments, as well as ways to overcome them. Similar tricks
will be used rather frequently in the succeeding chapters.

4.11 Theorem (IX;). Let L be a language (and assume that its complement
is infinite; otherwise take an isomorphic copy).

(1) There is a A; function PNF associating to each L-formula ¢ its prenex
normal form ¢ = PNF(yp) such that 1 is an L-formula, consists of a block of
quantifiers followed by an open formula, has the same free variables as ¢ and
the equivalence (¢ = 1) is provable in the empty theory with the language
L (pure predicate calculus).

(2) There is a language L' extending L by new function symbols and a A;
function F associating with each L'-formula ¢ and each variable y a function
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symbol F(p,y) from L'-L (denoted also by F,,,) not occurring in ¢, whose
arity equals the number of free variables of ¢ distinct from y.

(3) There is a A; function Sk associating with each L-formula & in prenex
normal form its Skolem normal form satisfying conditions copied from 0.15
(where Ff is F((Qi+1%i4+1) - . - (Qkzk)p, Tk )) in the notation of 0.15,i.e & is
(@121) ... (Qrzr)p(x,y), Q; are quantifiers, t; = z; if Q; =V, t; = Ff(«~
t;—1) if Q; is 3 and Sk(®) is ¢(t1,...,tk,¥)-

(4) There is a A; function He associating with each L-formula & in prenex
normal form its Herbrand normal form, i.e. He(®) is logically equivalent to
the existential closure of ~Sk(—y).

Proof. Checking that everything formalizes in I X is trivial except perhaps
for (2): but this is achieved in the same way as the construction of Henkin
constants in 4.10. O

4.12 Remark. Observe that we have not claimed anything about deductive
properties of Skolem and Herbrand normal forms. We shall finally obtain all
expected results but now we come to the place where no direct formalization
of easy model theoretic proofs is known (at least to the authors, see the prob-
lem in 4.28). Thus we have to use a more elementary and tedious approach.

We rely on the book by Shoenfield.

4.13 Hilbert-Ackermann’s Theorem (IX;). Let T be an open theory (all
axioms open). If T is inconsistent then there is a disjunction D of instances
of negations of axioms of T such that D is a propositional tautology.

Remark. An instance of a formula ¢(z7 ... zy) is any formula ¢(t1,...,%5)
where t1,...t; are terms, ¢; free for z; in ¢. An open formula is a propositional
tautology if each evaluation of its atoms by zeros and ones produces the value
1 using the truth tables of connectives.

Checking the fact that Shoenfield’s proof formalizes in I.X; is tedious but
straightforward and we shall omit it. Note that we assume the equality axioms
to be particular axioms of T so that our tautologies are just Shoenfield’s
quasi-tautologies.

4.14 Corollary (IX7). A closed existential formula is provable (in predicate
calculus) iff there is a disjunction of instances of its open part which is a
propositional tautology.

4.15 Herbrand’s Theorem (I.X7). A formula ¢ is provable in predicate calcu-
lus iff its Herbrand normal form is provable in predicate calculus iff there is
a disjunction of closed instances of the open part of He(y) that is a proposi-
tional tautology.

Remark. Here again we refer to the proof in Shoenfield’s book; the reader
may check without difficulty that this proof formalizes in IX;. See 0.21 and
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I11.3.30. Note again that Herbrand’s theorem is also analyzed in Chap. V
where it is shown that it is provable a theory weaker than I.5;.

4.16 Theorem (IX1). If T is a theory in L, T F (Vz)(3y)e(z,y) and F is a
new function symbol then T U {(Vz)p(z, F(z))} extends T conservatively.

Proof. As in [Shoenfield]. Take F' to be F,,, and observe that it suffices to
show that whenever (Vz)¢(F(z)) — « is provable in predicate calculus (where
a is a L-formula) then (Vz)(Jy)¢(z,y) — a is also provable. To see this it is
enough to observe that both formulas have the same Herbrand normal form.

O

4.17 Definition (IX1). Sk(T) = {Sk(¢)) | ¢ € T}.
4.18 Corollary (IX7). Sk(T) is a conservative extension of T'.
Proof. Routine, use 4.16 (similarly to the proof of 4.10, i.e. using LX7). O

4.19 Corollary (IX,). T is consistent iff each finite set of closed instances of
Sk(T) is propositionally satisfiable.

Proof. T is consistent iff each finite ¢ C T is consistent. Such a t =
{¢0,...,pv) is consistent iff {Sk(pp),...,Sk(pv)} is consistent (by 4.18);
this is equivalent to the propositional satisfiability of each finite set of closed
instances of Sk(yyp), ... Sk(py) by Hilbert-Ackermann. O

4.20 Theorem (IX). Each theory T has a conservative open extension 7" in
which each formula is equivalent to an open formula. If T is A; then T is
also A;.

Proof. Like 0.17, using 4.11 (2) (construction of the language). O

(b) Arithmetizing Model Theory

Here we shall define models for a language and prove some theorems on the
relation between consistency and existence of a model. The notion of a partial
satisfaction plays a prominent role.

4.21 Definition (IX;). Let L be a language. A model for L consists of a non-
empty set M and a system S = ((RP)PePred, (fF)FeFet, (Mc)ceconst) such
that for each P € Pred, Rp C M?® where z is the arity of P, fp: M® —» M
where z is the arity of F' and m, is an element of M. As usual, we write M

instead of (M, S).



4. Elements of Logic in Fragments 103

Remark. This sounds very familiar but the reader should keep in mind two
things:

(1) In fact this is a scheme of definitions depending on the range of the
variable M. We may speak on A; models, X7 models, etc; working in B X,
we may speak on low A models etc.

(2) S is a system of sets indexed by elements of a set; this is easily expressed
by requiring that S be a set of ordered pairs and, for example, if P € Pred,
then Rp = {z | (¢, P) € S): saying that Rp is a z-ary relation we mean that
Rp consists of sequences s of elements of M such that lh(s) = z. A mapping
f: M* — M is understood to be a particular (z + 1)-ary relation on M.

(Definition continued). Let M be a model for a language L. Define an
evaluation of variables of a term by copying Def. 0.4 in I¥; (and generalizing
1.64): e is an evaluation of variables of G in M if e is a finite mapping
associating to some variables (among them all variables of t) elements of M.
A function Val is an evaluation of terms in M if it satisfies the conditions of
0.4 (copied in IX)), i.e. Val(u,e) = e(u) if u is a variable, Val(u,e) = ups if
u is a constant, Val(F(t1...tz),e) = fr(Val(t1,e),..., Val(tz,e)).

4.22 Lemma (IX)). If M is A then there is a unique A; evaluation of terms
in M.

Proof. Routine. (Note that we assume M to be A1.) O

4.23 Definition (I27). Let M be a model for L and let Val be a valuation of
terms. Let A be a set of L-formulas closed under the taking of subformulas
and substituting terms. A relation Sat is a partial satisfaction for Ain M if it
satisfies Tarski’s conditions w.r.t. M and A (copy 0.4). Sat is a full satisfaction
for M if it is a satisfaction for all L-formulas in M. (M, Sat) is a full model
if M is a model and Sat is a full satisfaction in M.

Under the notation of 4.23, a A-formula is true in (M, Sat) if for each
evaluation e of variables of z, (z,e) € Sat. If T is a theory and eath axiom
of T is a A-formula then M is a model of T if each axiom of T is true in
(M, Sat).

4.24 Theorem (IX)). If M is a model for L and M is A; then there is a
unique S € A; which is a satisfaction for open formulas in M.

Proof. Routine (imitate 1.71-1.74; you have to relate everything to M but
you do not have to deal with quantifiers). O

4.25 Theorem (IX;). If T is a decidable theory (i.e. the set of all provable
formulas is A;) then T has a full A; model.
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Proof. Just imitate the usual proof of the completeness theorem: first extend
T conservatively to a Henkin theory 7' € A (recall that T is decidable) and
then extend T' to a complete decidable theory T having the same language
as T'. To this end, use a A; increasing enumeration Z of closed T"'-formulas
(write z; for Z(4) and define H(3) = z; if Con®(T' U{H(0),...,H(i—1),2}),
H(i) = -z; otherwise; put T = range(H), i.e. z; € T" iff T" + 2 iff
H(i) = z;. Thus T" is decidable. For each closed term t let E(t) be the least
closed term t' such that T" F ¢t =* t'; let M = range(E). Observe that M
isA; (te Mif T" - E(t) =* t); for t1,...,t; € M put (t1...1z) € Rp iff
T" +® P(t,...t;) and put fp(t...tz) = E(F(t1...1z)). If z is a formula
and ug...u, are its free variables then put

Sat(z,[ty ... tz])) = T' F° Subst®(z, (ug ... uz),(t; .. .tz)))

(z-fold substitution). Then show by induction on formulas that Tarski’s truth
conditions are obeyed, observing that they are Xy(X;) (condition for V!); thus
I3} is sufficient. O

4.26 Theorem (IXy). If M is a A; model and T = Tropen(M) is the set of
all open formulas true in M then Con®(T).

Proof. By Hilbert-Ackermann’s theorem, if T is inconsistent then there is a
disjunction é of instances of negations of axioms of T that is a propositional
tautology. Let Sat be the satisfaction for open formulas in M; prove by Aj-
induction that 6 is true in M. (For each evaluation of variables of § compute
the corresponding evaluation of atoms of § by zeros and ones; 1 means that
the atom is satisfied). Show that for each open formula built from these atoms
we get: ¢ is satisfied by our evaluation in M iff our propositional evaluation
gives ¢ the value 1.)

On the other hand, each instance of our axiom is true in M, and the same
holds for any conjunction of such instances (again X; induction suffices).
Thus -4 is true in M and also §; this is a contradiction. Thus T is consistent.

(|

4.27 Low Arithmetized Completeness Theorem.

(1) (IZ1) I T € A is a theory then T is consistent iff it has a full
low X§(X1) model. ;

(2) (BXy) If T € A is a theory then T is consistent iff it has a full low Ay
model.

Proof. Let T € Aj; we may assume T to be Henkin. Define a dyadic tree
Tree(T') as follows: first take a A; enumeration of all sentences of L; denote
it by (20,21,...). Put (0)z = =®z and (1)z = 2. For each string s, let
s € Tree(T) iff there is no p < s such that p is a T-proof of a contradiction
from {((s)i)zi | i < Ih(s)}.
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Thus s is in the tree iff there is no short proof of a contradiction from
the first [h(s) sentences negated or asserted according to s. We show by Y-
induction that the tree is unbounded, namely we show that for each z there
is an s such that Con({((s)i)2i | ¢ < z}). (The induction step is evident.)
Thus the Low Basis Theorem gives an infinite branch B = (eg,¢31,...).

The branch is LL; (i.e. E*(Zl)) Use the A; enumeration of all closed
formulas above: we define T = {2n | €n = 1}. Clearly, T' is A;(B) and hence
LL. T defines the canonical structure as follows: M = {c constant | (V¢' <
¢, constant)((c #° ¢') € T)} (representatives of classes of provably equal
consta.nts) note that M is A;(T") and hence LL;. Predicates and function
symbols are interpreted as follows:

(coy---€z) € Rp iff P(cq,...c,) € T}
d= fp(cys---r¢z) iff (d="F(cy,...,c;)) € T.

Clearly the structure M is LL;; one defines Satps(z, €) iff Subst®(z,e) € T
(we substitute the constants assigned by e for the free variables of z). Clearly,
Satpr is LL, and one verifies easily Tarski truth conditions for connectives
and quantifiers. Thus (M, Sat)s) is a full LL; model, and for each (closed)
axiom z of T, Satpg(2,0); thus (M, Satps) is a model of T.

Conversely, assume that (M, Sat) is a full LL; model of T. Let zg,...zz
be a T-proof; show as usual by induction that each member of this sequence
is true in (M, Sat). The induction step is routine; and the statement is (Ve
evaluation of 2;)(Sat(z;,e)), thus IT1(Sat), a fortiori, X5(X) and the result
follows by I.X5(X1). (Alternatively, we can prove that for each 7, the universal
closure (V*...)z; of 2; is satisfied by #, which is A;(Sat).) a

4.28 Problem. Can we formalize the trivial model-theoretic proof of 0.14? This
seems to be a peculiar task; starting from a LL; model you can interpret
a Skolem function by an LL; mapping as in 0.14; but does the expanded
structure have an LLq full satisfaction?

(c) Applications to Arithmetic

In subsections (a), (b) we arithmetized some parts of logic of axiomatized the-
ories; in (a) we dealt with elements of proof theory and in (b) with elements
of model theory. This logic has been developed in IX;. In this subsection
we apply this framework to particular arithmetized theories, namely to frag-
ments of arithmetic themselves. We shall introduce A; theories IX}, BX},
PA® etc. and derive some of their properties in I3y. We show that, for each
k, IZg4q b Con®(IX}) (theorem 4.34). Formalization of parts of the model
theory of fragments presupposes satisfactory knowledge of the non-formalized
(actual) model theory of fragments, which will be studied in Chap. IV. Thus
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we postpone our discussion of important parts of arithmetized metamathe-
matics of fragments until that chapter. Note that by using formalized model
theory we shall be able to strengthen the above result and prove that, for
each k, IXyyy F Con®(BZ}, ;) (Theorem IV.4.8). And Gddel’s second in-
completeness theorem (II1.2.21) gives the unprovability of Con(IX},,) in
IPHEER

4.29 Definition (IX). Define in the obvious way A; functions assigning to
each formula z of the language of arithmetic and to each variable® u the
corresponding scheme® I°®z and collection scheme® B®z; define the finite set
Q° of axioms® of Robinson’s arithmetic as {Qj, . .., @g}, where Q; are axioms
of Q. Define IX3 to be the set Q° U {I®2z | z € X3} and similarly for BXZ,
PA®, etc.

4.30 Remark. For each k, the set IX} is provably A; and obviously defines
IZ) in N; evidently, the formula (z € IZ}) binumerates I X}, in X4, i.e. for
each formula «, a is an axiom of IX iff IX) F « € IX}, and a is not an
axiom of IXy iff IX) F a ¢ IX}.

Binumerations of (actual) axiom systems will be studied closely in Chap.
IIT; here we have for each of our systems just one particular binumeration,
whose definition in 1Y) only copies the actual definition we gave in Sect. 1
or 2.

4.31 Remark. We have a particular model for the language of arithmetic,
namely the universe (the Ay set V of all numbers) endowed with the A;
relation Ord’ defined by z < y, the A; functions succ (suce(z) = S(z)), add
(add(z,y) = z + y) and mult (mult(z,y) = z *xy) and the element 0. We can
also speak of the standard model but the reader should keep in mind that
everything is said and meant inside of IX;. Recall satisfactions Saty; ; and
Satp k: they are partial satisfactions for the universe in the sense of 4.22.

4.32 Theorem (IX;-formalized X)-completeness). Q°® proves each true 7-
sentence®, i.e. if z € 27 is closed and Satz 1(z,0) then Q° F* 2.

Proof. Copy the proof of 1.8; it suffices to prove the assertion for z € Xj.
Since Q°® I-* z is a Xj-formula the proof by induction formalizes as it stands.
O

4.33 Theorem. For each k > 1, IX} proves the consistency of the set of
all true IT} , sentences, i.e. if Tr(II} ) is the ITx ;-set of all true II}_ ;-
sentences then IX} - Con®(Tr(IIg,,)). (More pedantically, Tr(I},,) is a
formula with the only free variable z saying “z is a closed formula® and

S“t;I,k+1("”’ 0)".)
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Proof. The idea of the proof is rather simple: in I X}, take a finite set 7 of true
II} , , formulas and expand the standard model to a Ay, model of Sk(r). Since
Sk(r) is open, we get Con®(Sk()) by relativizing 4.26 to IX1(4;) = I5.
And we get Con®(w) since Sk(r) proves .

We shall elaborate on this. Let 7 be our finite set of true ITy, 1-formulas
and let @ be one of them. We may assume that the axioms of linear order
appear among them; then we may assume without loss of generality that each
& has its bounded part in bounded prenex form, i.e. @ consists of a block of
unbounded alternating quantifiers (the first being V) followed by a block of
bounded quantifiers followed by an open formula.

Follow the definition of the Skolem normal form in 4.11. Qur ¢ may be
presented as follows:

(Vu1)(3%u2). . . (Qpp1uk+1)(Qprouk+2 <° vis2) ... (Qrur <° vr)p(u,v)

where each v; is some uj, j < i.

For i =0,...p, let #() be the result of deleting the i leftmost quantifiers
(binding uj,...,u;) in @. Recall the terms t;,...tp in 4.11: if Q; is 3° then
tjis Ff(«— tj—1) and if Q; is a V* then ¢; is u;. We define

FR(21) = (least z2)Sat, j_1(8?), [21,22]);

note that #(2) is just (Qsus . ..)p(u), which is Tj_1; thus f2 is total since &
is true and by LX) _,. Furthermore, f{p is Ag. For all other ¢ such that Q;41
is 3° we define

(a) fori < k:

fE(~ z;) = (least :v,'+1)Satn,k_1(¢(i+1), [z1,...zi41]) if there is such an
Zi+1, and = 0 otherwise.

(b) for i > k:

fE(~ z;) = (least 741 < mj)Sat(()ds("H)[ml...:L',-+1]) if there is such an
ziy+1, = 0 otherwise (here vy is u;).

Observe that ¢ > 3 so that f? is certainly Aj. We consider the Ay exten-
sion of the standard model by all the (finitely many) f? as interpretations of
F?. Recall that we have a Ay, valuation Val* of terms and a Ay, satisfaction
Sat* for open formulas of the extended language (relativized 4.24). O

Claim. Let [x] be an evaluation of variables® u1,...uq by numbers z1,...,z4
such that for each i = 1,...k we have z; = Val*(¢;, [x]);
then Sato(p(u1 ... uk), [x]).

Prove the claim by showing the following by induction on j = 0,...¢:
Sat H,k_l(di(j), [x]). We have induction enough at our disposal; and the in-
duction step just uses the definition of Ff.

Note that the evaluation [x] satisfying the condition of the claim is fully
determined by its members z; such that Q; is V*; let [x]’ be the correspond-
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ing subevaluation. The claim gives evidently the following: for each eval-
uation [x]', Sat*(¢(t1,...tq), [x]'). (This is because we get Val*(t;,[z]') =
Val*(t;, [x]') = z;; recall that ¢ is open).

Consequently, we have shown that for each @ in 7 and each evaluation e
of free variables of Sk(7), e satisfies Sk(7) in Sat*, hence Sk(7) is consistent
and 7 is also consistent. (Once again: consistency of Sk(w) uses Hilbert-
Ackermann, see 4.26; consistency of 7 follows since = is provable from Sk(7)
in logic.)

4.34 Corollary. (1) For each k, IX 1 F Con(IX7). (This is because IX} is
II¢ | ,-axiomatized.)

(2) Moreover, I Xy proves the following: if z is a true X} ;-sentence
(i.e. Satygki3(z,0)) then Con®(IZ} U {z}). (This is because a true X}, 4
sentence z is implied by a true IT} , ,-sentence in which the leftmost existential
quantifier of z is replaced by a witness.)

(3) (Reflection). For each X} 3 formula ¢, IZk 1 F ¢ — Con®(y). (Thus
for each ¢, PAtF ¢ — Con(p).)

4.35 Remark. (1) This cannot be improved on by allowing ¢ to be also ITj3
since I X is itself axiomatized by a single IT;,3 sentence and we would
have IX} 3 F Con®(IZ43) which contradicts Godel’s second incomplete-
ness theorem.

(2) Note that in Chap. IV we prove Xy 1 F Con®(BXY,); this will use
the formalized model theory of fragments.

(3) In the rest of this section, we prove a theorem which is a modification
of 4.33 (or at least its proof is a modification of the proof of 4.33). It is
a sufficient condition for consistency using A; models. We shall use it in
Chap. II in connection with Paris-Harrington principle.

4.36 Definition. (I2). The skolemization of a formula & in the language of
arithmetic with respect to unbounded quantifiers is defined similarly to the
full skolemization, but bounded quantifiers are left untouched. Thus: let &
be (Q121) - .-(Qk, Tk )p(x,y) where ¢ is T§ and Q; is V* or 3°. Let

t;=z;if Q;is V°,

t; = F?(*— ti—1)if Q; is 3°.
Then Sko(&) is ¢(t1...tg). A closed instance of Sko(®) is any formula
¢(81,...8y4,u) where s,u, are tuples of closed terms in the extended lan-

guage, and if Q; is 3° then s; is F#(« s;_1,u). For each set T of formulas,
Sko(T) = {Sko(®) | & € T}.

4.37 Theorem (IX1). Let T be a A; theory in the language of arithmetic.
Assume that for each finite set Sy of closed instances of Skq(T') there is a A;
expansion of the standard model to a model of Sy. Then Con(T).
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Proof. First two remarks. (1) Recall 4.13 implying that if each finite set of
closed instances of Sk(T') (full skolemization) is true in a A; expansion of
the standard model then Con(T') (since truth of an open-closed formula in a
Aj model gives trivially propositional satisfaction).

(2) We know that a A; structure has a A; satisfaction for open formulas;
observe that if we A; expand the standard model by adding interpretation of
(finitely many) functions then the satisfaction Satp immediately extends to a
A satisfaction for formulas resulting from X formulas by substituting L®-
terms for their variables (Sko(®) has such a form): define for [x] = [z ... zf]

Sato(p(ty, ... tg), [Ty ... z]) iff
Sato(p(uy ... ug), [Val(t1[x]),. .. Val(t, [x])]).

Trivially, Tarski conditions are satisfied. Saying that a A; structure expand-
ing the standard model is a model of Sy means that each element of Sy is
true in the extension of Satg just described.

The proof of 4.37 may now follow the same pattern as that of 4.33 with
the only difference being that the Skolem functions for unbounded quantifiers
need not be constructed since they are given (as A; functions) in advance:

Take a finite set S of closed instances of Sk(T') and find a finite set Sy of
closed instances of Sko(T') such that S is a set of instances of Sk(Sp). Let
M be a A; expansion of the standard model in which Sp is true. Now define
A; interpretations of Skolem functions of Sk(Sp) (we deal with bounded
quantifiers now — cf. 4.33 for ¢ > k) and get a A; expansion M’ of M in
which S is true. O

4.38 Remark. The same holds for the case where T is formulated in the
language with predicates for the successor, addition and multiplication, cf.
Sect. 2 (e).








