
XII. Improper Forcing

§0. Introduction

In Chapter X we proved general theorems on semiproper forcing notions, and

iterations. We apply them to iterations of several forcings. One of them, and

an important one, is Namba forcing. But to show Namba forcing is semiproper,

we need essentially that H2 was a large cardinal which has been collapsed to ^2

(more exactly - a consequence of this on Galvin games). In XI we took great

trouble to use a notion considerably more complicated than semiproperness

which is satisfied by Namba forcing. However it was not clear whether all this

is necessary as we do not exclude the possibility that Namba forcing is always

semiproper, or at least some other forcing, fulfilling the main function of Namba

forcing (i.e., changing the cofinality of ^2 to ω without collapsing KI). But we

prove in 2.2 here, that: there is such semiproper forcing, iff Namba forcing is

semiproper, iff player II wins in an appropriate game ιD({Nι},u;, ^2) (& game

similar to the game of choosing a decreasing sequence of positive sets (modulo

appropriate filter, see X 4.10 (towards the end) and the divide and choose

game, X 4.9, Galvin games) and, in 2.5, that this implies Chang's conjecture.

In our game player I divide, played II choose but here it continue to choose

more possibilities later. Now it is well known that Chang's conjecture implies

0# exists, so e.g., in ZFC we cannot prove the existence of such semiproper

forcing. An amusing consequence is that if we collapse a measurable cardinal
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to K, by Levy-collapsing P, then Chang's conjecture holds as by X 6.13 in

Vp player II wins the game mentioned above (Silver's original proof of the

consistency of Chang conjecture uses a Ramsey cardinal, but he has first to

force MA -\- 2H° > KI and then use a more complicated collapsing).

In Sect. 1 we give the various variants of properness equivalent formations

using games 1.1, 1.7; we also show how the preservation theorems work in

this setting, thus getting alternative proofs of the preservation theorems for

semiproper and proper, (1.8, 1.8A, 1.9). This alternative proof for properness

was later and independently discovered by Gray in [Gr]. Related games have

been investigated by Jech (which are like Galvin games, but using complete

Boolean algebras) but his interests were different. Compared to [Sh:b] the order

of the sections is inverted.

§1. Games and Properness

1.1 Theorem. A forcing notion P is proper iff player II has a winning strategy

in the game Pc)ω(p, P), for every p, where:

1.2 Definition. In a play of the game PDα(p, P) (α a limit ordinal, p G P)

in the /3-th move player I chooses a P-name ξβ of an ordinal, and player II

chooses an ordinal ζβ.

In the end after α moves player II wins if there is q such that p < q € P

and q Ih " for every β < a we have ξβ G {C/3+n ' n < α;}", and player I wins

otherwise.

1.3 Remarks.

1) Note that we can allow player II to choose countably many ordinals ζβj

(ί < ω) and demand q If- "ζβ G {ξβ+n,t ' n,ί < ω}". Similarly player I can

choose countably many P-names, and nothing is changed, i.e., the four

variants of the definition, together satisfy (or do not satisfy) "player I (II)

has a winning strategy".
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2) Similarly for PDw(p,P,λ) (see Definition 1.4(1)).

Proof of 1.1.

The "if" part.

Let λ be big enough, N -< (-ff(λ), G) is countable, {P,p} G 7V,p G P. Then

a winning strategy of PDω(p,P) belongs to N. So there is a play of this game

£n?Cn(^ < ω) m which player II uses his winning strategy in choosing ζn G N

and every P-name ξ G TV of an ordinal appears in {ξn : n < ω} and each ξn

belongs to N. So clearly ζn G N for every n.

So there is ς, witnessing the victory of II, i.e., p < q G P, ς Ih "ξn G

{Cm : m < ω}", (for every n), but (m G AT, so q Ih "ξn G N for every n". As

{ξn : n < ω} lists all P-names of ordinals which belong to TV, q is (TV, P)-generic;

and q > p, so we finish.

The "only" if part.

For λ big enough, expand (-ff(λ), G) by Skolem functions and get a model

M* and we shall describe a strategy for II: If player I has chosen up to

now £o, , fn, let TVn be the Skolem hull of {p, P} (J{ξo, , ξn} in M*, and

{Cn,£ ^ < ^} will be the set of ordinals which belong to Nn (remember Remark

1.3).

Suppose £θj Co,̂  < ω), ξι,ζι,e(£ < cj), . . . is a play in which player II uses

his strategy (see remark 1.3(1)). Why does he win? Clearly N = \Jn 7Vn, which

is the Skolem hull in M* of {p, P} U{& : ̂  < ^}, is an elementary submodel of

M*, (similarly for the reducts) so there is q > p which is (TV, P)-generic, so as

ξn G N we have q Ih "ξn G N" but the set of ordinals of N is {ζnj : n,f < ω}.

So we finish. Dχ.ι

1.4 Definition.

(1) PDα(p, P, λ) is defined similarly, but ξβ are P-names of ordinals < λ. For

λ = oo (or just λ > |P|) we get PDα(p, P).

(2) For a set S of cardinals, the game PDα(p, P, 5) is defined as follows: in

the /3-th move player I chooses Xβ G 5, and a P-name ξp, and player II
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chooses for 7 < β subsets Aβ^ of λ7, of power < \Ί(Aβ,Ί G V) (for λ7

regular these are w.l.o.g. initial segments of λτ).

In the end player II wins if there is q G P, q > p such that q Ih "£7 G

U7</3<7+u; A0,7 f°r 7 < α" The definition for a P-name S is similar, but

player I chooses \β (not a P-name), and in the end, q forces only that: "if

Xβ e S then . . . "

If not said otherwise we restrict ourselves to sets of regular cardinals in V.

1.4A Remark. Note that 1.4(1) is in fact a special case of 1.4(2) when we

identify λ with 5 = {μ : HI < μ < λ,μ regular}, i.e. a winning strategy for

PDα(p, P, λ) can, in a canonical way, be translated to a winning strategy in

PD" (p, P, 5) , and conversely.

1.5 Definition.

(1) P3"(p, P, λ) is defined similarly for t = 0, 1, 2, but:

for i = 0 it is exactly PDa(p, P, λ);

for t — 1 player I chooses ξ/j, a P-name of an ordinal < λ. Player II chooses

countably many ordinals (ζβlH for n < ω) and player II wins if q Ih "ξβ e {C/5,n :

n < ω} for each β < α" for some q > p

for 1 = 2 player II chooses NO P-names (ζβ,n for n < ω) of ordinals

< λ and player II chooses N0 ordinals ζβ^n for n < ω\ and player II wins if

Q "~ "£/3,n £ {C/M : ^ < ^} for every β, n" for some q > p.

(2) The games P3"(p, P, 5) (f = 0, 1, 2, 5 a set of cardinals of V) are similar

toPD>,P,S);

In PD^, (p, P, 5), player I chooses (in move /3) a cardinal \β G 5 and a

name of an ordinal £0 < λ/j. Player II plays a set A^ C λ/3, |A^| < λ/3, ^4/3 G V

(if V |= "λ regular" w.l.o.g. Aβ = ξβ). After o; moves II wins if he can find a

condition q > p such that q Ih "(V/3 < a)ξβ G A^".
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In PD£(p,P,S), player I chooses Xβ G S and N0 names ξβtn of ordinals

< Xβ, player II chooses Aβ C Xβ, as above and in the end player II has to find

a condition q > p such that q I f- "V/3 < α Vn < ω (ξβ,n € -A/?)".

Similarly, we can define Pc3^(p, P, S), where 5 is a name of a set of regular

cardinals of V.

1.6 Claim.

(1) Player II wins PD°(p, P, λ) iff he wins PD£(p, P, λ) provided that λ = N:

or λ^0 = λ or at least there is in V a family {Ai : i < X} of countable

subsets of λ such that in V (VA C λ)(3i) (|A| < N0 -> A C ̂ ).

(2) Player II wins PD" (p, P, 5) iff he wins PD£ (p, P, 5) (when 5 is a P-name

of a set of regular cardinals > NO).

1.6A Remark. Note that if player II wins one of the games Pc)"(p, P, λ) then

p forces (VA e VP)(3B e V) [A C λ Λ \A\ < N0 =» A C 5 Λ |5| - N0].

Proo/. (2) The "if" part is trivial.

For the "only if" part: Note that by the assumption Ihp "λ £ 5 —•» λ =

cfV(X) > NO" and that as player II wins P0^(p, P, <S) we have: for any λ,

Ihp "λ G 5 —> cf(λ) > NO"). Now when player I chooses λ/? and {ξ/3,n n < ω},

player II "pretends" player I has chosen Sup{^?n : n < ω}, and chooses a

suitable initial segment of Xβ. So he translates a play of PD^(p-> P? s) to one of

«P3?(p,P,s)".

(1) Really the same as the proof of (2): the "if" part is trivial and for the "only

if" part, player II let iβ = Min{z : {ξβ,n '. n < ω} C A^} where {Ai : i < X} is

as mentioned in 1) (such a family exists in V if λ — NI (Ai — i) or λH° = λ

({Ai : i < X} — {̂ 4 C λ : \A\ < N0}) and as in the proof of part (2) above, the

forcing preserves this property).

Now because player II wins Pc)?(p, P, λ), he can find in the β-th move

(of a play of Pΐ)%(p,P,\)) ordinals iβtn(n < ω), such that at the end of

the game ςlh"3n(i/3 = /i/3,n)"5 and so his move in Pd%(p,P,X) will be the

countable set \Jn Aiβ<n. (More formally, fixing a winning strategy F\ for player
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II in (Pu)2(p,P,A), we shall describe a winning strategy F% of player II in

Pί>2 (P) P> λ). During the play he simulate a play of PD?(p, P, λ) by playing in

the /3-th move j^.) Di.e

1.7 Theorem.

(1) P is α-proper ^jff player II wins Pdω(l~*~a\p, P; oo) for every p.

(2) P is (α, l)-proper iff player II wins PD^O^P; °°) f°r every p.

(3) A forcing notion P is semiproper iff player II has a winning strategy in

PD£(p, P, NI) for every p G P.

(4) A forcing notion P is S-semiproper iff player II has a winning strategy in

PUQ(P, P, 5) for every p G P.

Proof. Similar to 2.1, for (2) use V 2.5. DL7

1.7A Remark.

(1) Call a forcing notion P "S-semi-α -proper" (for 5 a P-name of a set of

cardinals of V), if for all large enough cardinals λ, and all (Ni : i < α) G

5Q5^(λ) (see V2.1) for which P, 5 G AΓ0:

for all p G P Π TVo there is q > p, such that for every i < a we have

q Ihp " if μ e S then sup(μ Π Ni[G\) = sup(μ Π Ni)n.

Then we have: P is 5-semi-α-proper iff player II wins PDω^1+Q!^(p, P, 5).

(2) For countable ordinals to demand ξ@ G {C0,n : ^ < ω}" is equivalent to

demanding ξβtn < Sup{ζβtn : n<ω}, etc.

1.8 Theorem. The property "player II wins PD"(p, P,λ) for every p G P" is

preserved by CS iterations (Pί? Qi : i < α(*)), for £ — 0,2, α < α i, if |α(*)| < λ.

1.8A Remark.

(1) So we get here an alternative proof of the preservation of properness and

(α, l)-properness: we could give such proofs for other theorems as well.

(2) The situation is similar with S instead of λ, and easier for RCS iteration

by X 2.5 (stated in 1.9).
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Proof. Let (P^, Qi : i < α(*)} be a countable support iteration. Let us consider

a game PDg (P,Pa(*}ι λ) (the others are similar). By the hypothesis for each

ί < α(*), player II has, for every q G ζ^, a winning strategy s^ = sti(q) in the

game PDg (<7> Q^ λ) where ς, Qi, s£i are P-r names.

Without loss of generality for Qi we use the version of the games in which

player I plays a countable set (of names of countable ordinals) at each stage,

and player II answers with a single ordinal. But for PD0 (p, Pα(*), λ) we use the

version where both players play singletons, this is legitimate by remark 1.3(1).

(The remark at the end of the proof will explain why it is more convenient to

let player I choose a countable set of names in the games PD0 (0.1 Qίt λ))

Now player II plays as follows: in the n-th move he will define wn,pn, t™(i G

wn) such that:

(1) pn G Pα(*),P < PO, Pn < Pn+l,

(2) wn is a finite subset of Dom(pn), wn C wn+ι, and if Dom(pn) = {in^ : k <

ω} and w.l.o.g. in$ — 0 then wn = {im^ '• m < n,k < n}, (so eventually

(Jn<ω Wn = Un Dom(pn) and wn depends just on (pt : I < n))

(3) Pn-i \Wn = pn \Wn for Π > 0.

(4) For i G wn, let n(i) = Min{m : ί G wm}, and t*n = {{Γj., Cjt) : ^(i) < k < n)

is such that ΓJ. is a countable set of P^-names of Q^-names of ordinals < λ

and Cfc a P^-name of an ordinal, and pn\i Ihp. "tl

n is an initial segment of

a play of P3"(pn(ΐ)(0>Qij^)ϊ m which player II uses the strategy sti =

δίi(Pn(t)W)"

(5) In the zero move (as WQ — 0), player I chooses a Pα(5)c)-name of an ordinal

£cb and player II chooses po ^ P? Po '^~P0(*) "ίo — Co'\ and play the ordinal

Co-

(6) In the n-th move, let player I play ξn, a Pα(5le)-name of an ordinal < λ.

Let (jn(rn) : m < ln) enumerate wn in increasing order (so jn(0) = 0) as

in,o - 0. Let jn(ln) = α(*), and let ^(*} - ̂ (/τl) - ξn.

By downward induction on m (ln > m > 0), player II will define

Γjn(m) ΛJn(m) f0|lowς.Pn,mι*-n •> Sn aS lOllOWS.
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A) Given ζn m+ ' (for m = ln — I this is ξn), a PJ τι(m+1)-name of an

ordinal, he can find a condition pn?m (but see below) of the forcing notion

pjn(m+i)/^Λ(m)+ι (in the universe yp^(-)+ι); Pn f [jn(m) + 1, j(m + 1)) <

Pn,m5 such that pn?m decides ζn m

 up to a P7 τx(m)+1-name. So we have the

freedom to choose a countable set Γn m' of Pjn(m)+ι -names (of ordinals < λ,

but see below) such that

"
+1) "C

B) Once Γ^(m) is defined, demand (4) yields a Pjrι(m)-name ζnn(m).

Finally, player II plays ζn = ζ% = ζ?? (which is a P0-name, hence a real

ordinal) and define pn+ι by: for j G wn, pn+ι(j) = Pn(j), and pn+ι \\jn(rn) +

1, j(ra + l)) = pn,m

This is easily done and in the end, as for each i G \Jn<ωWn, player II

has simulated a play of PC)Q (Pn(i) W » Qϊ> λ) in which the second player uses his

winning strategy st^ (the union of tl

n(n < ω)), there is a P^-name g(i), such

that lhPί

 Mpn(i)(i) < g(i)", and lhPi [j(i) lhQ i "U{Γm : n(i) < n < ω} C {fm :

m<ω}"].

It is clear that ςf (i.e. Dom(g) = Un<ω'lϋ^'^(^) defined above) belongs to

Ptt(*) We have to prove q Ih "ξ^ G {C^ : n < ω}". Let r > q be such that

r Ih "ξ£ = ξ*".

Note first that q > pn for every n < α;.

We prove by induction on i G Un<ωtί;n that if ξ G U{Γ{ : j < i,n(j) <

k < ω} then q \ i \\-pi "ξ G {ζ^ : n < cj}". This suffices as for each n we have

q Ih ξn G UiGtϋ T -^or ^ limit-trivial; for i successor - use the choice of pn,m

and the winning of the second player in Pc)o((pn(φ Qi> λ).

At first glance we get it too cheaply.

But there is a delicate point - the choice of pn,m; it is really not a condition

of Pj(m+i) or PQ,(*) but a PJ (m)+1-name for it. The delicate point is that

its domain is a name, whereas it is required to be a set. However, it is not
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fatal as long as at least q would be a real condition, for which it is not

necessary to really know Dom(pn>m), just to find a countable set including

it. So into the list of names player II is manipulating he has to add names of

the members of Dom(pn,m). So it is enough to ask that (J Γ^ Π α* C \J wn
n<ω n<ω

and Dom(pn>m) C Γn m) i.e., there are Pjn(m)-names ξ^^ (f- < ω) such that

ll-p,(mfn)+1 "Dom(pn,m) = {ε^(m) : t < α;}" and we let ε$m) G lt(m). But

Player II can manipulate only names of ordinals < λ; this is why |α(*)| — λ

was required so in the end we know Dom(pn?m) C {ξk : k < ω}, and there are

no problems.

The cases I — 0, a. > ω are proved by induction on α.

For ί — 2, we already know from what we prove that player II wins

PD0 (p, Pα(#); λ) for every p G Pα(#), and the proof is simple. DI.S

We leave to the reader the easier theorem (by now):

1.9 Theorem.

1) RCS iterations preserves the following property of forcing notions:

for every p G P, Player II wins PG%(p, P, NI).

2) Similarly for PD^(p, P, NI), and variants with 5.

§2. When Is Namba Forcing Semiproper,
Chang's Conjecture and Games

2.1 Definition. For a filter D on a set /, and a set S of regular cardinals and

ordinal α we define a game D(5,α, £)): the game lasts α moves, in the /?-th

move player I chooses a cardinal Xβ G 5 and a function F^ from / to \β.

Then player II has to choose an ordinal iβ < \β. In the end of the game,

player II wins if

{i G /: for every λ G 5, if for some /?, λ = Xβ then Sup{Fβ(t) : Xβ = λ} is

< Sup{iβ : λβ — λ}} φ 0mod£>; also player I has to choose each Xβ infinitely
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often otherwise player II wins (though not every λ G S appears).

If / — λ, D = Dcχ (the filter of cobounded subsets of λ) we replace D by λ.

Remark.

(1) This is close to the games in Definition X 4.9, X 4.10 (toward end) and

reference there but here we do not choose immediately the bound, we

increase it later.

(2) We do not list the obvious monotonicity properties.

2.2 Theorem.

Namba forcing is {Kι}-semiproper iff player II wins D({Nι},α;,N2) iff there is

a {Nι}-semiproper forcing P changing the cofinality of ^2 to NQ

2.2A Remark.

It does not matter whether we use Nm or Nm' (see XI 4.1, X 4.4), so we deal

with the somewhat harder case: Nm'.

Proof. We use the criterion for semiproperness from 1.7(3)

third condition implies second condition

We assume P is {Kι}-semiproper; and so (by 1.7(3)) we can choose a winning

strategy for player II in PD = PDω(po,-Pj{^ι}) (in the variant where both

players choose countable sets) and we shall call its players /PD,//PD for clarity.

Now we describe a winning strategy for player II in D({Nι},α;, ^2). Player II

will simulate for this a play of PD, in which IIp^ uses his winning strategy and

/PO is played by him (player ΠinD({Hι},α;,K2)) Let ξn be the P-name of the

n-th element in an ω-sequence which is unbounded in K2.

In the n-th move let player I choose Fn : ^2 —> NI, player II will play

for Ipd the P-names Fn(ξι) (I < ω), (see 1.3(2)), so he knows the ordinals

OLn,i < ωι (for ί < ω) which IIp^ plays (according to his strategy). Now player

II returns to his play and makes the move an = Sup{an^ + 1 : ί < ω} < ω\.
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In the end there is a condition q e P, q > po such that q Ih "Fn(&) <

\Jm αm" for n, I < ω. Let for each t < ω:

At = {a < ω-2 : q does not force ξι ^ α, i.e.,

there is r G P such that r > q and r Ih "ξι = α"}

By our choice of ξι(l < ω), for some £, A^ is an unbounded subset of ω%

(otherwise \Jt<ωAt would be bounded, as in V we have cf^) = ^2 > ^o so

q Ih "{ξι : I < ω} C |J At" give a contradiction to the choice of (ξe : I < ω)).
t<ω

Now clearly α G At implies Fn(a) < (Jm αm; hence ̂  is as required.

First implies third condition

Trivial

Second condition implies first condition

The proof is similar to that of X 4.12(3), it is similar for Nm and Nm1', and

we present the one for Nm'.

We again use the games and prove player II wins PC)Q (p, P, ̂ 1} for every

p G P, P — Afra' = Nmf(D^2) (see X Definition 4.4(4) (we can in fact replace

NI by {λ : λ a regular cardinal ^ ^2}))- For notational simplicity assume p's

trunk is {) i.e. (Vr? G p)(3*2i)(η~ (i) G p).

During the play, in the n-th move player I chooses a P-name of a countable

ordinal ξn, and player II will choose ξn < ω\. On the side, player II in stage n

also chooses a condition pn G P and a function Fn from pn Π (n-(α;2)) to α i

such that:

(a) p < Po,Pn < Pn+ι, Pn Π (n-(^)) = Pn+i Π (n-(ω2)), and the trunk of each

Pn is {}.

(b) For η <E pn+ι Π (n(ω2)) and I < n, either (pn+ι)w I^P "6 < ^n(^)" or

there is no q, (pn)[η] < <l, with trunk η and ζ < ω\, such that q Ihp αξ£ < C"

(remember ςr^j = {ί/ G ̂  : ^ < r/ or r/ < ι/}.

(c) For 77 € pn Π (m(ω2)) and m < n let Fn5r? : ω2 -> ωi be defined by

-Fn.t W = ^n(^Λ(^)); and we demand that -Fn(ry) is defined such that
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: I < n — m) is an initial segment of a play of

in which the second player uses his winning strategy (i.e.

one we choose a priori).

(d) At last player II actually plays ζn = Fn(Q).

There is no problem for player II to use this strategy: Stage 0, is trivial, stage

n+1: for each η G pnn(no;2) define q^n by induction on I < π+1 : q^n = (pn)fo],

q^n ^ 4τ7,n5 nas trunk η and either it forces ξι < ζ for some ζ < ω\ which we

call C^,n or there is no such q (satisfying the two previous conditions). Then

and for η G pn Π (n(ω2)).

Fn+l(η) = Max{C*,n :ί<n + l, C£n well defined} |J{0}.

Now he defines Fn+l(η) for η G pn Π (n>(ω2)) - Pn+i Π (n>(α;2)) by

downward induction on lg(η), using (c) (i.e., the winning strategy of the second

player in D({N2},ω,Nι).)

In the end player II has to provide the suitable condition q > p] we define

q Π nω2 by induction on n:

{) G #, and if we have decided that η G q then: η Λ (i) G </ zjff Sup{Fn(?7 Λ (i)) :

n <ω,n> lg(η~ (ί))} < Sup{Fn(r/) : n < cj, n > lg(η)} (and r y Λ ( i ) G p^g^+i

of course) .

By (c)> 9 will be a condition; and by (b) it forces ξn < \Jn<ω ζn

 : otherwise

there is r > q, r Ihp "ξn > \Jn<ω ζn" Let η be the trunk of r, and then using

(b) we get a contradiction. D2.2

2.3 Definition. More generally, if we have a family D of filters, a set 5 of

regular cardinals, and a relation K C 5 x D, we define the game D(K, α) as

follows: In the β move (β < α), player I chooses a pair (λ/j, D^) G K and a

function F'β from UD/3 to λ^g. Player II chooses an ordinal iβ < \β. In the end,

player II wins if for each D G D the set {t G (JD : for every λ with (λ, D) G K,

if for some /?, (λ,D) - (\β,Dβ), then Sup {F0(ί) : (λ,D) - (\β,Dβ)} < Sup

{z^ : (λ,D) = (λ^,D/3)}} is y^ 0 mod D. (Also, player I has to choose each
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\β infinitely often, otherwise II wins but some λ G S may never be chosen).

Again, we may write K, for D^b.

2.4 Theorem. For a countable set S of regular cardinals, and a countable set

D of Hi-complete filters, player II wins D(S x D, ω) iff there is an S-semiproper

forcing notion P, such that for all D € B

Ihp "3w C (jD[w countable, w ^ 0 mod D, that is, it is not

disjoint to any A e D(so A e V)]n .

(If D = Dχ*, then the above condition is clearly equivalent to Ihp " cf(λ) =

HO ")

Proof. The proof is similar to the proof of 2.2. To show the "only if part, let

D = {Dn : n < ω}, where each Dn occurs infinitely often. Let P — TVra'(T, 3)),

where Γ = {η : η a finite sequence, (Vfc)[fc < ίg η => η \ k G Dom(Z)fc)]}, and for

each η <ΞT,lefΣ)η = {{ηΛ(i) : ί £ A} : Ae D£g(η^}. D2.4

2.5 Theorem.

(1) If player II wins D = 3({Nι},α;ι, ^2), Λen Chang's conjecture holds.

(2) Moreover if e.g. χ > 2K 2, M* an expansion of ((ff(χ),e)) by Skolem

functions, N -< M* is countable, then for arbitrarily large α < N2, there is

7Vα, A/' x Na -< M*, α e JVα, and 7Vα, JV have the same countable ordinals.

(3) In (2) we can find TV', N ^ N' -^ M*, TV' fΊu i = AΓΠα i and |7Vnu;2| = KI.

Proof. (1) Follows easily from (2). We can easily build a strictly increasing ele-

mentary chain of countable models, of length ωi, all having the same countable

ordinals.

(2) Clearly some winning strategy for player II in D belongs to TV. So we

can construct a play of D, F0,α0,Fι,αι, . . . such that player II uses his strategy,

each Fn belongs to TV, and every function from ω2 to ω\ which belong to TV

appears in {Fn : n < ω}.
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As the strategy and Fo,.. .,F n belong to TV, also an belongs to AT. In

the end for arbitrarily large a < ^2, Fn(a) < {Jmctm for every n. But clearly

N Π ω\ is an initial segment of α i, hence |Jm αm C TV, so Fn(a) £ Af for every

α satisfying /\nFn(a) < |Jmα!m. Now we can take as Na the Skolem hull of

N\J{a}.

We have to show that N and Na have the same countable ordinals. Every

7 G AΓα Π ω\ can be written as 7 = τ(α, α i , . . . , αα), where α i , . . . αΛ G Λf, and

r is a Skolem term.

In TV, we can define a function / : ω^ —> ωi, by

yv^\ _ f τ(i, α i , . . . , α fc), if this is < ω\
10 otherwise.

So / = Fn for some n, but clearly 7 = τ(α, α n , . . . , αn) = /(α) = Fn(α) G JV.

(3) By the proof of (1). D2.5

We can prove similar theorems for 5 not necessarily {&ι}, e.g.

2.6 Theorem. If player II wins ό)({λ},u;,μ), λ < μ, M a model with universe

H((2μ)+) and countably many relations and functions, including e and Skolem

functions, N -< M countable, then there is AT1", TV X AT1" -< M, AΓt ^ AT,

Sup(AΓt π λ) = Sup(AΓ Π λ), Sup(AΓt n μ) > Sup(AΓ Π μ), and |AΓt n μ| = NI.

Proof. Similar. D(2.6

2.7 Conclusion. (1) For some regular λ, player II wins in c)({^ι},α;, λ) iff

there is an {Nι}-semiproper forcing P not preserving "cf(α) > NQ"

(2) So if e.g. 0^ does not exist, a forcing notion is proper iff it is 5-semiproper,

5 = {#Y} U {« : cf(κ)yP > NO K regular (in F) and K > ^}.

Proof. (1) By 2.4, D -

(2) If P is 5-semiproper and preserves "cf (α) > K0" then by Claim X

2.3(1) P is proper (see Definition X 2.2, 5 is essentialy equal to the 5 from

Claim X 2.3(1) because P preserves "cf(α) > N0")
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If P is 5-semiproper not preserving "cf(α) > KQ" then for some p G P,

and regular λ > KI (in V) Q = P\{q € P : p < q} is 5-semiproper hence

{Nι}-semiproper and 0 Ih αcf(λ) = K0" But then by 2.7(1) player II wins the

game ό)({Hι},α;ι,λ) hence the conclusion of Theorem 2.6 holds and by well

known theorems such variants of Chang conjecture imply 0^ G V. ^2.7

Note that

2.8 Conclusion. If K is measurable in V, P = Levy(Kι, < λ) (so elements of

P are countable partial functions), then in Vp', Chang's conjecture holds.

Proof. By 2.2 and X 4.11.




