Appendix. On Weak Diamonds
and the Power of Ext

§0. Introduction

In [DvSh:65] K. Devlin and S. Shelah introduced a combinatorial principle
® which they called the weak diamond. It explains some of the restrictions
in theorems of the form “the limit of iteration does not add reals”. See
more on this in [Sh:186] and Mekler and Shelah [MkSh:274] (on consistency
of uniformization properties) [Sh:208] (consistency of “ZFC+2% < 2% <
2Rz 4 P (5nyicf(5)=x,} ) and very lately [Sh:587].

Explanation. Jensen’s diamond for R, denoted O{x,, see [Jn|, can be
formulated as: There exists a sequence of functions {g, : ¢, a function
from o to a where @ < w;} such that for every f : w; — w; we have
{a <w: fla=ge} # 0mod Dy, (recall that Dy, is the filter on A generated
by the family of closed unbounded subsets of A). Clearly $x, — 2% = Ry.
Jensen (see [DeJo]) also proved that 280 = X; %A Oy, (see Chapters V and
VII remembering that {y, implies existence of an Aronszajn tree which is not
special (even a Souslin tree)). You may ask, is there a diamond like principle
which follows from 280 = ®;?
K. Devlin and S. Shelah [DvSh:65] answered this question positively, formulat-
ing a principle ® which says:
(*)1 (VF:%122 - 2)(Fh: w1 — 2)(Vn: w; — 2)

{a <wy: F(nla) = h(a)} # 0mod Dy, .
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The author had hoped that 2% < 2% < 282 would imply that S? is
not small, i.e. for all F : X2>Ry — 2 there exists n € X22 such that for all
g : Ry — Ry, for all C club of Ry there is S € S2 N C with n(8) # F(g16). In
[Sh:208] a consistency result contradicting this was proved.

In fact 280 < 281 <= ®. If the statement above holds for F, h we say
that h is a weak diamond say for (the colouring) F'. The principle ® was used
as a successful substitute for {x, in [Sh:88], [AbSh:114], [Sh:140] and [Sh:192].

An equivalent form of @ is (just replace h by 1 — h)

(x)2 (VF :%1>2 — 2)(3h € “12)(Vn € “12)
H{a <wi: F(nla) = h(a)} X mod Dy,].
® can easily be generalized to higher cardinals than X;, for example define

for uncountable regular A and £ < A:

fe= (VF: 225 k)(Bh: A= k)(Yn: A —2)
{a < A: F(hle) = ()} # 0mod D,].

So ¢ <= @ﬁl.
We thank Grossberg for reminding us that because of a flaw in [DvSh:65]
he and Magidor saw conclusion 1.15 after which this section was written.

There is natural generalization. Instead of quantifying over n € *2 = X 2
consider quantifying over n € X f; (and change the domain of F' accordinzg<l;).

These generalizations arel <o)\ur goal in the first section but instead of gen-
eralizing <I>§1 we generalize its negation. Another possible generalization is oF,
for 2 < K < Ny which by VIII §4 is stronger (its negation is consistent with
G.C.H.). We do not assume the reader is familiar with [DvSh:65], for example
the hard direction of ®3 <= 2% < 2% follows from Theorem 1.10 substitut-
ing A = ®; and p = 2. This generalization of ®} was used in [Sh:88 §6] and
mentioned there in a remark; since we were asked to explain it, we present it
here.

In Sect. 2 we present applications of the principle from §1 to the Whitehead

problem, we shall use it for two theorems. The first, Theorem 2.2, evaluates

the cardinality of Ext (G, H), and the second one is Theorem 2.4 where we
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give information on the torsion free rank of Ext (G, H). We shall define here
all the group theoretical terminology and shall use only one easy lemma which
we quote from somewhere else. But this section is not an introduction to the
subject of the Whitehead problem; the interested reader is referred to the book
of P. Eklof and A. Mekler [EM], to the exposition [E] or to the original papers
where the corresponding theorems were proved (from stronger set theoretical
hypotheses ) [Sh:44],(HHSh:91].
In [Sh:64] another combinatorial principle was introduced:

For a limit ordinal § less than w;, an increasing w-sequence 75 of ordinals cofinal
in 0 is called a ladder on 4. A ladder system 7j is {05 : § € S}, where S C wy;
we say that such a ladder system 7 has the uniformization property if for every
{cs € “2: § € S} there exists h € “12 such that (V§ € S)(In < w)(Vk <
w)lk > n — cs(k) = h(ns(k))]. In §3 we define the uniformization property for
a ladder system 77 = (15 : € S), where S a set of ordinals with each member
of cofinality Ro, in particular S = {0 < Ry : cf(d) = Ro}. We try to prove an
analogous result to the one in Sect. 1, and we shall prove it assuming 280 = R;;
for more details see the introduction to Sect. 3. Sect. 3 does not depend on

sections 1 and 2.

§1. Unif: a Strong Negation
of the Weak Diamond

1.0 Notation. We will write X w; for the cartesian product of the ordinals
i<
s (that is for {f : f a function with domain X such that f(i) < u;}), and will

write [] u; for the cardinality of this product.
i<

Let’s recall that (see (*)2 in the introduction) the negation of <I>§1 is:

3F :“?2 - 2)(Vh:w; — 2)(3n:w; — 2)
{o<wi: F(nla) = h(a)} € Dy,].
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This is the motivation for the following definition (we replace sometimes func-

tions by sequences, when sequences are easier to handle).

1.1 Definition. For a regular uncountable A and sequences fi = (f(3) : 1 < \),
= (x(3) : 1 < A) of cardinals > 1 let Unif (A, fz, X) mean: There is a function
F with domain D(f def Ua<n X ) such that:
(a) for every @ < A and n e Da(,u) = XKQ f(t) we have F(n) < x(a).
(b) for every h € Xm< N X(a) there exists n € Xa< 5 A(a) such that the set
{a < X: F(nla) = h(a)} belongs to Dj.

1.1A Notation. (1) If i is constant, ie., i = (u: ¢ < A\) we may write y;
similarly for ¥.

(2) If (Vo < A)[E(1 + o) = f(1)] we may write (u(0), u(1)) instead of i and
Unif (X, u(0), (1), X) instead of Unif (A, i, x). We let

Da(po, 1) & {n: n € *Ord,7(0) < po and (1 +1) < u1}

and

D({po, 1)) = D(po, 1) & Derpo, 1) = |J Dalpo, 1)-
a<A

Similarly we define Do ({1)) = Dq(p), so D(u) = *>
(3) From now on we assume that A is an uncountable regular cardinal.
(4) Remember that we use § always as limit ordinal; so for S C \ the set

{6 < X: d € S} is the set of limit ordinals which belong to S.

1.1B Remark. (1) Unif (Ry,2,2) is the negation of <I>§l i.e., it is the negation
of the weak diamond.

(2) We shall say (concerning Definition 1.1) that the function F' exemplifies
Unif (A, &, X)-

(3) If 2% = 2%1 then Unif (Ry,2,2) holds. (Noted by Abraham: the converse

is a theorem: see 1.10.)

Proof of (3). Let H : “2 — “12 be onto. Define F : “1>2 — 2 as follows:



944 Appendix. On Weak Diamonds and the Power of Ext

Ifne™2, n<w,then F(n) =0

If n € “2, a > w, then F(n) = H(nlw)().
Now check that F' witnesses Unif (Ry,2,2).

Recall that we can strengthen the statement in { by working only on a
stationary set S C . Similarly we can consider stronger forms of the weak

diamond, i.e. weaker forms of Unif by relativizing to a stationary set S.

1.2 Definition. Let A, fi, ¥ be as in Definition 1.1 and let S C .

(1) Unif (A, S, i, x) is defined similarly to the definition of Unif (), i, X): just
replace (b) there by
(b”) for every h € X(K/\ X(c) there exists 7 € Xa<)\ A(a) such that the

set {6 € S: F(nld) = h(d)} belongs to Dy + S.

(2) Let Id — Unif (\, i, %) % {S € X\ Unif (\, S, &, x) holds }.

(3) If (Va) (E(1 + @) = p1) we may write Unif(\, S, 1(0), p1, x) and Id —
Unif (A, 1(0), p1, x) in parts (1) and (2) respectively. So Unif (A, uo, 1, X)
mean Unif (A, A, po, 41, X)-

(4) If x is constantly x we may write x (in Definitions 1.1, 1.2(1), (2), (3)).

1.2A Remark. The notation of Definition 1.2(2) will be justified in Lemma
1.9 where we shall prove that if Unif (), i, ) fails, then Id — Unif (), i, ) is an
ideal. Note also that Unif (), fi, ) is trivially equivalent to Id — Unif (A, i, ) #
P(A).

1.3 Remark. The diamond ¢, implies the weak diamond ®3%, and more

generally {(5) implies the failure of Unif (A, S,2,2,2).

Proof. Let (nq : @ € S) be such that for every n: A — 2 the set {a € S : nla =
Na} is stationary. Now if F : 2>2 — 2, then we let h : A — 2 be defined by
h(a) = F(na), so clearly for any n : A — 2 the set {a € S : F(nla) = h(a)}

will be stationary. O3

1.4 Lemma. Let A\, S, i, ¥ be as in Definition 1.2.
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(1) If {i < A: %(i) = 1} € Dy then Unif (A, S, 1, %) holds.
(2) Let x!, x? satisfy the requirements for ¥ in Definition 1.1. then

{ieS: x*(i) = X*(3)} € Dr + S imply that

Unif (A, S, 4, ') <= Unif (), S, 1, ¥?)

(3) Unif (\, S, fz, ) implies that IX “ X(@)/(Dx+8)| <[ <y B(a) (notice
that the left hand side of the inequality is the cardinality of a reduced
product).

(4) If there exists a § < A such that | X X(@)/(Dx + S)| < [Ioep @),
then Unif (\, S, i, ) holds.

(5) Let @, x,a*, x* be sequences of cardinals > 1 of length A such that
for every o < A we have x*(a) < x(a) and f(a) < @*(a). Then
Unif (A, S, i1, X) = Unif (A, S, &*, x*).

(6) If S* = {6 € S: x(6) > 1} then Unif (A, S, i, x) & Unif (A, S*, i, X)-

Proof. Easy (note that part (4) can be proved just like 1.1B(3)).

1.5 Lemma. Let A, S, i, X be as in Definition 1.2. Let us define the following
. def o def o 1. _ 4
cardinals o = Y, oy [Tica A(i), and py = Mingex Y.y [Ticp Bla+1); then

the following are equivalent.
(A) Unif (A, S, 2, %)
(B) Unif (X, S, o, 1, X) (see 1.2(3)).

The proof will use the following easy fact.

1.5A Fact. Assume that D(f) can be embedded into D(i*), i.e., there is a
partial function g : D(f) — D(i*) such that:

(a) If n < v are both in Dom(g), then g(n) < g(v)

(b) g is one - to - one

(c) g is continuous, i.e., whenever (7, : @ < d) is a sequence of elements of

Dom(g) satisfying a; < ag = 7q; < 7a,, then also ns def U 7q is in

a<d
Dom(g), and g(ns) = Ué Nax-
a<
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(d) For every n € X a(2), the set {i < X : nli € Dom(g)} is unbounded in A
<A
(by (c), this set will also be closed).

Then Unif (A, S, i, X) implies Unif (A, S, &*, X)-

Proof. Assume Unif (A, S, &, ) holds. Let ¢’ def gl{n € Dom(g) : fg(n) =

2g(g(n))}. The function ¢’ will also satisfy (a) — (d). Choose F which witnesses
Unif (A, S, i, x), and define F* on D(i*) as follows:

F(n), if g'(n) = v for some n € Dom(g’)
F*(v) =
0 otherwise.

Note that F*(v) is well defined as there is at most one 7 € Dom(g’) such that
g'(n) = v as ¢’ is a one to one function. Let h € [] (i), so as F witnesses
i<A
Unif (A, S, i, X), necessarily there is n € X f(7) such that Sp
<A

©f < a:

F(né) = h(d)} belongs to Dy + S.
By clause (d) of the assumption, the set C e {6 <X:n[é € Dom(g')} is a
closed unbounded subset of X. So § € C = £g(g'(n1d)) = 6. Let v = U g(nli),
ieC

clearly v € [] g*(i) and 6 € SoNC = F*(v18) = F*(g9'(n1é)) = F(n1d) = h(d).
<A

So it is easy to see that F* witnesses Unif (A, S, i*, X)- Oi54

Proof of 1.5.

(A) = (B)

Let a* < X be such that for all 7 we have: o* < i < A = (i) < p1, and let

{ve : € < g} be a1 —1 enumeration of X I(t), where pg def H A1) < po

by the definition of ug. Now define a part?ifi?‘function g:D() —z<5(uo, 11) by
the following conditions:

Dom(g) = {n € D(g) : £g(n) = a*}

9(ve"n) = (€§) ", whenever € < g, v¢"n € D(R)

Clearly g satisfies clauses (a) - (d) of fact 1.5A, so Unif (X, S, fi, x) implies
Unif (A, S, po, 41, X)-
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(B) = (A)
This time we will construct an embedding g : D(uo, 11) — D(fz) and again use
1.5A. For simplicity, let us first assume
® 1<i<j<A=a@) <ay).
Let a* < X be such that for all 8 € [o*, X) we have |D(i][B, \))| = u1, i.e.

p>a* =Y [[aB+i)=

<A i<y

W.lo.g. o* > 2. We claim that:

(a) There exists an antichain (I/g 1€ < po) in D() (and wlo.g. &€ < o =
tg(vg) > a*)

b) For each n € D(ji) there exists an antichain (v} : € < p1) in D(ji) satisfying
13

E<m =<y
(“Antichain” means that for £ # ¢ we have neither ug < 1/C nor V" < I/g)
We will prove only (a), as the proof for (b) is similar. For each v € D(i),

define g*(v) as follows:

£g(g*(v)) = o* +24g(v) + 2, and
(v(0) ifi=0
0 ifi<ari>1
g W)@ = v(h) ifi=a"+2j, 5 <lg(v)

0 ifi=a*+2j+1,5<g)

(1 if i = o* + 20g(v) or i = o* + 24g(v) + 1.
Then {g*(v) : v € D(¥)} is an antichain of size po. This ends the proof of (a).
(We needed ® to ensure v(i) < ji(7).)

Now we define g : D(uo, 1) — D(R) inductively as follows:

9(0) =

9({€)) = v¢ when £ < po,



948 Appendix. On Weak Diamonds and the Power of Ext

9(n" (€)) = v{™ when fg(n) > 1,6 < pu,
g(n) = U g(nle), when £g(n) is a limit ordinal.
a<lg(n)

Again g satisfies clauses (a) - (d) of 1.5A, so we are done.

We have only one problem left: what occurs if ® fails? Really this is not
serious, e.g. by the following claim 1.6 (if @*(j + ¢) = 1 for every 4, then
to = HKJ. p(i), p1 = 1, so the lemma becomes trivial, by 1.4(3), (4), as
pr =1). Uss

1.6 Claim. Let A, S, [i, ¥ be as in Definition 1.1.

(1) For every {a; : @ < A} C X increasing and continuous such that ap = 0,
.\ def .
'l) é HaiSj<Oti+l /"’(.7) We
have that Unif (A, S, i, ), and Unif (X, S, @*, %) are equivalent.

and ;. @i = A; for every i < X define fi*(

(2) For any [i there exist {a; : ¢ < A} C X as in (1) such that letting g* be
defined using o;’s as in (1) we have g*(1 + 1) < pu*(1 + j) for i < j and
A0 > 1.

Proof. (1) Similar to the proof of 1.5.

(2) Let x* be minimal such that {i < A : (i) > s*} is bounded in A, so for
some a3 < A we have [o1 < i < A = [i(i) < k*]. If s* = k*, it is enough
to choose inductively a; (when 1 < i < ), increasing continuous) such that:
{j + &i < j < ai41,A4(J) = K} has the same order type (hence the same

cardinality) as a;41, hence [1  A@G) = k!*+1 will be non decreasing for
J€[ai,ait1)

i€ [1,A).

If * is limit, necessarily cf(x*) < A.

If cf(k*) = A choose a; (when 1 < i < J, increasing continuous) such that
fori >0, {8:0a; < B < a1, G(B) > sup{ia(y) : o1 < v < e;}} has cardinality
> |l

If cf(k*) = 6 < Alet (k. : € < 6) be a strictly increasing sequence of
cardinals < k* with limit £* and choose o; (when 1 < i < A, increasing
continuous) such that for every ¢ > 1 we have the order type of {8: a; < 8 <
a;+1 and fi(B) > Ke} is a;41 for each € < 6. O
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1.7 Claim. (1) If Unif (A, S, i, %), £ < A and @*(¢) = @(i)", x*(i) = x(3)* for
1 < X then Unif (), S, 2*, x*)

(2) If Unif (A, S, fig, Xe¢) for £ < &, k£ < A and (i) = [[, fie(4) and x(i) =
[T <. Xe(i) then Unif (A, S, &, X)

(3) If i is a nondecreasing sequence of infinite cardinals and Unif (A, S, i, k)

and x*(i) < (x(3))!" then Unif (A, S, &, X*).

Proof. (1) Easy. Let Gé : p*(3) — () (for £ < k) be such that for every
(ag : € < k) € ~[i(i) there is a unique y < fi*(i) such that (V€ < k)Gg(7) = a¢
that is, identifying fi(¢)® with the cartesian product *f(), the function G’é is
the projection onto the é-th coordinate. Similarly H¢ : x*(i) — x(3) for £ < &.
If F exemplifies Unif (A, S, i, X) let us define F*:

For n € D(ii*) let F*(n) be the unique v < x*(¢g(n)) such that

(V€ < K)[F((Ge(n(3)) : i < £g(m)) = H(v)]

So given h € )(i< WX (t1) we have to find appropriate 7. Let he €
X, X(6) be such that he(i) = H{(h(i)). By the choice of F, for each £ < &
there is ne € X, _, /i(s) such that C¢ = {§ € '+ F(1¢1d) = he(8)} € Dy + 8.
Define (i) as the unique v < fi*(i) such that (n¢(3) : € < k) = (GE(7) : € < k).
Now ¢, C¢ € Dx + S and for every ¢ € (., C¢ we have F*(n) = h(d) so
we finish.

(2) Similarly.

(3) Without loss of generality x*(i) = |x(i)|""l (by 1.4(5)). Let (h¢ : ¢ < \) be
such that: h¢ is a strictly increasing function from A to A and (Rang(h¢) : ¢ < A)
are pairwise disjoint and fi(i) < f(h¢(é)) (for ¢ < A3 < A). Let HE : x*(i) —
x(1) for £ < i < X be as in the proof of part (1). Let

C* = {6 < A: § a limit ordinal such that for every ¢ < 4,

the order type of § N Rang(h¢) is § so he maps 6 to 6}.

Lastly define F* by: if § € C* and n € Ds(z), let il € Ds(i) be defined
by nl<(i) = n(h¢(i)), and F*(n) is defined such that H(F*(n)) = F(n'¥);
F*(n) = 0 otherwise. The checking is as above. Oir
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1.8 Conclusion. If Unif (A, x(0),2,x),1 < k& < X and p(0)* = p(0) then
Unif (A, 4(0), 2, X*).

Proof. By the previous lemma 1.7(1) we have Unif (A, u(0)*,2%,x*) and as
1(0) = u(0)* by applying 1.5 twice this is equivalent to Unif (X, u(0),2, x*).

1.9 Lemma . 1) Id — Unif (A, i, x) is either P(\) or an ideal on \.
2) If i is non decreasing then Id — Unif (A, p, ) is either P()\) or a normal

ideal on A (i.e., on P(A)) containing all nonstationary sets.

1.9A Remark. Note that Id — Unif (A, i, ) is equal to Id — Unif (X, o, 1, X)
when po, py are defined as in 1.5. Also Id — Unif (A, o, 1, %) is equal to
Id — Unif (A, po, po, A) if cov(uo, A) = po (see Definition 1.12 below) by 1.14(5),

(6) below (applied twice), so of course the normality holds in such cases.

Proof. 1) Trivial.

2) Call the ideal I. Trivially any nonstationary S C A belongs to I. So it
is enough to prove that if S C A and f is a function from A to A such that
(Va € S)f(a) < 140, and for every i < X we have S; e {aeS: fla)=i}tel
then S € I. Let F; exemplify that S; € I and (h¢ : { < A), C* be as in the
proof of 1.7(3). Let us define F: if n € D(uo, p1), £g(n) € S; N C*, we let F(n)
be F;((n(hi(5)) : j < £g(n))), otherwise F(n) = 0, and we can finish as in the
proof of 1.7(3). Uig

1.10 Theorem. 1) Assume the following conditions hold:
(A) X regular and 2<* < 2>,
(B) plo < 2. \

Then Unif (A, p, 2<*,2<?*) fails.

2) Moreover in part (1) instead of (B) it suffices to assume
(B’) The following property does not hold:
(*¥) There is a family {S; : i < 2*}, S; C p, |Si| = A and i # j < 2*
implies |S; N S| < Ro.
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1.10A Conclusion. If for some § < ), 2 = 2<* < 2* (hence A regular
uncountable) then Unif (\,2<*,2<*,2) fails.

[Why? This holds as by 1.10 applied to u = 2<* we get = Unif (A, 2<*,2<4,2<%)
now apply 1.7(1) for k = 6.]

Proof. First notice that (B) = (B’). [Why? Assume by contradiction that (*)
holds, choose T; C S; countable for every i < 2*. So necessarily i # j = T; #
T;, and we got {T;: i <2*} C {S C u: |S| = No}, i.e,, 2* < p™o contradiction
to ulo < 24

Therefore from now till the end of the proof of 1.11 we assume that (x)
fails. This implies p < 2 as if u = 2* then the family {S; : i < 2*} where
5; & {a: Xi < a < Xi+ A} for i < 2* would show that (*) holds trivially . We
also assume the conclusion of the theorem fails (i.e., Unif (), 4, 2<*,2<*) holds)
and eventually get a contradiction. Let F exemplify Unif (X, ,2<*,2<*). Let

us define:

Mod = {(a,c()ag(),clvglv' . 'Cﬂagﬂv . )ﬁ<ﬁ(0) : /3(0)70 < )‘1

gs a function from a \ {0} to *>2, Cj a closed subset of a} ‘

Clearly | Mod| = 2<* hence we can fix a one-to-one function H : Mod —
A>2. Now for every function f : A — {0,1} we shall define by induction on
B < A, functions hf g : A — *>2 and g5 5 € Dy(i, *>2) and a closed unbounded
subset Cy g of A. If we have defined for every 8 < 7,y < A let us define hy .,
9f,~v, Cf, as follows.

Ify=0,let hyy =gsy = fand Csy =\ {0}.

If v > 0, let:

A) hsy(1)is H({e, CroNa,gsol(@\{0}),...,CraNar, g5,51(a\{0}), .. .) g<~)
where a = a(i, f,7) = Min(Ng., Crp \ (1 +1))

B) Ashy, : A — *>2is defined, and as we are assuming Unif (), u, 2<*,2<})
is exemplified by F, there are a function g € Dy(u,2<*), and a closed
unbounded subset C of A such that: C C {§ < A: F(gld) = hg~(6)}. Now
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let g7, = g and Cy,y be the set of accumulation points of (5., Cr,sNC.

In order to finish the proof we need (proved later):

1.11 Fact. If fi,f> € 2, and j, < A for n < w, [n # M — jn # jm), and
def o 1. .
0n = MinCy, ;, = MinCy, ;. and gy, ;. [0n = g5, ;. [0n and f1(0) = f2(0) then

f1= fa.

Continuation of the proof of 1.10.
For every f: A — {0,1}, define

Ar = {0,975(0), 97575\ {0}), £(0)) : j < A8 = MinG;}. Clealy |A/| = A
If Ay, N Ay, is infinite, we can easily get the hypothesis of Fact 1.11 hence
fi = fa. So Ay, N Ay, is finite for f; # fa. The Af’s are not subsets of p
but of A* = A x p x *>(<*2) x 2, which is a set of cardinality u + 2<* so
P = {Ay : f a function from X to {0,1}} is a family of 2* subsets of A*, each
of power ), the intersection of any two is finite. If |A*| = p we finish (having
contradicted (*) of (B)), otherwise |A*| = 2<* and 2* = |{A; : f a function
from X to 2}| < |A*[Re < (2<*)Re = 2<* < 2* (second inequality-as in the

proof of (B)=(B’) above), contradiction.

Proof of Fact 1.11. By Ramsey theorem, and as the ordinals are well ordered,
w.lo.g jo <1 < ... < jn <jnp1 < and let j 2 Un<w Jn

Let C¢ =<, Cf..jn for £=1,2, and let C* = {# : i < A}, 7{ increasing
continuous, and let v{ = A.

Now we shall prove by induction on i < A that:

a) v =7
® b) for every ¢ < j, g5,,¢[(7 \ {0}) = 9£,,¢1(v2 \ {0})
and Cy, ¢ NV = Crc N2

This is enough, as in particular it says, for ¢ = A, ¢ = 0 that gy, o[(A\\{0} =
95,,0[(A\ {0}), but by its definition g¢, o0 = fe, so f1[(A\ {0}) = f2I(A\ {0}).

But in fact we have assumed f1(0) = f2(0), so fi = f2, which is the desired

conclusion of the fact. So for proving the fact, it suffices to prove ®.
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Case I. 1=0

We first prove clause a) of ®. Now for £ = 1,2 clearly 7¢ = MinC* > §,, %
MinCy, ;. , hence v§ > Sup,, ., d,. On the other hand for n < m, Ctoim € Ct,n
(as jn < Jm) hence (0, : m < w) is non decreasing and {6,, : n <
m < w} C Cy,;,., hence Sup,, 0, = SUPpreinw) Om € Cf, ., hence
SUPmcwdm € Npecw Chejn = C¥, s0 v§ = MinC*? < Sup,, ,0m. Clearly we
got v§ = MinC* = Sup,,<,0m, 50 74 = 3.

For clause b) of ® we can choose large enough n, such that { < j,(< 7)
and
(*)o 971,176 \ {0}) # 91, 1(33 \ {0}) implies gy,  1(8n \ {0}) # g7, (6 \ {0})
and Cy, ¢ N # Cf,c N2 implies Cy, ¢ N6, # Cf,c NSy
Now we have assumed in the statement of the fact that:
()1 91,50 [0n = 95,5 [0n
hence
(¥)2 F(g50,3u10n) = 5. (0n) = H((0,...,Cp, s N, g5, 5 1@\ {0}), - - ) p<in)
where o = a(v!, fo, jn) = Min[Ng.;. Crep \ (6n + 1))
We can conclude, as the left side in (*)2 does not depend on £, (by (*)1)
and as H is one-to-one, that 8 < jn = g5, ,1(76 \ {0}) = g5, ,1(78 \ {0})
and B8 < j, = Cp N7 = Cf,p N A& But in particular ( < j, hence
9f1. 160\ {0}) = 91, [(6n\ {0}) and Cf, ¢ Nén = Cf, ¢ Ndpn so we have gotten
a5, [(E\{0}) = g7, 1(7 \ {0}) by (*)o. So we have proved clause b) of ® (for

the case i = 0).
Case II. i limit

This is easy: clause a) holds as ’yf (for £ < 1) is increasing continuous and

(V€ < 9) 751 = 'yg by the induction hypothesis, and similarly clause b) holds.

Case III1. Prove for i + 1, assuming truth for <.
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For any n < w, gf,.j. [7¢ = 9fs,j. [7¢ by the assumption in the fact. By
the induction hypothesis g7, (71 \ {0}) = 972, (22, {0}). Together we can

conclude

(@) 951,30 1% = 9faju 177 forn <w
By the definition of gy, ;., for £ = 1,2 we have
(B) F(9fein™i) = hprjn(0i) =

H((ak,...,Cq,, N0k, g5, 105\ {0}), .. )p<in)

[where a4 = a(7, fo,jn) = Min[ Ny, Cro \ (¥ + 1)
As H is one-to-one, by (a) and (3) we can conclude
(1) (o, Crp Nom, 971,61 (an \ {0}), .- ) p<jn =

=(az,...,CraNer, 95,6007 \ {0}), .. )o<sn

So a;, = a2; it is also clear that, for £=1,20af <...<af <af,, <...
and U, ,, o = Min[Ng,; Cr, 5\ (% + 1)] is 7%;,, so we can conclude v}, ; =
v2,1 (i.e. clause a) of ®). Also, by (7), for every ¢ < j for every n large enough,
¢ < jnand Cf, ¢ Nal = Cy, ¢ NaZ, and as this holds for every n and o} = a2
and ¢, = Upc,, 0 clearly:
() Cric N1 = Croc N V41

Similarly g, ¢1(v41 \ {0}) = 95,,¢ /(7241 \ {0}) , and so we finish proving
clause b) of ® for i+ 1. So we have finished proving ® for all i. As stated earlier
by this we prove Fact 1.11. Ui

1.12 Definition. Let X be a set and X a cardinal.

(1) A family F of subsets of X is an (X, A)- cover if for all S C X, |S| = A,
there is T' € F such that S C T, and all the members of F are of cardinality
< X. In other words, F is cofinal in the directed partial order (S<x(X), C).

(2) The covering number of (X, \) which is denoted by cov(X, ) is :

cov(X,\) = Min{|F]| : F is a (X, A)-cover}.

Clearly cov(X,)\) depends just on |X| and X (see 1.13(1) below) so we

usually use cardinals for X.
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1.13 Lemma.
(1) X CY = cov(X,A) < cov(Y,A), and | X| < |Y]| = cov(X, ) < cov(Y, N)
hence if | X| = |Y| then cov(X, ) = cov(Y, )
(2) if A < p then cov(u,A) > p
(3) i cov(\A) =1
ii. for A < u we have cov(ut,\) = cov(y,A) +put
iti. If y is a limit cardinal, A < p and let {u; : ¢ < cfu} be an increasing
sequence with limit p and pp > A; then cov(u, \) < HKCM cov(pg, A).
(4) cov(Ate, ) < (Ate)lel

Remark. See more in [Sh:g|, [Sh:400a).

Proof. (1) E.g., if X CY and if F is a (Y, \)-cover, then F! = {ANX : A € F}
is a (X, A)-cover and |FT| < |F|.

(2) Because if F is a (u, A)-cover then | J{A : A € F} is necessarily u hence
p<|UH{A:AeFH < X JAl < |FlAso |F| 2 p.

(3) i. Take F = {A?EI]; is obvious that this is a cover as required.

(3) ii. Clearly cov(ut,\) > cov(u,A) by part (1) and cov(u™,\) > u* by
part (2). So it suffices to show that cov(u*,A) < cov(u, ) + p*. We do this
by finding a (u*, A)-cover F of cardinality cov(u,A) +u*. For every ordinal a,
A <a<putlet Fy be an (o, A)-cover such that |F,| = cov(|al,A) < cov(u, \)
(we use part (1)). Define F =
Let S C ut be of cardinality A, from the regularity of u* follows the existence

a<pu Fa, we shall prove that it is (u*, X)-cover.
of a, p < o < pt such that S C o, since F, is a (a, \)-cover there is T € F,
(T € F since Fo C F) such that S C T, |T| < X, so we have proved one
inequality. The other was done before.

(3) iii. We shall find a (p, A)-cover F of the appropriate cardinality. For
i < cf(p) let F; be a (u;, A)-cover exemplifying cov(u;, A), define .7-"} = F,U{0},
F={Ujessi:si € .7-'11,,5' C cf(p) and |S| < A}. It is easy to verify that F is a
(1, A)-cover and |F| < [, 5, cov(pi,A).

(4) Prove by induction on o < A.
For a + 0, we have cov(A1%, \) = cov(A,A) =1 < (A)*0 (by 3 (i)).
For a = 84 1 we have cov(At®, ) = cov(ATB+D %) = cov((AP)*,\) =
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cov(AtA ) + (AT#)* where the last equality holds by clause (ii) of part (3);
now, using the induction hypothesis, cov(A\*(B+1) x) < (A+A)I8I 1 (A+8)+ <
(Ate)led,

For o a limit ordinal; let {o; : i < cf(c)} be a cofinal sequence in «; then by
3(iii) cov(At*,A) < [Ticep, COVAT™,A) < (AFe)cfe < (Ateylal, 0113
1.14 Lemma. 1) Let A < p < 2}, x1, x be cardinals, ¥x = (xi : i < \),
x = sup{x; : ¢ < A}, X regular uncountable, then

Unif (A, i, i, X) implies Unif (X, cov(u, A), A, X).

2) In part (1) assume po+p1 +x < 2%, A < x and cov(x, A) < po (and py > 2).
Then Unif (A, po, p1, xX) <= Unif (A, po, 1, A).

3) In part (2) if in addition ug < w1, A is not strong limit and only 2 < y is
required then Unif (A, po, 1, %) < Unif (A, o, p1, 2).

4) If X< o <pp <2 and ¥ = (x; : © < A) is a sequence of cardinals, X is

regular uncountable then
Unif (A, po, #1, %) = Unif (A, po + cov(pr, A), A, X)-
5) In part (4) if po > cov(ug, A) > p1 > 2 then
Unif (A, po, 1, %) < Unif (X, po,2, X).

6) We get similar results if we add S C X is a parameter (in parts 1) - 5)).

Proof. 1) We do it by translating every g € D(u,pu) to g* € D(cov(p,A), )
where the first coordinate g*(0) codes a subset of p of cardinality A which
covers Rang(g), and g*(1 + ) tells us where g(i) appears in it (e.g. the place
in some well ordering) of order type A. More formally let & &ef cov(p, A),
and let F = {A; : i < k} exemplify this, where w.lo.g. A; # (0 and
let A; = {a;; : j < A} possibly with repetition. We define a function H

from *u to Dyx(k,A). For a given g : A — u let h = H(g) be defined by:
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h(0) = min{i < k : {g(a) : @ < A} C A;} and h(1 + %) is the first
J < X such that g(i) = opg),;- Let F exemplify Unif (X, u,, %), and we
shall define F* which will exemplify Unif (A, &, A, %) : for n € D(x,\) let
F*(n) = F({an)ma+i) : 1+ < £gn)) if n # (), and F*(n) = 0 if n = ().

2) By 1.4(5) the implication = holds.

For the other direction, assume that Unif (A, uo, 1, A) holds. Let F = {A4; :
i < po} exemplify cov(x,A) < po with A¢ = {a¢,; : j < A} and let
F exemplify Unif (A, uo, p1,A), and let pr(—,—) be a pairing function on
o (so it is onto o). Now we define F* as follows: F*({()) = 0 and for
1 € D(po, #1)\{()}, let 7(0) = pr(Bo, B1), vy = (B1) "nl[1,£g(n)), and we choose
F*(n) ef Qpy,F(v,)- Now check that F* exemplifies Unif (A, pto, p1, x); for any
g € *x, let Rang(g) C A¢, g(i) = a¢ @) Where h € AX; let n* € Dy (uo, 1)
be such that for some club C of A\, § € C = F(n*[8) = h(d). Now define
v* € Dy(po, 11) as follows: v*[[1,\) = n*[[1, ) and v*(0) = pr(¢,n*(0)). Eas-
ily 6 € C&6 > 0= F*(v*]8) = a¢,ns) = 9(9), as required

3) W.lo.g. 2 < p; (otherwise the statements are trivially false). By monotonic-
ity (=1.4(5)) and part (2) without loss of generality x = A, and we have to
prove the < direction. Now apply 1.7(3) and 1.5.

4) Repeat the proof of part (1).

5) The implication = holds by monotonicity (that is by 1.4(5)). The implica-
tion < holds by part (4) above and 1.5.

6) Same proofs. 0114

1.15 Conclusion. Let p < R, and assume p™° < 281, then Unif (Ry, u, 4, 2)
fails.

Proof. Assume toward contradiction Unif (Ry, p, p1,2); from Claim 1.7(3) we
obtain Unif (Ry, p, i, 2<%1) is true, apply Lemma 1.14(1) and we have

Unif (Xy, cov(p, N;), Ry, 2<8).

Now by Lemma 1.13(4) ( let Ry = g, < wi) cov(p,Ry) < Rl < o < 2%,

This is a contradiction to theorem 1.10. Oi.15
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We can strengthen theorem 1.10 to

1.16 Theorem. Suppose A is regular uncountable, 2<* < 2* and p > \. If
Unif (A, i, 2<*,2<*) holds then:
(%)2x ua+ There is a family {S; : i < 2*}, S; C p,|S;| = AT and

|S; N S| < Vo for i # 3.

Proof. Similar to 1.10; we may assume pu < 2%, otherwise the conclusion
is trivial. From the proof of 1.10 we get 2* < u®°. Hence we may assume
p > (2<*)*« (otherwise we have u = (2<*)*" for some n, so by the Hausdorff
formula we get pR0 = p+ (2R = 4+ 2<% = 4 < 2* < pRo, a contradiction).
Let for every a < A*, a = |J,, B, |Bf| < X, BY increasing continuous in i,
and we can assume: B N A =i, and §,j € B = Bf C B{. For notational
convenience let B(a,i) = Bf*. We follow the proof of 1.10 and mention only
the differences. We let

Mod = {(a,...,Cp,9p, - - -)geB(ayi) : B < At,i <\, gp a function from B\ {0}
to 2>2, Cj a closed subset of i}, so from z € Mod we can reconstruct a and
B(a, i) hence i. Now for every f : A\ — {0,1} we define by induction on 8 < A*
functions hfg : A — *>2, gf5 € Dy(u,*>2) and a closed unbounded subset
Cy.p of A

If we have defined for every 8 <« and v > 0, let

hiy(i) = H({a,...,CspNa, g5l (a\ {0}),...)geB ()

where o = a(i, f,7) is the minimal a > i, € N{Cyg : B € B(7,1)} and we let

Cty def {6 : if B € B(v,6) then § is an accumulation point of Cy g}.

We modify Fact 1.11 to : there are no distinct j, < A* for n < w and
fo € 2 such that the set Y def {f €22:g4;.(0) = g5,5.(0) for each n < w}
has power > 2<* (the number is just to give us two distinct f’s as required for
starting the induction there).

How do we prove this new version of 1.11? Assume (j, : n < w) and fo

form a counterexample. Without loss of generality A,, jn < jn+1 and choose
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i < A large enough such that j, € B(jm,t) for n < m, and for each f € Y let

a(f) =Min{a : a > i, a € (), ., Cf,j. }; we define a relation E on Y:

n<w

fEfy iff a(fi) =a(fz) and for n < w,
fila(f) = fala(f) and 9f1,9n la(f) = 9f2,9n la(f)
and Cy, 5, Na(f) = Cy, ;. = a(f).

Now E is an equivalence relation with < A x (2<M)Ro x (2<M)Ro = 9<A
equivalence classes. So we can find f; # fo € Y which are equivalent.

Now g¢, 5, (0) = gf0,5.(0) = gz, ;. (0) by the definition of Y. Now we can
apply the proof of 1.11 to fi1, f2, contradicting the choice of f; # f.

Why is this new version of 1.11 enough? For fo € *2 let YJ{O def {f:fe?*
and for infinitely many j < A* we have gy ;(0) = gy5,,;(0)}, now the number
of possible (j, : n < w) is < (AT)Re <2<} 4 A+ which is < 2*. Moreover
sup{|Y/| : f € 22} < At +2<* < 2% As fo € Y}, & f1 € Y} we can find
F* C *2 such that |F*| = 2* and fo € F*& fr € F*& fo # fr = fo ¢ Y},. So
{{(94,(0),5) : 5 < A*}: f € F*} is a family of 2* subsets of u x A*; which by
the choice of F™* satisfies: the intersection of any two is finite, confirming (*) of

1.16 (note that without this symmetry we could have used Hajnal’s free subset

theorem [Ha61]). Ulr1e

1.17 Conclusion. If A = cf()) > Ro, 2* > p > 2<* = 2% cov(u, \) < 2* then
Unif (A, u, 1, 2) fails.

Proof. Let o def cov(u,A) and let us assume toward contradiction that
Unif (A, 4, 4,2). Now by Claim 1.7(3) we have Unif (), y, 1, 2<?), and by
Lemma 1.14(1) we have Unif (X, cov(g, A), A,2<*) i.e. Unif (\, o, A, 2<*) hence
by monotonicity (i.e. 1.4(5)) we have Unif (), 0,2<*,2<*), so by 1.16 we know
that (¥)a , 5+ holds. Now we would like to apply [Sh:430, 2.1(2)], with x*, A,
1 here standing for , A, u there, but we have to check the assumptions there:
“u> X\ > K is obvious, as 4 > A > «%; as for “cov(\,k, k,2) < u” trivially
|S< e+ ()| < e suffices but [Se e+ (V)] = A* < 2<* < . Now “cov(p, At, AT, 2)”
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+
there means cov(u,\) here, so we get 0<* = o. Hence ¢ = o™° hence

(*)2r 5 2+ is impossible. Uiz

1.18 Conclusion. 1) If # < X are regular cardinals, 2¢ = 2<* < 2},
and A < g < 2* and —(*)y , z+ (this is the statement from 1.16) then
= Unif (\, g, 2<%, 29).

2) Under the assumptions of 1) if cov(u,A) < p or just cov(2%,A) < u then
= Unif (A, g, u, A).

Proof. 1) By 1.16 we have - Unif (X, g, 2<*,2<*) i.e. = Unif (\, 1, 2<*,29).
2) By part (1) and 1.14(2). Ur1s

1.19 Conclusion. 1) If § < X are regular cardinals 2¢ = 2<* < 2* (e.g. X\ = 6,
29 < 2%) and @ > 3, then for every u < A, we have — Unif (X, i, 2%, 29).
2) Moreover if cov(u, ) < 2* then - Unif (X, i, 29, \).

Proof.

1) By 1.18 it suffices to prove —(*)sx , y+ which is proved in [Sh:460]. For the
reader’s benefit we derive it from the main theorem of [Sh:460]. As u > 6 > 1
main theorem of [Sh:460] says that for every regular large enough £ < 3, the

k-revised power of p, ul*l, is yu where

pl® = min{|P| :P C S<.(u) and every a C S<,(u)

is included in a union of < k members of P}

Let P C S<x(u) exemplified pl*) = p, and let Py = {b : [b| =
k and (Ja)(b Ca € P)}, s0 P1 C S<i(p), |P1| < px2° < p+3, =p.
Now if {S; : i < 2*} C S<+(u) is as required in (x)2x , x+, each S; contains
some a; of cardinality x, hence for some ¢} < k, b;¢ € P for ( < {; we have

a; € U bic, hence for some {(i) we have c; P bi¢(iy has cardinality
¢<¢r
k. Clearly ¢; € Py, but |P;| < p < 2* hence for some i < j < 2*, ¢; = ¢; s0
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cj = ¢; is a subset of S; N S; of cardinality x contradiction to the choice of
{Si i< 22}
2) By part (1) and 1.18(2). Oi.10

Remark. Even for smaller A, (¥)2x , x+ is a very strong requirement, and it is
not clear if it is consistent with ZFC. By [Sh:420, §6] it implies that there are
regular cardinals 8; € (2<*, u) for i < A such that [ 6;/S<x,(}) is u*-directed

i<
and even has true cofinality which is > u.

1.20 Question. 1) Does A = cf(\) > Rg, A < 2<* < 2* imply that
Unif (A, 2, 2,2) fails?

2) Is it consistent with ZFC that for some strongly inaccessible A we have
Unif (), 2, 2,2) fails?

3) Can we prove in 1.14(2) equality? can we omit the “A not strong limit” in
1.14(3)?

4) How complete is Id — Unif (A, po, p1, X)?

§2. On the Power of Ext and
Whitehead’s Problem

Let the word group stand here for abelian group, for notational simplicity. A
comprehensive book of set-theoretic methods in Abelian group theory is [EM].

By [Sh:44], [Sh:52] if G is a non-free group and V = L then Ext(G,Z) #
{0}. In Hiller, Huber and Shelah [HHSh:91], it is proved that if V = L, the
torsion free rank of Ext (G, Z) is the immediate upper bound: Min{2/X! : K a
subgroup of G such that G/K free }.

Now in fact not the full power of the axiom V = L is used, just the
satisfaction of the diamond principle for every stationary subset of a regular
uncountable cardinal. Devlin and Shelah [DvSh:65] introduced a weakening of
this principle, and in [HHSh:91] we stated that for the result mentioned above

it is enough that the weak diamond holds for every stationary subset of any
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regular uncountable cardinal. Here we prove a somewhat stronger result, using
failure of cases of Unif, (e.g., x = 2%° suffice). Meanwhile Eklof and Huber
[EkHu] found an alternative proof, more group-theoretic, for the result with
weak diamond (really a slight weakening)

On the difference between weak diamond and failure of Unif, and between
variants of Unif, see [Sh:98] also §1 of this chapter and VIII §4 (where we
show that it is consistent that only one of them holds). On the torsion part of
Ext (G, Z) see Sageev and Shelah [SgSh:138] [SgSh:148]; an alternative proof
to [SgSh:138], more group theoretic, Eklof and Huber [EkHu]; on other car-
dinals Grossberg and Shelah [GrSh:302] and Mekler, Roslanowski and Shelah
[MRSh:314].

2.0 Definition.

(1) A group (G, +) is called torsion free, if for all g € G\ {0}, for all n > 0 we
have ng # 0.

(2) The torsion free rank of an (abelian) group G, ro(G) is the maximal size
of a set {a; : 1 < A} C G such that for every finite non empty S C A, for
all (u; 11 € S) (u; € Z\ {0}), we have 3 uia; # 0.

(3) For g € G and n such that 0 < n < Zue,swe say that “n divides g in G”
(G E n|g) if there is g’ € G such that ng’ = g. A subgroup A C G is called
a “pure” subgroup if for all a € 4, all n, 0 < n < w we have: G F n|a
implies A F n|a.

(4) If A C G is a subgroup, we write G/A for the quotient group, and for
a € G we let a + A or a/A be the equivalence class of a.

(5) G is called divisible, if for all a € G, all n > 0 we have G F n|a.

(6) G is called free if it has a free basis, where (z; : i € T') is a free basis of G

iff every element of G has a representation ) u;z; where S C T is finite
i€S
and u; € Z, and Y u;z; =0=> A u; =0.
i€S i€S

2.0A Fact.
(1) If G is torsion free, A C G a pure subgroup, then G/A is torsion free.
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(2) If G is not a torsion group (i.e. 3a € G Vn > 0 [na # 0]), then the two

cardinals
max{|A|: A C G, for all a; # az in A, all n > 0: na; # naz}
and

min{|A| : A C G, for all a € G there is u € Z, such that ua € A}

are equal to max{ro(G),Ro}.

(3) If G is torsion free non zero, then |G| = max{ro(G),No}.

(4) If G is an abelian group and 0 < n < w then we can find a; € G for
i < |nG| such that i # j = n(a; — a;) # Og, where nG = {na : a € G}.
Note that if G is divisible then |[nG| = |G| as nG = G.

Recall (see [Fu])

2.0B Fact.

(a) If H and G/H are free (so H C G), then G is free.

(b) If G = |J G; where (G; : i < A) is an increasing continuous sequence of
groups,lé',(\) is free and for all ¢ < X the group G,41/G; is free, then G is
free.

(c) f G = U G; where (G; : i < A) is an increasing continuous sequence of
group, é;éh G, is free and for a closed unbounded set of i < X we have
(V5)(i £ j < A= G;/G, is free) then G is free.

After Fuchs [Fu] pp. 209-211:

2.1 Definition. For abelian groups A, H let

(1) Fact (A, H) is the family of functions f: A x A — H such that
f(a,—a) = f(a,0) = f(0,a) =0 and
fla,b+c¢)+ f(b,e) = f(bya+c) + f(a,c) = f(e,a+b) + f(a,b)

(2) We make Fact (A, H) into an abelian group by coordinatewise addition.
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(3) For each function g : A — H satisfying g(0) = 0, g(—a) = —g(a) (we
call such g normal) let (0g) € Fact (A, H) be defined by (9g)(a,b) =
g9(a) — g(a +b) + g(b).

(4) Trans(A, H) is {0g : g a normal function from A to H}, and it is a sub-
group of Fact (A, H) and we make it to an abelian group by coordinatewise
addition.

(5) Ext(A,G) = Fact (A, G)/ Trans (A, G) (quotient as an abelian group).

2.1A Fact.
(1) f h : A — B is a group homomorphism, then h induces naturally a
homomorphism

h : Fact (B, H) — Fact (A, H)

(namely, A(f)((a1,as)) — f(h(a1),h(az))) for a1, az € A which satisfies
h(dg) = 8(g- h) so maps Trans (B, H) into Trans (A, H) and so naturally

induces a homomorphism
h: Ext (B, H) — Ext (A, H)

(satisfying h(f + Trans (B, H)) = h(f) + Trans (4, H)).
(2) If his 1 — 1, then A and h are onto.
(See [Fu, 51.3] for & and [HHSh, Lemma 1] for h.)

2.1B Remark. (See [Fu))

(1) If G is free, then Ext(G,H) = {0} i.e. Trans(G, H) = Fact (G, H).
(2) G is called a Whitehead group if Ext (G,Z) = {0}.

(3) If G is divisible, then Ext (G, H) is torsion free (see [Fu, 52.1 I]).

2.2 Theorem. Suppose ) is a regular uncountable cardinal, H, G = G, are
abelian groups, G; (for i < \) torsion free abelian subgroups of G, |G| = A >
|Gil, G = U,y Gi,Gi(i < X) increasing and continuous, and let x(i) be the
cardinality of Ext (Gi+1/Gi, H). If Unif (A, |H|, x) fails then | Ext (G, H)| > 1.
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Proof. First we remark that we may w.l.o.g. assume that each G; is a pure
subgroup of G (and hence of G;;1): the set C = {i < X : G; is a pure
subgroup of G} is a closed unbounded subset of A, say C = {& : ¢ < A} an
increasing continuous enumeration. Let G = G¢,, X'(i) = | Ext (G}, ,/G}, H)|,
E = {1 : & = i}, then E is closed unbounded and for : € E we have
G, = G, C Giy1 C Gj y so x'(3) > x(i) (by 2.1A(2)), so the failure of
Unif (A, |H|, x) implies the failure of Unif (A, |H|, x’) by 1.4(2) and 1.4(5), and
we can continue the proof with G}, ¥'(i) instead of G;, ¥(i) renaming them as
G;, x(i). Let i = (fi(i) : 4 < A) be defined by (i) = |H|I%, so by 1.6(1) we
get that Unif (), i, x) too fails and we can assume |G,| > |a] + Rp.

Next we prove

2.3 Claim. Let H, A, B be abelian groups, B a pure subgroup of A, f €
Fact (B, H). Then there are f; € Fact (A, H) (for t € Ext(A/B, H)) extend-
ing f, such that

(*) there are no distinct t,s € Ext (4/B, H) and normal functions g, gs from
A to H such that 0g; = f;, 095 = fs and g:[B = g,[B.
In other words, for any normal function gy : B — H there is at most one
t € Ext (A/B, H) such that for some normal g : A — H extending g we
have f; = 0g.

Proof of the Claim 2.3 By 2.1A(2) there is fo € Fact(A, H) extending f.
Let for each t € Ext(A/B,H),h, € Fact(A/B,H) represent t, ie., t =
h¢/ Trans (A/B, H), and w.l.o.g. ho is the zero function. For t € Ext (4/B, H)
let fi € Fact (A, H) be defined by:
® for a,b € A, fi(a,b) = fo(a,b) + hi(a/B,b/B) (where a/B,b/B € A/B are
defined naturally).
Clearly each f; is well defined and belongs to Fact (A, H), (and the two
definitions of fy agree).
Suppose ¢, s are members of Ext (A/B, H), and there are normal functions

9¢,9s from A to H, g, = f,09, = f» and g;[B = g,[B. Let f* < f,— f, ¢
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Fact (A,H), g » 4ef 9t — g5 (a normal function from A to H), so clearly 0g* = f*

and f*|B = 0pg, moreover, f*(a,b) = h*(a/B,b/B) where h* = h; — h, (see
® above). It is also clear that h* € Fact (4/B, H) and h*/Trans (A/B,H) =
t—s#0.

Now if in A, ¢ —a = b € B then h*(a/B,b/B) = f*(a,b) = (09*)(a,b) =
9*(a) — g*(a+b) + g*(b) = g*(a) — g"(c) + g7(b). As b € B,g"(b) = Oy by
“g* = g — gs and g;|B = gs[B” and b/B = 04/B hence h*(a/B,b/B) =
h*(a/B,04/B) = Ou (as h* € Fact(A4/B,G)). So putting together the last
two sentences 0y = g*(a) — g*(c) + Og, hence g*(a) = g*(c).

We can conclude that ¢/B = a/B implies a — ¢ € B hence g*(a) = g*(c).
So there is g' : A/B — H such that g*(a) = gf(a/B). We can check h* = dg',
but h*/Trans (a/B, H) =t — s # 0, contradiction. Oa.3

Continuation of the proof of the Theorem 2.2.

Recall that we assumed that each G; is a pure subgroup of G. We define by
induction on a < A for every n € X X (%) a function f, (note that (i) >1
for every i) such that:

a) fn € Fact(Go, H) (when £g(n) = a)

b) if v =n[B, and B < fg(v) then f, C f,

c) if &€ < ¢ < x(c), then there are no normal functions go, g1 from Gy 41
into H, such that dgo = fy - <¢>, 091 = fn- <¢> and go[Gq = 91[Ga.-

Hence

c)’ for any function go : G4 — H there is at most one £ < ¥(a) such
that there exists a normal function g : G441 — H extending gy with
fn- ey =09

There is no problem in the induction, as the induction step is done by the
Claim 2.3.

In the end, it is enough to prove that: for some 7 € X X () for no
normal function g from G into H do we have f, = 0g. So assume that for

each n € X X () there is a normal function g, : G — H such that f, = dg,.
a<
So also fpra = fpl(Ga X Go) = 0(gnlGa), if £g(n) = a. Hence n(a) can

be computed from (n|a,g,/Gq), since it is the unique (by (c)) € < Xx(a)
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such that there is a normal g : Gay1 — H extending g,[G, and satisfying

finte) - (&) = 0g. What is the cardinality of {(nla,g,[Ga) : 1 € *2}7? Clearly at

most ([T x(8)) x |H|!%! < (] (|H|!9*%l) x |H|I%! = |H|I%! = Ai(a) as
B<a <a

|Gal > || +Ro, we thus easily get that Unif (A, fi, x) holds, which is equivalent
to Unif (A, |H]|, ). This contradicts our assumption. Os.o

2.4 Theorem. Assume ) is regular uncountable, H, G are abelian groups, G;
a torsion free abelian subgroup of G increasing continuous with i for i < A
such that G = |J Gi. Let x° = (x°(3) : i < X) be defined by x°(i) =
| Ext (Gi+1/Gi,Hz)<|/\and let x! = (x'(i) : i < A) be defined by ¥!(i) =
| Ext (Git+1/G:)/Torsion( Ext (Gi;1/G;, H))|. Let £(x) < 2 and assume that
Unif (X, |H|, x*™)) fails (note: x!(i) is Ro X ro( Ext (Gi+1/G;, H))).
(1) Ext (G, H) is not a torsion group provided that
(*) (a) £(x) =1or

(b) £(*) = 0 and the Boolean algebra P(\)/Id — Unif (A, &, ¥!) is

infinite.
(2) If Unif (A, po, |H|, X°) fails and (%) of part (1) then the torsion free rank of
Ext (G, H) is > po.
(3) Suppose Id — Unif (A, |H|,%°) is not k-saturated, Ro < k < X then the
torsion free rank of Ext (G, H) is at least 2%.

Remark. 1) An ideal I on X is called k-saturated if there are no s pairwise
disjoint non zero elements in the Boolean algebra P(\)/I.

2) An ideal I on ) is called weakly A-saturated if there are no \ pairwise disjoint
sets in P(A\) \ I.

3) As is well known; if I is k-complete the two notions are equivalent.

4) It is well known that the extra hypothesis in 2.4(3) is very weak (i.e. the
assumption that there is a normal s-saturated ideal on A has high consistency

strength and put other restrictions on A e.g. A not successor).
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Proof. (1) As in the proof of 2.4 w.l.o.g. each G; is a pure subgroup of G, hence
Gu, Gat1/Gq are torsion free. Also |G;| > Ny, and letting fi(i) = |H|I%! also

Unif (A, i, )'(l(*)) fails. Now we prove two claims:

2.5 Observation. There are pairwise disjoint S, C A\,n < w such that
Unif (A, Sp, i, X) fails, provided that one of the following holds:

() A(i) <2*

(B8) P(A\)/Id — Unif (A, &, ) is an infinite Boolean algebra

(7) A(%) non decreasing, A not measurable.

(0) X(a) > 2 for every o or just for every normal ultrafilter D on A, {a :
x(a) > 2} € D.

Proof. If clause () holds, this is very trivial. If the Boolean algebra P(\)/1d —
Unif (\, &, X) is atomless below some element, say S/Id — Unif (), i, x) we
choose by induction on n a set S, C S such that S,/Id — Unif (A, i, %)
is not zero and S, € S\ U S¢, and S\ U Se ¢ Id — Unif (A, &z, %), so

<n <n
(Se : £ < w) is as required. If P(A)/Id — Unif (A, &z, k) is an atomic Boolean

algebra, it has infinitely many atoms say (S,,/Id — Unif (A, i, X) : n < w) are

e def .
disjoint atoms, so S, = S, \ | S, are as required. So assume clause (a), so
<n

by 1.7 w.l.o.g. u; = 2<*. By induction on n try to choose pairwise disjoint sets

Sn, € P(\)\ Id — Unif (\, 5, x) such that A\ U Sk ¢ Id — Unif (A, 1, X)-
k<n

Assume that we cannot continue the induction in stage n, then clearly S’ def

{a < X : x(a) = 1} belongs to the ideal (by 1.4(1)), hence the restriction of

Id — Unif (A, @, %) to S def A\ U Sk is a maximal ideal. Since it is also normal
k<n
by 1.9(2), A must be measurable and the dual filter is a normal ultrafilter

to which S belongs. So (s holds. Now it is easy to find disjoint stationary
sets S, C S, n < w such that for all n the statement {(S,) holds (e.g. let
(Xq: a € S) be a diamond sequence, and let S, = {a : Min(X,) = n}). Since
&a(Sp) implies the weak diamond on S, i.e. = Unif (), 2,2,2) (by 1.3) by 1.7
also = Unif (), 2<*,2<*,2) hence by monotonicity (1.4(5)), we are done.

The proof when clause () holds is included in the proof above. Os 5
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2.6 Claim. Let H, A, B be abelian groups, B a subgroup of A, A/B torsion
free and f € Fact(B,H) andn, 0 < n < w.
(1) Then there are f; € Fact (A, H) for i < x = |Ext (A/B, H)| such that:
(*) there are no i < j < x and normal functions g;, g; from A to H such
that 0g; = nf;,09; = nf; and g;[B = g;|B. This means that for
every normal gy : B — H there is at most one i < x such that for
some normal g : A — h extending go we have nf; = dg.
(2) Then there are f; € Fact(A,H) for i < (the torsion free rank of
Ext (A/B, H) multiplied by Ro) such that
(#*) There are no i # j and functions g;,g; from A to H and 0 <m < w
such that mf; = 0g;, mf; = 0g; and g;[B = g;[B.

Proof. (1) As A/B is torsion free, Ext (A/B, H) is a divisible abelian group
(see [Fu]), hence we can inductively find t; € Ext (A4/B, H) for i < x such that
i < j implies n(t; — t;) # 0 (see 2.0A(4)). Now repeat the proof of Claim 2.3.
(2) We can choose a sequence (t; : i < 7o( Ext (A/B, H)) x o) such that for
m < w if mt; = mt; and m # 0 then i = j (this is possible by 2.0A(2)), and

continue as in 2.3. Lae

Continuation of the Proof of 2.4(1). Let us first assume 4(x) = 0 and the
Boolean algebra P()\)/Id — Unif (X, &, ¥°) is infinite (i.e. possibility (b) holds).
Let S, C A (for n <w) be as in Fact 2.5, and w.l.o.g. A =, Sn-

Let us define by induction on a < X for every n € Xi<a x (%) a function f,

such that

a) fp € Fact (Gqo, H) (when £g(n) = a)

b) if v = n[B, 8 < £g(v) then f, C fp.

c) ifa € 8,6 < (< x(a) and n € Xi<a X (i) then there are no normal
functions go, g1 from G4 into H such that dgo = (n + 1) fy - <¢>, 091 =
(n+1)fy-<¢> and golGa = 91[Go.

Hence

c) fae S, and n e X x°(i) then for every normal gg : G, — H there is

at most one &€ < X(Z)asuch that for some normal function g : Go41 — H

extending go we have (n 4 1)f, - ¢y = 9(g)
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There is no problem in the induction as the induction step is by Claim
2.6(1), and we finish as in the proof of 2.2.

If we do not assume (x)(a) but rather (x) (b), we have to use 2.6(2) instead
of 2.6(1) and let S, = A for n < w (so in clause (c) above, the demand is for

every a < A\, n < w).

Proof of 2.4(2). As in the proof of part (1) w.l.o.g. G; is a pure subgroup of
G, infinite. Let & = (fi(i) : 4 < A) be defined as: i(0) = po x |H|!%!, and
A(i) = |H|!G, and again as in the proof of part (1) also Unif (), i, X°) fails.
Note that z(0) > N,.

We define f;, as in the proof of 2.4(1). If the torsion free rank of Ext (G, H)
is < po, then there are t* € Ext(G,H) (a < o) such that for any t €
Ext (G, H) , for some n > 0 and for some o we have nt = t* (note that w.l.o.g.
to > No by the proof of 2.4(1)). So there are g® € Fact (G, H) for a < py, so
that for every f € Fact (G, H) there are ny > 0 and a function g5 from G to
H and a(f) < po such that

ngf =dgs + 9%

In particular this holds for every f,,n € X . First assume (x)(b),

X (i
so we have defined the S,’s. So for each n € )1(<;\((z), for each 1 € Sy, and
"1 G; — H satisfying 09’ = f,[|G; we havze<)1‘7(i) can be computed from
(a(fn),nli) as
(*) “the unique & < ¥%™) (i) such that for some normal g : G;; — H, and we
have s X fy15- ey = 0g + g*(Fn1e)
This contradicts - Unif (A, &, ) (which was deduced above). If we assume (*)(a)
holds just replace “i € S,,” by “i < A\” and use 2.6(1) rather than 2.6(2) and

in (*) replace “and we have nyx” by “and for some n we have nx”

Proof of 2.4(3).

As in the prove of part (1) w.l.o.g. G; is infinite pure subgroup of G and
Unif (A, 1, X°) fail with (i) = |H|!%l. Let (S? : i < k,n < w) be pairwise
disjoint subsets of A which are positive modulo Id — Unif (A, |H|, %), and
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let S; def U SP. Using a lemma similar to 2.6(1) we can define a family
0<n<w

(hy :m € *>2), hy € Fact (Gyg(n), H) such that:
whenever o € S (son > 0), x(a) > 1, n € *2, g : Gay1 — H is
normal and n(hy - () — hyn- (1)) = 99, then g[G4 # 0.

For each n € *2 we thus get a function h, = |J hyja € Fact(G,H). Be-
a<A

low we will select 2¢ many 7 € *2 such that the corresponding hy witness
ro( Ext (G, H)) > 2~.

Let (A; : € < 2%) be subsets of k such that for any &; # €3 the set A., \ A,
is nonempty.

For each i < K, n < w define F* on |J 22 x ®2 x G=H as follows: if 1,
a€ST
N2 € *2, go : G4 — H is normal, o € S?* and there is a normal g% : Goy1 — H

extending g¢ such that
n(hny ~ (0) = by~ (0)) = 09"

then F*(n1,m2,90) = 1, otherwise F*(n1,72, g0) = 0.
Since S?* ¢ Id — Unif (A, fi,2) we can find a weak diamond f}* for F]* and
S (so only fI[SP* matters).
Now for € < 2 define 7(¢) € *2 by
fiy) ifyeStieA
n(e)() = {

0 otherwise.

We now claim that for all €1 # €9, for all m > 0
Nhy(e,) # Nhy,) mod Trans(G, H).

(This claim will finish the proof of 2.4(3).)

So assume that nh,c,) — nhy,) = g for some normal g : G — H. Let
m def n(e1), n2 def n(e2). Choose i € A, \ Ae,. Since f* was a weak diamond
for F* on S}, the set

{a e St : F'(mla,mla, gla) = fT'(a)}



972 Appendix. On Weak Diamonds and the Power of Ext

is nonempty, so let a be an element of this set.
Case 1. fMa) = 1.

So there is normal g’ : G441 — H such that
n(hny, - 0y — hay - (0y) = 09’ and ¢’ extends g[Gaq.

But we also have

n(hm [(at+1) = hnzr(a+1)) = 0(91Gay1)-

Note that n1(a) = fi*(a) = 1, m2(a) = 0, since o € SP, i € A, \ A.,. So

subtracting the two equations above, we get

n(hy, - ©) = hny 1)) = 0((9" — 9)1Gat1).

Since ((¢' — 9)[Ga+1)[Gq = 0, this contradicts our choice of (h, : 7 € *>2).
Case 2. fi*(a) =0.

So there is no normal ¢’ : G,4+1 — H satisfying
NPy, 0) — By - (0y) = 09’, ¢’ extends glo.

This is a contradiction, since g’ def 9lGqay1 satisfies the requirements (as

n(a) = n(a) = 0). U4

2.7 Conclusion. Assume that
@ for every regular uncountable A, for all stationary subsets S C A, the weak

diamond holds on S, or just Unif (), 5,2, (21 : i < \)) fails.

Then

(a) Every Whitehead group is free.

(b) If G is torsion free but not free, uncountable and for all subgroups H of
cardinality |H| < |G| the quotient group G/H is not free, then the torsion
free rank of Ext (G,Z) is 2!€I.

Remark. 1) If there is no inaccessible cardinal then & is equivalent, by 1.7(2),

to
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@' for every regular uncountable A, for every stationary subset S of ), the
weak diamond holds for S, that is Unif (A, S, 2,2).

2) We can get a weaker version, still sufficient for our theorem, if we restrict

F in the definition of Unif to the particular kind of functions implicit in the

proof. See generally on such version of the weak diamond in [Sh:576, §2].

Proof. First note that (b) implies (a). Indeed, let G be a nonfree Whitehead
group of minimal size. The countable case is well known (see below) so assume
|G| > No. Then G is almost free, so all subgroups H such that |H| < |G| are
free, hence G/ H is not free (by 2.0B) so G satisfies the assumption of (b), hence
its conclusion so | Ext (G,Z)| > 1.
Proof of (b). We prove by induction on .

The case |G| = Ry is well known (see e.g. [HHSh:91]) and the case |G| is
singular is just like [HHSh:91]. So assume A = |G| is regular > Ry.

Let G = |J G, with G, a continuous increasing in v, each G, a pure
subgroup of G’Yo<f)‘size < A such that:
(x) If G/G, is not almost free i.e. if (38)(y < B < A & G3/G. not free), then

G.+1/G~ is not free.

Let
S = {v:Gy+1/G, is not free}.

X =(x(@):i<A)
X(1) = ro(Ext (Gy41/G+, Z) x Ro

Note that by induction hypothesis for all v € S we have x(y) > 2 (in fact
> 2Ro),

If S is stationary, then S can be divided into A many stationary sets
(S; : i < A). By our assumption, all the sets S; will be # 0 mod Id —
Unif (},2,2,2) = Id — Unif (A, Ro, Ro, 2), so by 2.4(3) we know that Ext (G,Z)
has torsion free rank 2*.

If S is not stationary then by (*) we have a continuous increasing sequence

(i< A, Uvi=Awithi <X = G,,,,/G,, is free. Then it is easy to
<X
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see that G/G,, is free (see 2.0B, clause (c)), contradicting an assumption (of
clause (b) of 2.7). Uo7

A more detailed analysis of the situation shows that for a given group G of
cardinality A (regular uncountable), we do not need the full strength of 2.7®
(assuming the induction hypothesis of 2.7(b)).

2.7A Theorem. Assume G satisfies the assumption on G of clause (b) from
2.7, |G| = A, X regular uncountable and that all groups of size < A satisfy
2.7(b) or just: |H| < A, H not free = Ext(H,Z) # 0. Let G = |J G, be an
increasing union of (w.l.o.g. pure) subgroups of G, and let <

S§* C {i < A: Gi+1/Gi is not free}.

(Note that S* is stationary since G is not free.)

Now assume that S* is not in Id — Unif (A, 2,2,%), xi = Ext (G;+1/Gi,Z) (so
i € S* = x; > 2) and 1 € S*, i inaccessible = Ext(G;41/G;,Z) = 2°. Then
ro( Ext (G, Z)) = 2*.

Proof. As remarked in 2.0 ([Fu], or see essentially [HHSh:91, Lemma 1 p.41]) if
G' is a subgroup of G, then Ext (G', H) is a homomorphic image of Ext (G, H),
hence the torsion free rank of Ext (G, H) is not smaller than the torsion free
rank of Ext (G, H) , so we shall freely replace G by some subgroups during
the proof.

We split the proof to cases.

Case I: G has subgroups G*,G4(a < \) such that:
|Gal < A,G* C Gy, Gy /G* is not free and {G, : @ < A} is independent over
G*, (ie, if n € (0,w) and z,, € G,,, \ G* for m < n, the a,,’s distinct then
YomenTm ¢ G*). Wlo.g. G =3 G,.

We choose, for any n < wo:a < A, a function f7 € Fact(Go/G*,Z)
such that f0 = 0, and for n # 0 we have nf?/Trans (Go/G*,Z) # {0}. Let
F :w x X — ), be one to one onto. Let {4; : i < 2*} be a family of distinct



§2. On the Power of Ext and Whitehead’s Problem 975

subsets of A, and define, for i < 2*, a function & : A\ — w by: &i(a) = nif
for some ¢ € A;, a = F(n,2() or for some {( € A\ 4;, a = F(n,2¢( + 1), and
&i(a) = 0 otherwise.

So we have defined functions &; (for i < 2*), from X to w, such that for
every n < w and i # j < 2* for some a < X we have &;(a) = 0, &i(a) =n.

For every i < 2* we define h; € Fact (Y, ) Go,Z): if 2 = 3 Ta,y =
Y aVa and ZTo,yq € G4 (s0 z; = y; = 0 for all but finitely many 4’s) then
hi(z,y) = >, fa‘(a)(xa/G*,ya/G*) (the representation x = ) x4 is not
unique, but for any two representations z = }__ zo = 5., T}, we get 7,/G* =
x},/G*, so h; is well defined).
It is easy to check h; € Fact (3, Ga,Z).

Now if the torsion free rank of G (= Y., Ga) is < 2*, there is an n,
0 < n < w such that {nh;/ Trans(G!,Z) : i < 2} has power < 2*. We
know that 2!C71 < 2* (if 2171 = 2} then letting ¥(a) = f(a) = 2 we get

Il x(a) = I £&(a), so Unif (A G, x) holds by 1.4(4)) so without loss
a< a<|G*|

of generality (by renaming ) nh;/Trans(G,Z) are equal, for i < (2/G°1)*.
Hence there are normal functions g; : G — Z such that nh; — nhy = 9g;
for i < (2/¢71)*. Now the number of g;[G* is < (2/¢!), hence without loss of
generality for every i such that 0 < i < (2!¢"1)* we have g;]G* = g*.

We can choose o < A such that & (a) = 0, &(a) = n. Now restricting
ourselves to Gy, note for some k (namely k = &(a)), ho[(Go X Go) = f¥ and
(h1 — ho)[(Ga X Go) = f& — %, (ha — ho) [(Ga X G4) = f* — f% and now we

can apply the proof of Claim 2.3, and get a contradiction.

So we have finished Case I.
* * *

Let from now on, G = {J,., G, G increasing and continuous, |G;| < A,
all G; are pure subgroups of G, hence all the quotients G/G; are torsion free.
2.8 Subclaim. If Case I does not hold, we can assume that:

(a) for every v < A, there is no Gt, G, C Gt C G, |Gl| < A, GTNGy1 = G,
and G1/G,, is not free.
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(b) for every limit &, G/Gj is (cfd)-free, except, maybe, when cf(§) = Ro.

Proof of the Subclaim. We define by induction on i < A, a; < A, increasing and
continuous.

Let ap = 0, and for a limit i let a; = (J aj. If o4 is defined let

J<i
{G% : ¢ < ¢} be a maximal family of subgroups of G, satisfying: Go, C

¢ |GEl < X, G%/Ga, not free and {G : ¢ < (;} is independent over Go,; such
a family exists by Zorn’s Lemma and (o < A as Case I does not hold.

Let a;41 = Min{a : @; < a and G C G, for every ¢ < (;}.

We know that ;41 exists as A is regular, !GZ.| < A, ¢ < A Also there is
no Gt,G,, C G' C G, |G| < \,GI N Gq,,, = Gq, and Gt/G,, not free, as
this would contradict the choice of {G’( 1 ( < ¢} as a maximal family.

Now we can replace (G4 : @ < A) by (Ga, : i < A) and clause (a) of the
subclaim will hold, so without loss of generality (a) holds, i.e., o; = i. What
about (b)? Now we will show that (a) implies (b). So assume that G/Gs is not
cf(6)-free, where cf(8) > No. Let G* /G5 be a non-free subgroup of cardinality
k < cf(8). Let {z; : j < K} be a set of representatives, and let K be the group
generated by this set. Clearly |K| = k (k > Rg, as G/Gs and hence G*/Gj;
are torsion free). So there is an ordinal v < 4 such that Ks N Gs C G. Hence

(Ks + Gy) N Gyy1 = G, and
(Ks + G.y)/G',y > Ks/KsNGy = Ks;/KsNGs 2 (Ks +Gs)/Gs = G*/Gs
is not free. This contradicts condition (a) for 7. Oog

Continuation of the proof of 2.7A Recall S* C {y < A : Gy41/G, is not free}

and let S & {y € S* : ~vis aregular limit (i.e. inaccessible) cardinal}. Let

X =(x(7):7<A), x(7) = |Ext (Gy41/G+, Z)|

Case II: not Case I and S*\ S ¢ Id — Unif (), Ro, X)-

We can use 2.4(3), because of the following well-known theorem:
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Theorem. Assume ) is regular, D a normal filter on A\, S° # @dmod D and
§ € S = cf(6) < § (i.e. 6 not a regular cardinal). Then there are pairwise
disjoint S, C S%(a < A), Sy # Omod D.

Proof.
Clearly cf(—) is a regressive function on S°\ {0}, hence for some x and S C S,
S # dmod D, (V8 € S*)[cf(6) = ). For each § € S, choose (a(4,&) : € < k)
an increasing continuous converging to 4, and let A¢ ; = {6 € S* : a(6,&) = j}.
Now we can prove that for some £ for A ordinals j we have A ; # Omod D,
and as A¢ ;N Ag,; = 0 for i # j we will finish.

So we have finished Case II.

Continuation of the proof of 2.7A

Case III: S*\ S € Id — Unif (A, Ro, X).
So by our assumption S ¢ Id — Unif (A, Ro, ). Note that by an assumption
we have S*\ § € S = x(§) = 2%.

We first state (and prove later).

2.9 Subclaim. Assume G°,G! are torsion free, G° a pure subgroup of G!,
fi € Fact(G° Z), for i < x and the torsion free rank of Ext(G!/G°,Z) is
> X > x and A > Ng. Then we can define f; , € Fact (GY,2Z), fi C fi,a for
a < A such that:

(*)if B#v<xand 0<n<wand g:G® — Z is a normal function then for

at most one a there is a normal function gt : G! — Z extending g, such that

nfga— nf'y,a = agT-

Continuation of the proof of 2.7A

So let us prove the theorem in Case III. We define by induction on 7 < A, for
every 7 € X Xi and A C i, a function f, 4 € Fact (G, Z) such that

a) i j < ta(n),n € X, X(7), A C i then fyrjang = fr,al(Gy x Gy)

b)ifn e Xj<i+1X(]) A BCi+1, Ani=BnNithen fya = fy5-

c)if 6 € S (so x(8) = 219 ne)( s X(7),AC 8 BCég:Gs—Zis normal
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and 0 < n < w then for at most one j < x(6) there is a normal g : G511 — Z
extending g such that nf,-y 4 — nfy-(y,8 = 09

There is no problem in the definition: for ¢) use the subclaim 2.9, remembering
§ € S = x(6) = 2. Now for at least one n € X <>‘x
A,BCXand 0 <n <w,nfya—nfyp ¢ Trans(G,Z). Otherwise for every
n e Xi<)\§_(i) there are A, # B, C A and 0 < n, < w and g, : G — Z such
that

, for every distinct

Ny fn,a — o fn,B = Ogn

By condition c) above, for every ¢ € S, from ny, fn A[(G5 X G5) = fn15,406,
fn,BI(Gs x Gs) = fn1s,Bns and g, [Gs we can compute 7(8), so this contradicts
S #0 mod Id — Unif (X, N, X). Now for such an 1, {f,.4 : A C A} exemplify
that the torsion free rank of Ext (G,Z) is > 2. O2.74

Proof of the subclaim 2.9.

Let {(i¢, a¢) : ¢ < A} be alist of all pairs (i, ), < x,a < A, and we define
fi¢,a by induction on (. Suppose we have defined f;, o, for every £ < (,{ <A
and they are required, and let us define f; q..

Let {t(j) : 7 < A} be members of Ext(G!/G° Z) such that nt(j;) —
nt(j2) # 0 for n > 0, j1 # j2. By Claim 2.6(2) there are f7(j < A) such that:
f? € Fact (G*,Z) extend f; , and there are no n > 0, j(1) # j(2) < A and
normal g : G! — Z such that nfi) —nfi) = dg and g/G°® = 0.

We can try to let fi o = f7 for any j < X and assume toward contra-
diction that it always fail. The only thing that can go wrong is (*) from the
subclaim. So for every j there are (;,7;,n; > 0 and normal g; : G° — Z
and aj # o and normal g} : G' — Z,97 : G' — Z extending g; such that
{(8;,02), (13,0), (85,02, (13,02} € {(ic,a¢) : € < 5} and letting fi o = 7

we have:

(**) njfﬂj)a]; — njf’)’j,a]l. = 8g31 and njfﬁj,a? - njf'Yj,a? = 3912
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Now there are A ordinals j and only Ro X |[¢ +1| x [+ 1| x [+ 1] x[(+1] < A
possible 5-tuples (n;, B;,7;, a;, a?): so without loss of generality for j < w we
have the same n, 3,7, a1, az. Also by the induction hypothesis, at least one of

{(ﬁ»al)r (77 al)a (/Ba (12), (77 02)} is not in {(iﬁ’aﬁ) : é' < C} hence is (iC’aC)a SO
by symmetry without loss of generality (8,a1) = (i¢,a¢). As 8 # 7,00 # og

clearly {(v,01),(8,a2),(7,a2)} C {(ig,a¢) : € < (}. So for each j < w

(subtracting the equations in (**)) we have:

nfj —Nfya — nfg,a; + Nfya; = 6931' - 8932' = a(g]l' - 932)
Subtracting the equations for j = 0,1

nfl —nf® = (g} — g2) — 0(gp — 98) = 891 — g5 — 95 + 92)

clearly (g1 — ¢?)1G® = 0 and (g§ — g%)IG® = 0 so we get a contradiction to the
choice of the fi’s. O

Now similarly to [HHSh:91] by our proof:

2.10 Conclusions. If @ of 2.10 holds, G a torsion free group, A = Min{|GT| :
G/G" is free }, then Ext (G, Z) has torsion free rank 2*.

Remark. The use of Z instead H in 2.13, 2.10 is just for simplicity.

How strong are the assumptions of theorem 2.77
Unlike the full diamond, the weak diamond has only little influence on
the behavior of the exponentiation function k +— 2%, as the following theorem

shows:

2.11 Theorem. Assume V F GCH, F is a function defined on the regular
cardinals, F/(A) a cardinal, (VA)cf(F(X)) > A,

® VA[ Y. F(p) < F(N)] (so in particular F is strictly increasing).
nE Reg NA
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Let P; be Easton forcing for F. (So (VA € RCar)[VFF E 2} = F())].)
Then VFF £ VA regular, VS C ) stationary, - Unif (), S, 2,2,2) holds.
(Note that for inaccessible A, 2<X = 2* implies the failure of the weak diamond,
so ® is a reasonable hypothesis.)
Proof. Recall that Easton forcing Pr = [] P, with Easton support (i.e.

AeRCar
bounded below inaccessibles, full support below non-inaccessibles), where

Py = {F : Dom(f) € [F(\)]<* and Rang(f) C {0,1}}.

So fix A and a name S for a stationary subset of \. We will work in V; def

VH~>AP'°. Note that V; satisfies GCH up to A, as [[ P« is A*-closed, hence
K>A
does not add any subsets of A\. So we have to deal with the forcing P° x Py,

where PO H}\ P,. Let F be the name of a function, IFpoxp, “F': A>9 597,
u<

Dom(F) is in V{f °, as Py adds no bounded subsets to A. Since P x Py satisfies
the A*-c.c., we can find a set A C F()\), satisfying |F(\) \ A| = X such that F
and S are PO x (Py[A)-names, where Py[A % {f € P, : Dom(f) C A}. (We
can even find such A of size \.)
Assume that p IF “ there is no weak diamond on S for F”.

We may also assume p € P° x (P\[A), and for notational convenience
assume A = [\, F(X)).

Let f : F(\) — 2 be the name for the generic function for Py. We claim
that d &f faTA is a weak diamond for F' on §. So assume that 7 is a P° x P,-

name such that

def

plk“ne*2,C1 = {a: F(nla) # fa(a)} € Dy’

Let N = (N; : i < )\) be a continuous increasing sequence of elementary

submodels of H(x) (for some large enough x) satisfying

(Vi < N[N +1) € Niga]
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Qla b, U: ‘.31 Ey GNO-
Define a name Cy by
IF “Cy ={a: No[Gpoxp,|N A= NayNA=a}".

Since C is the name of a club set, we can find an ordinal § and a condition

g > pin P° x Py such that
ql-“6e SNCyY.
As g - “6 € §” clearly the set J5 C P° x Py[A is predense above g where
Js = {r € P° x (P\lA) : r forces that § € S}.

As q IF “5 € Cy”, clearly for every a < § the set Zs o, C P° x (Py[(0 U A)) is

predense above g, where
Ts5.0 = {r € P° x (P\[(§U A)) : for some 3 € (c,9) r forces that 8 € C1}.

Why? Let G C P° x P, be generic over V, and g € G, so § € C3[G] hence
N;5[GJNA =6 C N, so there is 8 € (o, §) NC1[G] hence for some p € N5[G]NG
we have pIF “B € C1”",s0p € L5, NG.

Define ¢’ € P° x Py by ¢'IP? = q[P?, ¢'I Py = q[(P\[(6 U A)). It is clear

that also J5 and Zs o (for a < §) are predense above ¢’ hence
q Ik “6 € S and § = sup(Cy N J) hence § € C,”.
(Alternatively for every (P® x Py)-name 7 € Nj of an ordinal < X the set

I, ={pwpe PP x Py and p[Py € P\[(6 U A) and p forces a value to 7

which is v, , and is < &}
is predense above ¢’, hence

dIF5eSnCy.
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So since IF “Cy € Np[G] C Ns5[G]”, we also have ¢’ IF “6 € C1”.)

But now we can extend ¢’ to a condition ¢” forcing a value to F(nla), say £*,

again by the choice of A w.l.o.g. ¢ € Py x P[(6 U A). Now we can extend ¢”

to a condition forcing f (a) = £*, a contradiction. O 11
The following variation of the weak diamond is also sufficient for our

purposes (see more in [Sh:576, §1, §3]).

2.12 Definition. 1) We say F : *>2 — 2 is “u-definable” if for some Y C ),
for every § < A, n € %2 we can compute F(n) in L[n,Y]. If u = X\ we may omit
it.

2) We say F is “weakly definable” if it is u-definable for some p < 2*.

2.13 Remark. 1) For the proof of 2.7A it is enough to have the weak diamond
for all weakly definable F'. (We let the set Y code G, (G4 : a < A), H, and for
each & where G,+1/G, is not free, Y computes a function f € Fact (Gay1, H),
fl(Gqax Gy =0, and in V there is no g € Trans (Gat1,H), 9[Go =0, f = dg.
See [MkSh:313] for a related argument.)

2) Now all Eastonvforcings P; (not just the ones satisfying ® from Theorem
2.11 stating with universe satisfying GCH) satisfies: in V7 the definable weak

diamonds hold for S C A whenever A is regular uncountable, S stationary.

83. Weak Diamond for Ry Assuming CH

3.1 Definition. Let X be a cardinal and S C A. The sequence 7j = (ns : 6 € S)
is called a ladder system if for all 6 € S, ns = (n5(2) : ¢ < £g(ns)) is increasing
and cofinal in . We say that 7 is continuous if each 75 is continuous.

7j has the uniformization [alternatively: club uniformization] property if:
Whenever ¢ = (c5 : § € S) is a sequence of functions cs : £g(ns) — 2, then we
can find a function A : A — 2 such that for each § € S the set

{2 < tg(ms) : cs(i) = h(ns(i))}
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is cobounded [alternatively: contains a closed unbounded set]. (In this case we

say that h “uniformizes” ¢.)

3.2 Remark.

(1) If 77 is a ladder system on S then we can thin out 7 to a ladder system 7’
on S satisfying £g(nj5) = cf(d) for all § € S. Moreover, if 7 was continuous,
and if 7 had the uniformization property, then also 77 will have it.

(2) If 2% < 2M1 then no ladder system on S} ef {6 < Ry :cf(8) = No} has

the uniformization property.

Proof of (2). {From 2% < 2% we conclude that Unif (Ry, 2, 2%°) fails (by 1.10).

Let =* be the equivalence relation on “2 defined by f =* g iff Vk In > k such

that f(n) = g(n). Let A o @2/ =* be the set of equivalence classes. By the

failure of Unif (R;,2,2%) we know that

(x) VF :91>2 — A3h 1wy — AVg : wy — 2 [{a: F(gla) # h(a)} stationary].
Fix a ladder system 77 = (ns : § € S}). We will show that 1 does not have

the uniformization property. Let
F(s)=(sons/ =*) € Afor s € “”2.

Let h:w; — A be as in (), and let h : w; — 2 be such that

Define ¢s : w — 2 by cs(n) = h(6)(n). Now check that ¢ = (c; : § € S})

witnesses the failure of the uniformization property of 7. O35

Recall that S2 ' {i < Ry : cf(i) = X }.
In this section we will consider continuous ladder systems on S%, and we ask

the following

3.3 Question. Can 7 = (15 : § € S?) have the (club) uniformization property
(with ns increasing continuous with limit 4, of length cf(4))?
We shall answer this question negatively even for club uniformization

property in Conclusion 3.7 assuming 2%° = R;.
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3.4 Why only for continuous 75?. The reader may ask what happens if
we waive the restriction that 75 be a continuous sequence and require just
ns which is cofinal in §? By works of the author (see in [Sh:80], Steinhorn
and King [SK] and [Sh:186] and very lately [Sh:587]) even assuming GCH a
sequence (75 : § € S?) may have the uniformization property. But if we require
e.g. each ¢5 to be eventually constant, for every ns which enumerates a club
of 4, we have consistency. Also if we restrict ourselves to (ns : § € S) where

S C S%, S\ S stationary we have consistency results.

3.4A Discussion. This shows the impossibility of some generalizations of
MA to Ri-complete forcing notions. Why? Suppose 7 = (ns : § € S?), ns
is increasing continuous with limit &, and ¢ = {(cs5 : § € S?), ¢; € “12. We
define P; : = {p: p = (u,i,d, f) = (uP,P,dP, fP) where u is a countable subset
of S?, i a successor ordinal < wy, d = (ds : § € u), d§ a closed subset of
i, f is a function from Dom(f) = {ns(j) : § € u,j < i} to {0,1} such that
jeds &6 €u= f(ns(3)) = cs(j)} ordered by p < ¢q iff w? C ud, P < 9,
[0 eur =df =dini], fPC f9, and i? < i9 & 0; € uP & &3 € uP &d; # 6y =
{ns,(4) : 5 € [i%,w1)} N {55 1 J € 1% w1)} = 0.

So:

(*) if the answer to 3.3 is no as exemplified by ¢, then there is no directed

G C Pj; : which intersect each Z5; = {p € Py : 6 € uP and i < iP and

di \ i # 0} which is dense.

So any generalization of MA as above necessarily does not include Pj ¢,
which is a quite nice forcing notion: it is N;-complete, and can be divided to
N formulas, each Ri-directed.

3.5 Convention. Let F' denote a function from

{h : h a function, Dom(h) C wy is countable, Rang(h) C 2} into 2 = {0,1}.

3.6 Theorem. 1) (2% = X,): For any function F and 7j = (75 : § € S?) as in
3.1 there is (ds : 6 € S%),ds € “12, (we can call it a weak diamond sequence)

such that for any h : wy — 2, for stationarily many § € S?, for stationarily
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many ¢ < wi,
ds(i) = F(hi{ns(4) : 5 < i}).

2) Suppose

(a) 0 < k = cf(k), 20 = 2<% = K (so k = K<¥).

(b) S={8 <kt :cf(d) =~}

(c) for each § € S,n; is a strictly increasing continuous function from « to §
with limit 6.

(d) F is a function with domain {h : h a partial function from k% to {0,1} of
cardinality < x} with range {0,1}.

Then we can find (ds : 6 € S), ds € *2 such that for any h : k¥ — {0,1} for

stationarily many & € S for stationarily many i < k we have

ds(i) = F(hIRang({ns(j) : j < 1})).

3.6A Remark. Note the “j < 1” rather than “j <¢” in part (1).

3.7 Conclusion. (CH) 7j = (ns : § € S%) does not have the club uniformization
property.

Proof of 8.7. Let F(h) be h(MaxDom(h)) if defined, zero otherwise. By 3.6
there are for F, 15 a sequence (ds : § € S?) as there; let c5(i) = 1 — d5(4).

Proof of 8.6. We prove part (1) as (2) has essentially the same proof. Let A
be big enough (e.g., (2¥2)*), and M* be an expansion of (H()), €) by Skolem
functions (if it has a definable well ordering it suffices).

Suppose 7, F' form a counterexample. It is known that there is a function
G from {A : A C wy,|A| < Ro} to wy such that G(A) = G(B) implies
A, B have the same order type and their intersection is an initial segment
of both (e.g. if hq : & — w; is one-to-one for a < wy, we let Go(A) def
{(otp(A N a),otp(A N B),hg(a)) : « € Aand § € A}. Now Gy is as required
except that Rang(Go) € wi but |Rang(Go)| < Ry so we can correct this).
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We now define a procedure for defining for any p € H()), (c§ : § € S?)
where ¢f : w; — H(w1), which we shall use later.

For every 6 € S%, i < wy, let Ng’ﬂ. be the Skolem hull of {4,7,p} in M*,
and let

® ) 4 ( isomorphism type (N§:5p,6,4), G(Ng,; N Ry)).

Remarks. 1) The model of (N};,p,d,i) is not in H(R;), but since Ny, is
countable we can assume its isomorphism type does belong.
2)(N, g: D, 1,0) is N 5, , expanded by three individual constants.

Now remember we have assumed F, 7 form a counterexample. So for every
cs € “12 (6 € S?) there is hs : we — 2 such that for a closed unbounded set of
§ € 5%, for a closed unbounded set of i < wy, c5(i) = F(hs[{ns(j) : j < i}).

Now we can easily replace 2 by the set “2 as follows.

For h a function into “2, let A" be Al"l(i) = (h(i))(n) for i € Dom(h).
Define F* by: F*(h) = (F(hI™) : n < w); now if we are given (c5 : § € S?)
where ¢s € “1(¥2), ie., ¢5 : w; — “2, s0 c!;"] € “12 is well defined for each
6 € S? and let hl" : Ry — 2 be such that for a club of § € S? for a club of

1 < w; we have
c™l(6) = F(h™(6) {ns(5) : 5 < i}).

Define h : Ry — “2 by h(i) = (hI™(3) : n < w), it is as required.

Now as |“2| = 2% = |H(X;)|, we conclude:

(¥) for every cs € “TH(R;) (6 € S?) there is h : wy — H(Ry) such that for a
club of § € 5% for a club of i < wy, cs(i) = F*(hI{ns(j) : j <i}).

Now we define by induction on n < w, p(n) € H(X), and h, : we — H(Ry).
Let p(0) = (7). If we have defined p(n), let 2™ : w; — H(R;) be as we
have defined before (in @), so by (*) there is a suitable h, : Rg — H(X;); i.e.,
there is a closed unbounded W™ C N, such that for every § € W™ N Sf, there
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is a closed unbounded W§* C w; such that for i € W2,§ € W™ N S? we have:
G (@) = F*(ha{ns(4) : § < i}).
Let p(n +1) = ef
(p(n), hn, W™, (WF - 6 € WP N S3), (N2 i <wy) 1 6 € S2)).
Now let W =,,., W™, and for 6 € W let W5 =, _,, W2 Clearly W is
a closed unbounded subset of Ry, and W is a closed unbounded subset of w.
So for every 6 € W NS, there is i(§) € W;; so as 15(i(6)) < & by Fodor lemma,
for some i < Ry and i* < R; the set {§ € W N S?:n5(i(6)) = i and i(6) = i*}
is stationary. As CH holds there are 81,45 in W N S? and ¢ < w; such that
A) ns,(€) = ms,(§) moreover 75, [(§ +1) =ns, [(§ +1)
B) 61 <42
C) £ e W, for £ =1,2.
So clearly we can assume
D) there are no 6}, 6} satisfying (A), (B) and (C) such that 6] < &, 6} < 6,
and (61, 81) # (81, 82).

Now as §; < 2, for some i > &,7m5,() # 7s,(2), and there is a minimal

nw nw

such 7; but as 13, , s, are increasing and continuous, such minimal ¢ should be a
succesor ordinal, so there is a maximal { among those satisfying ¢ < w1, 7s, [¢ =
15, 1¢, M5, (¢) = ms,(¢) and ¢ € Wi, N Ws,. So w1 > ¢ > ¢, Ay o ¢ € W5,
implies 75, (¢1) # 15, (¢1) or at least ns, [(¢t + 1) # 75, [(¢H +1).

So for every n
@ M0 ="

as both are equal to F*(h,!{ns,(4) : j < (}). Looking at the definition of
&A™ () (see @) we see that N, fl(z) is isomorphic to N, f <7Z), and let the isomor-
phism be called g,. Note that the isomorphism is unique (as € in those models
is transitive well founded).

By the definition of cg(")(C ), clearly without loss of generality

gn[p(n)] =p(n), gn(d1) = 02,9n(¢) = ¢
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Looking at p(n)’s definition we see that g,(ns,) = 7s, and for n > 0
gn(W=1) = Wt and g, (W7~') = W2 and g,(N2V) = NEOD €

p(n)
82,¢ °

As Ny, (2_1) is countable and belongs to N;, (Z.), it is also included in it,
hence g, [Nfl(z_l) is an isomorphism from N} (2_1) onto Ny (72—1) hence (by the

uniqueness of g, )

B)  gn 2 gn-1.

For £ =1,21et N, = U
from N; to Ns.

h<w Nfl(z) and g = U,<, 9n; SO g is an isomorphism

By the definition of cgf") (¢), clearly the second coordinates are the same, thus:
(1) GINZY Nwn) = GINZT Nwn),

hence those sets have their intersection an initial segment of both hence also
N1 Nwa, Ny Nwy have their intersection an initial segment of both (as usually,
we are not strictly distinguishing between a model and its universe), hence g
is the identity on N1 N Ny Nwa.

Note that clearly é; ¢ Ny as g(d1) = 62 # 01, hence 53 ¢ Ni.

Let 67 4f Min(wg N N \ (N1 N N3)), so clearly 67 < g, g(07) = 65 and so
cf (07) = cf(83).

() cf(5)) =Ry

Why? Otherwise cf(6]) = Ro, and as 07 € N; for some n, d§; € Nfl("z),
hence there is {Bn : m < w} C &N Ny (’7? cofinal in 7. By the choice
of 6},8m € NiN Ny, hence g(Bm) = Bm; let g* = min(Nfz(z) \ Uy Bm), so
B* € Ng;(z) C Ngz(zﬂ), so 67 = Sup{Bm : m < w} = sup(B* N Nfz(z)) € Ny,
contradiction.

So we have proved (4).
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Now let for £ = 1,2,y def Ng Nwy, (it is an initial segment) and G def

sup(Ng N 6;) hence By = B2 (by 6; definition) and call it 8. As cf(6}) > Ny
clearly §; > wi, and so clearly by g’s existence a; = a3 and call it o (also as
w1 € N1 N Ny Nws, necessarily NiNwy = Ny ﬂwl).

As ns: is a one to one function (being increasing) from wy, clearly
7’]5;(1) eN iffi<a.

Also N1 = “(ns; (1) + i <w1) is unbounded below 67" (remember N1 < M* as
Ngl(z) < M* for each n).

So clearly 8 = Sup{ng; () : 1 < a}; but ns; is increasing continuous and «
is a limit ordinal (being Ny Nw;), hence B = ns; ().

For the same reasons § = 7s; ().

Now 7s: [a = ns; [ because g(ns;) = sy, and o € Wg} foreachn < w(f =
1,2) as Ny = ¢ 5’; is a closed unbounded subset of w;”. For similar reasons
6; € W, for each n: as Wy, € N£(2+1) hence W,, € N, hence W,, € N; N Ny,
and as Ny, Ny < M*,M* has Skolem functions, clearly Ny N Ny < M*, so
W, is an unbounded subset of N3 N Ny Nws. So in Ng, W,, is unbounded in
0; = Min[(wz N Ng) \ (N1 N N3)], hence N, = “65 € W,,” hence 6; € W,,.

We can conclude that 67,03, 3 satisfy the requirements (A), (B), (C)
on 61,62,§. Hence by requirement (D) on them, §; = 47, 2 = &5. But,
Ce NQ(Z) C Ng hence ¢ < w1 NNy NNy hence ¢ < a, so clause (@) contradicts
the choice of , so we get a contradiction, thus finishing the proof of the theorem
(3.6). Us.e

3.8 Concluding Remarks. 1) If A = %, « is strongly inaccessible then the
conclusion of 3.6(2) may fail (see [Sh:186], we repeat the proof in [Sh:64], see
more in [Sh:587]).

2) If 2% = 2%2_ then it follows that for some F' and 7] we have uniformization.
Just choose 71 = (n5 : § € S?) such that (ns|w : § € S?) are pairwise distinct and
for every § € S? and non successor 1 < w; and n < w for some non successor

j < wy we have n5(i +n) = j +n. Now let ((c] : § € S7) : v < 2%2) list the set
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of sequences (cs : § € S?),c5 € “12. Let (ry : a < 2%0) list distinct reals, and

we let hY € “22 be: h7(i + n) = r,(n) for any non-successor ordinal i < wy.

Now define F by: F(h) = ¢} (i) if Dom(h) = {a; : j < i} with a; increasing,

i >w, (h(an) :n<w)=r,.

3) In 3.6(2) we may demand that (e) F(h[Rang(ns/(i + 1))) only depend on

h(ns(i)) and 4. Then we can weaken clause (a) there as follows.

3.9 Theorem. Suppose

(a) No < cf(f) =0 < k=2,

(b) S={6 <kt :cf(6) >6T}

(c) for each & € S, n; is a strictly increasing continuous function from cf(§) to
d with limit 4.

(d) F is a function with domain {h : h a partial function from % to s such
that |Dom(h)| < 6} with range {0,1}.

(e) a=(al:6¢€8,i<cf(d)),al Cns(i)+1 and |as| <9,

Then we can find (ds : § € S), ds € *2 such that for any h : k¥ — & for
stationarily many § € S for stationarily many i < cf(0), ds(i) = F(hla?).

3.10 Conclusion. If 8, k, 7] as above then 7j = (5 : € S) does not have the

club uniformization property.

Proof of 3.10. Let F(h) = h(MaxDom(h)) if defined, zero otherwise. By 3.6
there are for F, 75 a sequence (ds : § € S?); let c5(i) = 1 — d5(3).

The proof of 3.10 is very similar to that of 3.6.

Proof of 3.9. Let X be big enough (e.g., (33(k))*), and M* be an expansion of
(H(X), €,1,a,1)i<g be Skolem functions (if it has a definable well ordering it
suffices).

Suppose 7, F' form a counterexample. It is known that there is a function G
from {A: A C k™, |A| < 0} to k such that G(A) = G(B) implies ANk = BNk,
A, B have the same order type and their intersection is an initial segment

of both (e.g. if hy : @ — K is one-to-one for & < k¥, we let Go(A) ef
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{(otp(AN a),otp(A N B),hg(c)) : @ € A and 8 € A}. Now Gy is as required
except that Rang(Go) € k but |[Rang(Gp)| < = & so we can correct this).
We now define a procedure for defining for any p € H(\), (&§ : § € S),
c§ : cf(6) — H(6%), which we shall use later.
For every § € S, i < w, let Ny, be the Skolem hull of {6,4,p}U{a : o < 6}
in M™*, and let

& (i) 4 ( isomorphism type (Ng::p,06,1), G(Ng; N 9)).

Remarks. 1) The model of (N}, p,d,4) is not in H(6"), but since N}, has
cardinality < § we can assume its isomorphism type does belong.
2)(N§’,¢’ p,i,0) is Ny, expanded by three individual constants.

Now remember we have assumed
® F, a, 7j form a counterexample.

So for every cs € “f(®2 (for § € S) there is hs : k¥ — & such that for
a closed unbounded set of § € S, for a closed unbounded set of i < cf(d),
es(i) = F(hsH{ns(s) : j < i}).

Now we can easily replace 2 by the set 2 as follows.

For ¢ < # and h a function into °2, let hlel be hll(i) = (h(:))(e) for
i € Dom(h). Define F* by: F*(h) = (F(hll) : ¢ < 6); now if ¢5 € f(9(02)
for § € S, ie., c5 : cf(6) — 92 (so c([f] are well defined for € < 6). So by
the assumption “F, @ and 7 form a counterexample” for each € < 8 there is

hlel : gt — 2 be such that for a club of § € S for a club of i < cf(4)

cfl(@) = F(hlEl (i) 1{al}).

Define the function h : k™ — 92 by h(i) = (hlF)(i) : e < w).
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Now as |92| = k = |H(87)|, we conclude:

(%) for every cs € SO H(%) (6 € S) there is h: k¥ — H(6%) such that for a
club of 6 € S for a club of i < cf(8) we have c5(i) = F*(h[a?).

Now we define by induction onn < w, p(n) € H()), and h,, : k™ — H(07).

Let p(0) = (7, a, F). If we have defined p(n), let cg(n) : cf(8) — H(6F) be
as we have defined before (in @), so by (x) there is a suitable hy, : £ — H(67);
i.e., there is a closed unbounded W™ C k™ such that for every 6 € W™ N S,
there is a closed unbounded Wg* C cf(8) such that for i € W, 6 € W™ NS we
have: Cg,(:) (3) = F*(hnlad).

Let

p(n+1) E (p(n), hn, W, (W : 5 € WP N S), ((NED 26 < cf(8)) : 6 € 5)).

Now let W = N, ., W", and for 6 € W, W5 = N, ., W§. Clearly W
is a closed unbounded subset of k*, and if § € W N S then W; is a closed
unbounded subset of cf(d). So for every § € W N S, there is i(d) € W;; so
as 7s(i(6)) < 6 for some i < k* and * < k and § = cf(d) < k the set
{6 e WNS :n5(i(8)) = i,i(6) = i* and cf(d) = &} is stationary. As k = &?
holds there are 1,02 in W NS and € < cf(d;) such that
A) n6,(€) = s, (€) and cf(81) = cf(62)

B) 41 < d2 (so both in W N .S)
C) £ € Ws, for £ =1,2 (so £ < cf(4)).

So clearly we can assume
D) there are no 4}, 68} satisfying (A), (B) and (C) such that &} < 6;, &} < 6,

and (5], 61) # (81, 62).

Now as 6; < 42 for every large enough i < cf(d1), 75,(¢) > 01, hence
{¢ < cf(8) : ¢ € Ws,, ¢ € Ws, and 15,(¢) = 1s,(¢)} is a bounded subset of

cf(01). As Ws,, W5, are clubs of cf(d;1) and 7s,,7s, are increasing continuous,

n<w

the set above is closed hence it has a last element. So there is { < ¢f(d1) such
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that N5, (C) = 7s, (C) and C € Wt51 n W527 but CT > Cv /\£=1,2 Ct € Wéz implies
N5, (CT) 7/: UL (CT)

So for every n
(@) M (C) = 5M(¢)

as both are equal to F*(hy, faf,fsl (¢)), which do not depend on ¢ as 7;,({) =
n5,(¢)) and they are equal to hn11(7s,(¢)). Looking at the definition of cf;(")(c )
(see @ above) we see that N, g’l(z.) is isomorphic to Ny, (Z), and let the isomorphism
be g,. Note that the isomorphism is unique (as € in those models is transitive
well founded).

By the definition of cg(")(( ), clearly without loss of generality

gn(p(n)) = p(n), gn(61) = d2,9n(¢) = ¢

Looking at the definition of M* and p(n), p(0) we see that g,(ns,) = 7s,

and for n > 0 we have g,(W"!) = W"~! and g,(W3™') = W' and

-1 -1
gn(NF0V) = N2OD € N2,

As Ng’l(z_l) is of cardinality 6 and belongs to N; (Z), and 6 +1 C Ng(")
clearly Ny, (2-1) is also included in it, hence g, [Ng’l(z_l) is an isomorphism
from N fl(z_ D onto N A (Z—l) hence (by the uniqueness of g, and the previous

sentence)

(B) gn 2 gn-1-

For £ = 1,2 let Ny = U, ., N;’l(z) and g = {J, ., gn; S0 ¢ is an isomorphism
from N; to N,.

By the definition of cgfn)((), clearly:

(1) GNEY k) = GINET n ),

hence sets N; N kT, Na N kT have the same intersection with x and have
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their intersection an initial segment of both (as usually, we are not strictly
distinguishing between a model and its universe), hence g is the identity on
NinNynkt.

Note that clearly 6; ¢ Ny as g(d1) = d2 # 01, hence d2 ¢ Nj.

Let §; def Min(k* N Ng \ (N1 N Ny)), so clearly §; < &, g(6}) = 63. Note
cf(0;) < K (as 0; < kT) so cf(6;) € NfNn(k+1) C NyNn Ny Nkt and so
cf(0F) = cf(83). Call it o, so 0 € Ny N Ny N (k + 1) is regular.

(6) cf(87) > 6.

[Why? Otherwise cf(d7) < 6, and as 7 € Ny for some n, §; € N;’l(z), hence
there is b € Nfl(z), b= {B:€e < o} C 47 cofinal in 7. As |b] = 0 < 6,
be N;’l(z) and 6+ 1 C Ngl("z) necessarily b = {8: : ¢ < 0} C Ng’l(z). By the
choice of 6}, 8. € N; N Ny N k™, hence g(B;) = B. Easily g(b) = {9(8¢) : € <
o} ={B::e<o}=>b(asf@+1C NyNNz)and N; F “6f = sup(b)” hence

Ny & “g(87) = sup(g(b))” that is Ny F “d5 = sup(b)” so §7 = 45, contradiction.]

So we have proved (4).

Now for £ = 1,2 let ay def sup[NgNcf(d1)], so as NNk = NaNk clearly o =
call it a. Let B def sup(Ng N 6;) hence B = B2 (by 6;’s definition) and call it
B.

As 75: is a one to one function (being increasing) from o, clearly
ns; (1) € N1 iff i € 0 N N1,

Also Ny [= “(ns:(4) @ i < o) is unbounded below 67" (remember Ny < M* as
Ng’l(z) < M* for each n).

So clearly 8 = Sup{ns: (i) : i < a}; but 7s; is increasing continuous and a
is a limit ordinal (being sup(N; N c)), hence B = ns; ().

For the same reasons 8 = 753 ().
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So ns; (a) = ns; () and a € 5+ for each n < w(£=1,2) as
Ny E “Wg% is a closed unbounded subset of ¢”. For similar reasons §; € W,
for each n: as W,, € NQ(ZH) hence W,, € N;, hence W,, € N; N N,, and
as N1, No < M*, M* has Skolem functions, clearly Ny N Ny < M*, so W,
is an unbounded subset of Ny N Ny N kT. So in Ny, W,, is unbounded in
8, = Min[(k* N Ng) \ (N1 N N2)], hence N, = “6; € W,,” hence 6; € W,.

We can conclude that 0%, 05, 3 satisfy the requirements (A), (B), (C)
on 41,02,€&. Hence by require-mint (D) on them, §; = 4%, d2 = 5. But,
¢eNg (,? C Ng hence ¢ € kNN1NN; hence ¢ < a, so clause (o) contradicts the
choice of ¢, so we get a contradiction, thus finishing the proof of the theorem

(3.9). Us.o

3.11 Remark. We can replace in the conclusion of 3.9, F(h[a?) by F}(h), so
F is replaced by (F? : § € S,i < cf()), where F is a function from ~k to
{0,1}. Also we may weaken a? C 7o(i) + 1 to al C A*.








