
IV. On Oracle-c.c.,
the Lifting Problem
of the Measure Algebra,
and uP(ω} /finite Has No
Non-trivial Automorphism

§0. Introduction

We present here the oracle chain condition and two applications: the lifting

problem for the measure algebra, and the automorphism group of P(ω)/finite.

Let B be the family of the Borel subsets of (0,1) (i.e. sets of reals which

are > 0 but < 1). Let Imz be the family of A G B which have Lebesgue

measure zero. Clearly Imz is an ideal. The lifting problem is: "Can the natural

homomorphism from B to B/Imz be lifted (= split), i.e. does it have a right

inverse? Equivalently, define on B an equivalence relation: A 1,^2 G B are

equivalent if (A\ \ A^) U (A2 \ A\) has Lebesgue measure zero: is there a set

of representatives which forms a Boolean algebra? If CH holds the answer is

positive (see Oxtoby [Ox]). (This holds for any Ki-complete ideal). We will

show, in §4, that a negative answer is also consistent with ZFC.

Since the problem of splitting the measure algebra is simpler, we will

consider it first, but in the introduction we use the second problem to describe

the main idea of our technique.

It is well known that if CH holds then P(ω) /finite is a saturated (model-

theoretically) atomless Boolean algebra of power NI, hence has 22 °-many

automorphisms, as any isomorphism from one countable subalgebra to another
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can be extended to two different automorphisms. It was not clear what the

situation is if CH fails.

On the other hand any one-to-one function / from one co-finite subset of

ω onto another co-finite subset of ω induces an automorphism of P(ω) /finite:

A/finite is mapped to /(^/finite. We call such an automorphism trivial. A

priori it is not clear whether 'P(α )/finite has nontrivial automorphisms. Our

main conclusion is that possibly all automorphisms are trivial (i.e. this holds

in some model of ZFC); In fact in some generic extension of V. Hence there is

e.g.-no Borel definition of such automorphism.

In this chapter our main aim is to present "oracle chain condition forcing".

Iterating forcing satisfying the NI-chain condition, introduced by Solovay and

Tennenbaum [ST], is well known (see Ch II). We use mainly the same frame-

work: we start, e.g., with the constructible universe V = L, and use (finite

support) iteration of length ω% of forcing notions, (Pi,Qi : i < 0^2), each Qi

satisfies the KI-C.C. and is of power Nj.. At stage a we guess an automorphism

fa of ^(ω)/finite in VPa, more exactly a Pα-name of such an automorphism,

such that for any Pω2-name / of an automorphism of P(ω)/finite, there are

stationarily many a < ̂  for which we have: cf(α) = NI, and fa C / (this

is possible if we have a diamond sequence on {δ < ω^ : cf(ί) = NI} and CH

holds, by some simple considerations). Our means of killing the automorphism,

i.e., guaranteeing fa cannot be extended to an automorphism of P(CJ)/finite in

VPωι, is to add a set X C ω so that for no Y C ω:

(*) X Π A is finite & Y Π fa(A) is finite for every A € [P(u}}yPa.

The demand (*) helps us since if / D fa is an automorphism of the Boolean

algebra [P(ω)]γPω2 /finite then F/finite = /(X/finite) satisfies (*).

This looks very reasonable, but even if we succeed to show that when we

add X (by forcing Qa) we do not add a Y satisfying (*), how can we know

that such a Y is not added later on during the iteration?

This is the role of the oracle chain condition. The best way we can explain

the construction is as follows. We can look at iterated forcing as a construction

of the continuum in ^2 steps, i.e., at each successor step we add more reals, and
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even at limit steps of cofinality HO we do so (but not at limit steps of cofinality

HI). Now promising not to add a Y as in (*) is an omitting type obligation,

and building a model of power ^2 by a chain of ω<2 approximations, promising

to omit types along the way, is a widely used method in model theory (mainly

for HI instead of ^2). See e.g., Keisler's work on L(Q), for HI; the ^2 case like

ours is somewhat more difficult, see [Sh:82], [Sh:107], [HLSh:162].

The oracle chain condition is an effective version of the Hχ-c.c. Assume

that we want to construct an HI-C.C. forcing notion P with an underlying set

ω\. If M = (M§ : δ < ωι) (the HI-oracle) is a 0-sequence on ω\\ i.e. for each

A C ω\ the set {δ : A Π δ G MS} is stationary, and we demand:

(f) If A G MS is pre-dense in P\δ, then A is pre-dense in P, then, as we will

see in 1.6(1), P satisfies HI-C.C.

We call (a variant of) this the M-c.c., (assuming each MS is closed enough).

The connection between the M-c.c. and the omitting type argument discussed

above is the following.

Suppose Bi are Borel sets of reals (i < HI) such that their intersection

is empty even if we add a Cohen real. (Note: finite support iteration always

adds Cohen reals at limit stages of cofinality HQ. Hence we have to deal with

Cohen extensions.) If 0 holds then, as we will see in §2, there is an Hi-oracle

M such that in any generic extension of V by a forcing satisfying the M-chain

condition no real is in all the B^s (note that in a bigger universe we reinterpret

each Bi using the same definition).

Clearly in order to apply oracle chain condition forcings we have to prove

relevant lemmas on composition and preservation by direct limit. It is also very

helpful to replace a sequence (Mi : i < HI) of oracles by a single oracle M such

that any P satisfying the M-c.c. will satisfy all Mi-c.c.'s. For this we have

to choose the right variant of the definition. Altogether the situation is that

at step α we are given an HI-oracle which Qa has to satisfy, and are allowed

to demand, for HI Borel types, that Vp"* will omit them provided that not

only our universe VPa omits them, but even forcing by Cohen forcing does

not change this. This is done in §1,2,3, and of course does not depend on

any understanding of the automorphism of P(ω)/Άmte or of homomorphism
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from B/Imz into B. So it is sufficient to read §1-3 if you want to apply the

oracle chain condition; though you may want to read 4.6 (which is the proof

of Theorem 4.3) to see how all the threads are put together (modulo specific

lemma, in that case 4.5), and it is commonly believed that seeing examples

helps to understand a method.

Of course, to apply this we have to look at the specific application at some

point; this is done in the induction step, i.e., working in VPa and being given

an automorphism /α, and an cji-oracle M we have to find Qa adding a real X

and satisfying the M-c.c. so that (*) holds for no Y even if we add a Cohen

real.

Of course if fa is trivial this cannot be done. We shall construct ζ)α, assume

that there is a (QaxCohen)-name Y forced to satisfy (*), and analyzing this

situation we shall eventually prove fa is trivial. We have to note that if /

is a Pω2-name of a nontrivial automorphism of 'P(u )/finite, then for a closed

unbounded C C α;2, for every δ G C with cf(ί) = α>ι, f\[P(ω)/Άmte]v δ has

a Ptf-name forced (for Pg) to be a nontrivial automorphism of P(ω)/fmite in

VPδ, hence a diamond on {δ < ω2 : cf(ί) = ω\} can guess it stationarily often,

hence we have "killed" it somewhere in the process. We can have the results of

§4 and §5 together.

A natural question is:

Question. Find a parallel to M-c.c., replacing Cohen forcing (in the assumptions

of the omitting type theorem) by random real forcing, or any other reasonable

forcing adding a real.

In [Sh-b, IV], only the case "every automorphism of P(u;)/finite is trivial"

appear. The other is from [Sh:185]. On the first use of the method see [ShilOO].

On further works see [BuSh:437], [Ju92], [Ve86], [Ve93], [ShSr:296], [ShSr:315],

[ShSr:427].

Note that if P C Q then P <& Q iff every pre-dense subset of P is pre-dense

in Q (to see that this is a necessary condition, assume Z C P is pre-dense; let

I* = {p £ P : (3g G T}p > q} and let 2"** be a maximal set of pairwise
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incompatible conditions contained in J*; then J** is a maximal antichain of P,

hence of Q, therefore it is pre-dense in Q and so is I, see I 5.4(3)).

§1. On Oracle Chain Conditions

1.1 Definition. An ^i-orade is a sequence M = (Ms : δ is a limit ordinal

< cji), where M«s is a countable transitive model of ZFC~ (or a large enough

portion of ZFC) such that δ + 1 C MS, M$ 1= "5 is countable" and M satisfies:

(Wl C ωι)[{δ : A Π δ G M5} is stationary]. (ZFC" is ZFC without the power

set axiom).

Remark. Note that the existence of an NI -oracle is equivalent to the holding

of Otfj (by a theorem of Kunen, we shall use only the trivial implication: Otti

implies the existence of an Ni-oracle), and that ONI implies CH.

To help the reader to understand our intention to associate a condition

on forcing notions with each Ni-oracle M, we give here a tentative definition

(which we will modify later):

1.2 First try. A forcing P with universe ω\ satisfies the M-c.c. if for every

δ < ω\ :

(t) (VA G MS) [A C δ&A is pre-dense in P\δ => A is pre-dense in P].

But if we adopted this definition, it could happen that we have two iso-

morphic forcing notions, one satisfying the definition and the other not. The

solution will be to require the property (f) not for all 5, but only for a large

enough set of ί's.

1.3 Definition. With each Ki-oracle M we associate the filter DM over ω\

generated by the sets !&(£) = {δ < ωι : A Π δ G Mδ} for A C ωλ. Let P(δ) be

{A : A C δ}.
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1.3A Remark. Recall that (S$ : δ < ω\) is a 0*-sequence if \Sg\ < NO and for

every A C ω\, {δ : A Π δ G S§} contains a closed unbounded subset of ω\\ and

if V = L, then a 0*-sequence exists (by Jensen's work).

1.4 Claim. 1) If (Mδ Π P(δ) : δ < ωι) is a 0*-sequence (see 1.3A) then every

generator of Z)^, IM(A), contains a closed unbounded set;

2) For every A, B C ωι there is C C ωl such that IM(C) = IM(A) Π IM(B).

So: for a set Z C u i, Z G £>M ̂  (^M/M^4) C Z].

3) DM is a proper normal filter, containing every closed unbounded set of limit

ordinals < ω\.

4) For every A C ω\ x ωι or even A C ίf(Nι) the set /M(A) belongs to D^.

Proof. 1) By the definitions of a 0*-sequence and of I^(A).

2) Let g : ω\ — > α i be the map defined by p(α) = 2α, and let / : ω\ — > α i be

the map defined by /(α) = 2α + 1. If δ < ω\ is a limit ordinal, then δ is closed

under #, /, and g\δ,f\δ G M^.

Now, taking C = g(A) U /(B) we obtain what we need (remembering M§

is a model of ZFC~).

3) a) DM contains every closed unbounded set of limit ordinals < ω\.

For this, we have to construct, for a given M and an increasing continuous

sequence (δ^ \ i < ω\) of limit ordinals, a subset A of ω\ such that if δ < α i,

δ ^ δi for all i < α i, then ^4 Π ί φ M$. We construct such A piece by piece,

namely determining AΓ\[δi,δi+ ω) by induction on i (we begin with i = — I

taking δ_ι =0; outside these intervals all ordinals are in A). Having determined

A Π ίi, we have 2K° possibilities for An(δi+ω)', we choose one which does not

belong to the countable set {B Γ\ (δi + ω) : B E M$, δi < δ < ίi+i}. It is easy

to check that A satisfies our requirement.

b) DM is a proper filter.

By 2) every set in DM contains some IM(A) which is stationary by the

assumption "M is an NI -oracle", hence it is nonempty.

c) DM is normal.
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It suffices to show that if Ai C ω\(i < ω\) then there is A C ω\ such that

A Π δ G MS implies Ai Π δ G MS for a l i i < δ. By a) and 2) it suffices if the

implication holds for a closed unbounded set of J's.

Let {—, —) be a nicely defined pairing function from ordinals to ordinals,

(preserving countability), and let C = {δ < ω\ : δ is closed under (—,—}}.

For δ G C, the restriction of {—, -) to δ x δ belongs to MS because the nice

definition of {—, —) is absolute for M$, hence C is closed unbounded in ω\.

Let A = {(i, α) : α G Ai and i < ωι}, assume δ G C and A Π δ G M$, and

let i < δ. Then also Ai Π δ G M$, which completes the proof.

4) Similar to the proof of 3). Dχ.4

1.5 Definition (the real one). We define when a forcing notion P satisfies

the M-c.c. by cases

a) If |P| < No, always.

b) If |P| = NI and for some (every) / : P —> ω\ which is one-to-one,

{δ < ωι : for A G M$, A C ί, f~l(A) is pre — dense in f~l{i : i < δ}

implies f~l(A) is pre — dense in P} G D^

To see the equivalence of the "some" and "every" versions let / : P —> ω\

witness the "some" version and let g : P —> ω\ be another one-to-one

function. Then the set

B ά= {δ < ωι : fl({i : i < δ}) = g~l({i : i < δ})

and for every A G MS

[f~l(A) is pre-dense in f~l({i : i < δ}) ==> f~l(A) is pre-dense in P]

belongs to DM and witnesses that g also satisfies clause b).

c) If \P\ > NI and for every Pf C P: if |pt| < ̂ χ then there are P" such that

|P"| < Ni, Pf C P;/ C P and / : P/; -* ωi, as in b) such that: P" Cίc P,
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which means, if p, q G P" then: P \= p < q <Φ P" \= p < g, and: p, q are

compatible in P iffp,q are compatible in P".

Notation. P |= M-c.c. denotes that P satisfies M-c.c.

Remark. In this chapter we use iterations of length ω2 starting with V = L and

every iterand is of size ωi, so we work explicitly only with the case |P| = NI.

1.6 Claim. 0) If Pι,P2 are isomorphic forcing notions, then: PI satisfies the

M-c.c. if P2 satisfies the M-c.c.

1) If P satisfies the M-c.c. for some KI -oracle M, then P satisfies the

HI-C.C.

2) Let M be an Ni-oracle, P <Φ Q. If Q satisfies the M-c.c., then P satisfies

the M-c.c.

3) In Definition 1.5 for the case |P| > HI, we can demand P" <£ P and get

an equivalent definition (remember we are assuming CH as we are assuming

Proof. 0) Trivial (by the equivalence proved in Definition 1.5 clause (b)).

1) Clearly, it suffices to prove it for P with universe ω\. So, assume that

J is a maximal antichain in P of power KI. Then there is a closed unbounded

subset C of ω\ such that: if δ G C, q < δ then there is p G J Π δ compatible

with q, and also if p, q < δ are compatible then they have a common upper

bound in P\δ.

As P satisfies the M-c.c., there is δ G C Π IM(J) with the property:

[A G M«5 & A is a pre-dense subset of P f ί] => [A is pre-dense in P] (actually,

the set of these £'s is in DM). But J Π <5 is a counterexample as: J Π 5 G M^

(because 5 G IM^)), &nd JΓ Π 5 is a pre-dense subset of P\δ (because δ G C

and the definition of C) hence (by the previous-sentence) any p G J \ <5 is

compatible with some q G J Π 5; contradiction.

2) Assume first that |P| = \Q\ = NI. W.l.o.g. the universe of Q is ω\. We

have to show that for a set in D^ of 5's, if A is pre-dense in P\δ and A G M^

then A is pre-dense in P; since P <> Q we know P Cic Q hence it suffices to
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show that A is pre-dense in Q. Since Q satisfies the M-c.c., it suffices to show

that A is pre-dense in Q\δ.

For q G Q define Ig = {r G P : r is incompatible with q, or (Vr^ > r)(r^ G

P =$> r"f is compatible with q)}.

Let ̂  be a maximal set of pairwise incompatible elements in Xq . As clearly

Xq is dense in P, Jq is a maximal antichain in P, hence in Q (since P <£ Q). Pick

?~g € v7g such that (Vrt > rg)(r^ G P => r* is compatible with q)] such rg exists

since otherwise q would contradict the fact that Jq is a maximal antichain in Q.

We may assume that δ is such that: q < δ implies rq < 5, and any Pι,p2 € -Pfί

compatible in P are compatible in Pfί, and the same holds for Q.

Now let A be pre-dense in Pfί and let q € Q\δ. Since rς G Pfί, there is

p e A compatible with rq. Let r1" G Pfί be above p and rq. By the choice of

rq we know that r* is compatible with g, hence p is compatible with q, so A is

pre-dense in Q\δ. Hence we have finished the case |P| = |Q| — HI.

Before proving the claim for all P, Q we present the following simple fact

on forcing notions.

1.6A Fact. (CH). If PI C P2, |Pι| < NI, and P2 satisfies the KI-C.C., then there

is P3 such that |P3| < HI and PI C P3 <> P2.

Proof of Fact. We define, by induction, an increasing continuous sequence

(p(α) : α < ωι) of subsets of P of cardinality < HI as follows:

P(°>=Pι,

P(a} = U/5<αP(/3) for limit α.

For α = /3 -f 1, for every countable subset 2 of P^ which is not pre-dense

in P2, pick px G P2 exemplifying this. Let P0

(α) be the set obtained by adding

the pj's to P^3). Let P^ be the set obtained from P^α^ by adding a common

upper bound for every pair in Pjj having one in P2.

Now, P3 = Ua<ωιP(aϊ is as required, proving the Fact. Πi.βA

Continuation of the proof of 1.6

Returning to our claim, we distinguish the following cases:
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i) \P\ < NO- Then trivially P satisfies the M-c.c.

ii) \P\ = HI. Then since Q \= M-c.c. there is pt Cic Q, P C pt, such that

P1" satisfies the M-c.c. and \P*\ = HI. Since P <£ Q, clearly P <$ pt, and now

by what we have already proved P satisfies the M-c.c.

iii) |P| > HI. Let P* C P, |pt| < HI. Using the Fact 1.6A, we obtain P",

such that |P/r| < HI and Pf C P" <o P. Since P <o Q it follows that P" <o Q,

so by i) or ii) we have: P" satisfies the M-c.c. Hence P satisfies the M-c.c.

3) Let P satisfy the M-c.c. (by Definition 1.5), |P| > HI, and let Pf C P,

|pt| < HI and (by 1.6A) choose P", \P"\ < HI such that Pf C P" «? P. From

2) we know that P" satisfies the M-c.c., hence is as required. Di.β

1.7 Fact.

1) IfP<$R,PCQCiCR then P <£ Q

2) Pi, P2 <£ Q, PI C P2 then P! <$ P2; if PI, P2 Cic Q, Px C P2 then

Pi Cίc P2

3) Cic is a partial order. Dχ.7

§2. The Omitting Type Theorem

2.1 Lemma. (<>NI) Suppose ψi(x)(i < ω\) are Π^ (i.e., V real 3 real . . . )

formulas on reals (with a real parameter, possibly). Suppose further that there

is no solution to /\i<ωι ^%(x] in V\ and moreover even if we add a Cohen real

to V there will be none. Then there is an Hi-oracle M such that:

(*) P t= M-c.c. implies: in Vp there is no solution to /\^ ψi(x).

Proof. Let n < ω be large enough so that the forcing theorems can be proved

from ̂ n sentences in ZFC, and the assumption of the lemma can be formulated

as a Σn statement.

Now, for a given countable forcing notion P and a given P-name for a real

r (w.l.o.g. canonical), let M(P,r) be a countable ]Γ)n-elementary submodel
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of V containing P, r and (φi : i < ωι). Let I(P,r) be the collection of all

pre-dense subsets of P lying in M(P,τ).

2.1 A Claim.

1) If P Cic pt and every A e I(P, r) is pre-dense in P f, then

(note that r is also a Pΐ-name; we can restrict ourselves to i £ M(P, r)).

2) Assume that P is a countable forcing, r a P-name of a real, a canonical

one, ψ a Πj -formula, p Ihp 'V(l)" Then for some pre-dense Xn C P for

n < α;, z/P Cic pt, each 2n is pre-dense in pt then p Ihpt 'V(l)"

Proo/ o/ Claim. 1) Let G be P^-generic over V. Since every A € J(P, r) is pre-

dense in Pt and therefore intersects G, GίΊP is P-generic over M(P,r). (Why

is GΠP directed? If p, <? € GnP then J = {r e P : r incompatible with p (in P

or equivalently in pt), or r incompatible with qorp<r&q<r}e M(P, r) is

predense in P hence in pt , hence not disjoint to G Π P.) Also r[G] = r[G Π P].

Since M(P, r) is a J]n-elementary submodel of V, it satisfies the assumption

of the lemma, hence M(P,r)[GnP] \="-τφi(τ[G\) for some i < KI". So for some

i < NI, i G M(P,r) we have M(P,r)[G Π P] |= -«^t(r[G?]) (remember that P

is countable (even in the sense of M) and therefore adding a generic subset

of P is equivalent to adding a Cohen real). Since X^ statements are upward

absolute from M(P, r)[G(ΊP] to V[G] by Schoenfields's absoluteness theorem,

it follows that V[G\ \= u-rφi(τ[G\)n , proving the claim.

2) Proved above. Eb.iA

Continuation of the proof of 2.1: Now, using ONI and a closing process, we can

obtain an Ki-oracle M = (M$ : δ < ωι) satisfying: if P is a forcing notion, has

universe δ < ω\ and P, r € MS then J(P, r) C M§ (remember that P, J(P, r)

are countable). We will show that M satisfies the requirement of the lemma.
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Assume, on the contrary, that pt \= M-c.c. but r is a P^-name of a real so

that ypt t= /\ί ψi(τ). We may assume that |Pt| = HI because:

a) |P^Ί < HO is impossible by the assumption of the lemma.

b) if |Pΐ | > KI then by 1.6(1) and 1.6(3) we can find P" such that r

is a P"-name, \P"\ = H1 ? P" <e pt and P" N M-c.c. Since P" <$ pt,

Vp" N ̂ ψi(τ) would imply Vp N ->^(τ) (again by an absoluteness argument),

hence Vp" N /\i ^i(r) So P" can replace pt in the sequel.

W.l.o.g. the universe of P^ is ω\. We can find δ < ω\ such that letting

P = Pf ί δ the following will hold:

i) r is a P-name.

ii) P,τGM 5 .

in) PC < c pt.

iv) A G M$, Λ is a pre-dense subset of P => A is pre-dense in pt.

Prom these facts, the claim and the construction of M, it follows that

Vp N -i f\i Ψί(ΐ)ι a contradiction. U2.ι

2.2 Example. If V N [OHj&^l C R & Λ is of the second category] then there

is an α i-oracle M such that:

P N M-c.c. =$> Vp 1= "A is of the second category".

Proo/. Let A = {n : i < cji}, ^(^) = (n £ Bx) where JBX = Un<α,B£,β£

closed nowhere dense, where J5^ is "simply" described by x such that every set

of the first category is a subset of Bx for some x and absolutely, for every real

x and n < ω, B™ is nowhere dense. Each ψi is trivially Π^. We still have to

show:

(*) if P is countable, the following fails: Ihp " for some real x, for every

i < ωι we have r^ G Bx" .

Suppose, on the contrary, that there are r G P and a P-name x, so that

r Ihp "x is a counterexample". Then for every z, for some p G P and n we have

p Ihp «r< G BJ". Let ̂  = {r< : p lhP ̂  G P^"} we have shown A C \Jn,pA%.

We shall show that every A™ is nowhere dense and get a contradiction.
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Let n < ω, p G P, (cι,c2) a rational interval. It suffices to find a rational

subinterval disjoint from A™. But Ihp "B™ is nowhere dense". So there are

pt > p, (4,4) £ (cι,c2) such that pt Ihp "β£ Π (4,4) = 0" Clearly:

Γi € (4 ,4)^^ Ihp "nφB™ =ϊ

Π2.2

The arguments above give the following fact, too:

2. 2 A Fact. If A C R is of the second category and P is the forcing notion of

adding α Cohen reals to V, ί/ien Vp |= "A is of the second category". D2.2

It simplifies to note:

2.3 Fact. Let P be a countable forcing notion, Q Cohen forcing

1) If J is a pre-dense subset of P x Q, then we can find pre-dense subsets Xn

of P, for n < ω such that:

(*) if P' is a forcing notion, P C P' and each In is a pre-dense subset of P'

too, then J is a pre-dense subset of P' x Q.

2) The same applies to P x Q, P' x Q as for any forcing R, R x Q is a dense

subset of Rx Q.

Proof. 1) Let {qn : n < ω} list the members of Q and let Jn = {p G P : for

some q we have: qn < q £ Q and (p, ρ) is above some member of JΓ}.

2) Should be clear. D2.s

§3. Iterations of M-c.c. Forcings

3.1 Claim. If Mi (for i < ω\) are Ki-oracles then there is an Ki-oracle M such

that:

(P N M-c.c.) => ( /\ P N Mi-c.c.).
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Proof. Let M* = (Mj : δ < ωι).

Choose MS such that Ui<$Mj C M$, M# a countable transitive model of

ZFC~. Clearly M = (M^ : <5 < ω\) is an Ni-oracle. It suffices to prove that:

(*) if MI, A/2 are Ni-oracles, {5 : Mj C M|} is co-bounded (i.e., with a

bounded complement) then M2-c.c. => Mj-c.c.

Since for each Aζ-ωι, every sufficiently large 5 G /^ (A) is in 7 2̂ (A), it

suffices to show that if δ has the required property with respect to M2 (and δ

is sufficiently large) then it has the required property with respect to MI. But

this follows trivially from Mg C M|. (Of course in (*) we can require e.g. just

"{δ : Mj £ M|} is not stationary or just = 0 mod £>M2") ^3.1

3.2 Claim. If Pi(i < α) is the result of a finite support iteration, each Pi

satisfying the M-c.c. and P = U^<Q,Pi, ίften P satisfies the M-c.c.

Proof. We demand superficially less on the P^'s: Pi <$ P; for z < j, and

P5 = Ui<5Pi for limit δ < α, and each P^ (for i < α) satisfies the M-c.c.

Case I: α successor.

Clearly P 6 {Pi : i < a} (it is Pa-ι) so by the assumption P satisfies the

M-c.c.

Case II: cf(α) > HI.

If Pf C P, |pt| = «!, then there is i < a with Pf C P^ because cf(α) > H x .

Since Pi \= M-c.c. we can find an M-c.c. P" Cic P^ of size KI such that

Pt C P". So P μ M-c.c.

Case III: cf(α) = HI.

Obviously it is sufficient to deal with the case OL — ω\. We will now show

that it is sufficient to deal with the case |P| = KI.

Indeed, if |P| < KI then the conclusion of our claim holds. So assume

|P| > KI, and P does not satisfy the M-c.c. Then there is P^ C P of power KI

so that Pt C P" Cic P, |P"| = HI imply that P" does not satisfy the M-c.c.

We note that P satisfies the KI-C.C. (See Claim 1.6(1) and the proof of Lemma

II 2.8).
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Let N be an elementary submodel of (if(χ),€,<*) for a large enough

regular χ such that pt, (Pi : i < ωλ) G N, Nω C N and \\N\\ = «ι. Take

P/' 1lf p. n AT. Then P/' <£ P; (as in the proof of 1.6A) and (P " : i < ωi) is

increasing continuous and pt C P^. But |PJJ = HI and it does not satisfy

the M-c.c., so we have reduced our counterexample to one of power HI.

We assume now, w.l.o.g., that Pi \ \Jj<iPj C ωι x {i}. We let A< d= {5 : if

C G MS is a pre-dense subset of Pi \(δ x δ) then C is pre-dense in P^}.

For each i < ω^Ai G DM (as Pi |= M-c.c.). Since Pi <£ P and P< |= NI-

c.c., by the proof of claim 1.6(2), we can find a function pr^ from P x ω

into Pi such that: p G P$ is compatible with q G P in P iff for some n,

pri(q, n),p are compatible in P;. We let Bi = {δ : pr"((δ x δ) x ω) C δ x δ and

pri Γι(δ x δ) = pri \((δ x δ) x ω) G M5}.

For each i < ω\, Bi G -Dj^.

We let A ά= yMi - {<* : for every i < δ,δ G AJ and B = V;#z d= {5 :

for every i < 5, δ G JE?i}. As DM is a normal filter, clearly A, B, A Π B G D^.

Assume now that 5 G AlΊβ, V G M§ is a pre-dense subset of P\(δ x δ). Notice

that

(*) p G Pi is compatible with some q G Y iff it is compatible with some

r G pri(Y x ω).

We know that for alH < δ we have pri(Y x ω) G M§ (as 5 G Bi) and it

is a pre-dense subset of Pif(ί x δ) by (*). Therefore, as δ G A^, pr^(y x ω)

is pre-dense in Pi. Using (*) again, (as P^ = U^P^PI^ x δ) C P5), Y is

pre-dense in PS, and since P$ <£ P, y is pre-dense in P. Thus we have proved

that P satisfies the M-c.c. (Note that for some/any bijection / : ω\ x ω\ —* ω\,

{5 : f"(δ x δ) — δ} is closed unbounded).

Case IV: cf (α) - N0-

One can deal with this case as with Case III (the diagonal intersections

are replaced by countable intersections). Ds.2

We shall deal now with the "real" successor case:
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3.3 Claim. Assume V N <)KI , M is an Ni-oracle, P is a forcing notion of power

NI satisfying the M-c.c. Then in Vp there is an Nχ-oracle M* such that: if

Q G Vp satisfies the M*-c.c. (in Vp) then P * Q (which is in V) satisfies the

M-c.c.

Proof. First we observe that if M* in Vp is good for all Q of power < KI then

it is good for all Q. Hence we shall treat Q as a P-name of a binary relation on

ω\ (but we shall define M* without depending on a given Q). We also assume

that P has universe ω\ , and we fix for the rest of the proof a generic G C P

(which has a canonical P-name in V). Note that ω\ x ω\ is a dense subset of

P * Q, so we can use it as the set of members.

For A C ωι x ωλ and G C P we define A[G\ = AG = {a : (3p G G)[(p, α) 6

A}}.

Let 5 < ω\ be a limit ordinal. In V[G] we let M£ be a countable transitive

model of ZFC~ containing ί, Mff and {A° :ACδxδ,Ae Mδ}. We will first

show that M* is a tti-oracle in V[G].

The following fact implies this statement.

3.3A Fact. (VA G D)(3B G D&)[B C A].

Proof o/ ίfte Fαcί. Let S be a P-name of a subset of OΊ. Let Γ = {(p, α) : p G P

and p Ihp "α G 5"}. Clearly S[G\ = T[G]. Since P satisfies KI-C.C. and so

(Vα < ωι)(3β < ωι) [τ[G]Πα = Γ[GΠ/?]nαl , we have in V a club C C ωι such

that Ihp "Γ[G]Πί = T[GΠδ]n for each δ G C. So ί G C and A = Tn(5x5) G M5

implies AG = T[G Π ί] Π δ = T[G] Π 5 G M|. But these restrictions give an

element of DJVΪ by 1.4(3). So we have proved that for every P-name 5 C α;1?

for some Γ C ωi x wi we have Ih "/^,(5)yP 2 IM(T)V" (well, T C cjx x α i,

and not T C ωι, so use a pairing function, see 1.4(4)).

Π3.3Λ

Thus we have proved that M* is an Ki-oracle in V[G].

We now assume that A C 5x5, A G M$ and Λ is pre-dense in (P*Q) t(5xί).

We want to show that A is pre-dense in P * Q. The proof will be broken into
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three steps, and as we proceed we will impose restrictions on 5, the reader can

easily verify that these restrictions are allowable (in the sense of D^) and do

not depend on A and G.

First Step. If G C P is generic over V, then AG C δ, AG € M% and AG is

pre-dense in Q[G] \δ.

Proof. The first two facts are immediate.

Let (p, <?), (α, β) G P * Q. We define /(M)(α, /3), whenever (p, ςι) and (α, β)

are compatible, as the least ordinal which is the possible P-part of a condition

above (p, q) and (α, β) in P * Q. We may assume that for each p, q < δ

f'/ q^(δ x 5) C δ and for each ς < δ the mapping p >-» /(p>q) Γ(£ x ί) for p < δ

belongs to M$.

Let q G Q[G] \δ, and define Iς = (Jp<δf(p^(A). Then Zq C δ, Iq G M5 and

Iq is dense in Pfί (as A is pre-dense in (P * Q) f(ί x δ) and by the definition

of /(p,g)). Hence we may assume that Jς is pre-dense in P (by our assumption

that P satisfies the M-c.c.).

Let r G Ig. Then for some p < δ, s G Q and (α, β) G A we have in P * Q

( r , s ) > (p,ς),(α,/?). As P N "r > α", r lhP "α G GP", so r lhP "/? G Λ^P";

as r \\-p "β <Q s and q <Q 5" it follows that r lhP "g is compatible with some

element of AG". As this holds for all r G Iq and J9 is pre-dense in P, it is true

in V[G], and as this holds in V[G\ for all q G Q[G]f<5, we obtain that AG is

pre-dense in Q[G] \δ.

Second Step. If G C P is generic over F, then AG is pre-dense in Q[G].

Proof. This follows from the assumption that in V[G], the forcing notion Q[G]

satisfies the M*-c.c. We only have to observe here that the restriction to a set

in D^* can be replaced by a restriction to a set in DM, by Fact 3.3A.

Third Step. A is pre-dense in P * Q.
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Proof. Let (p, q) G P * Q. Since for any G C P generic over V, in V[G] the set

AG is pre-dense in Q[G], there exist r > p, (α,/3) G -4 and 5 G Q such that

r I h p "α G GP and /? <Q 5, and q <Q s". As r lhP "α G GP", r > α, so

(^ 5) > (p, #), (α, /?), in P * Q, proving what we need.

Π3.3

§4. The Lifting Problem
of the Measure Algebra

4.1 Notation. Let B be the family of Borel subsets of (0,1). Every Borel set

C (0,1) has a definition φ (in the prepositional calculus Lω i ) W), i.e. let φ be

a sentence in the Lωi)U, propositional calculus, with vocabulary {tq : q G Q},

where Q denotes the rational numbers, (tq stands for the statement r < q).

We let A = Bo[φ] be the Borel set correspondending to this definition, i.e.

A = {r : r G (0,1), and if we assign to the propositional variables tq the truth

value of "r < c£\ the sentence φ becomes true}. Notice that the answer to

"r G Bo[y>]" is absolute.

If B G S in V, and V[G] is a generic extension of V, then let BVW be the

unique Bl such that for some φ, V \="B = Bo(<p)", and V[G] N"J5ι = Bo[φ]".

Note that the choice of φ is immaterial.

Let Imz be the family of A G # of measure zero and Ifc be the family of

A G B which are of the first category. If α, b are reals, 0 < α, 6 < 1, let

(α, b) — {x : α < x < b or b < x < a}

[a,b] is defined similarly. Again this is absolute. We can use R or (0,1), does

not matter.

4.2 Definition. If B is a Boolean algebra, / is an ideal, we say that B/I

splits if there is a homomorphism h : B/I —> £ such that h(x/I)/I = x/I.
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Equivalently there is a homomorphism h : B — •» B with kernel / such that

h(x) = x mod /.

4.3 Theorem. It is consistent with ZFC that β/BΓ\Imz does not split (if ZFC

is consistent).

4.4 Discussion. (1) If CH holds then B/Imz splits (see Oxtoby [Ox]); in fact

this holds for any Ni-complete ideal.

(2) Note that *&/Imz has a natural set of representatives:

hm(X) = {aeR:l = lim[Leb(X Π (α - ε, α + ε))/2|ε|]}

where Leb(X) is the Lebesgue measure (for a set of reals). Unfortunately hm

is not a homomorphism.

Now for X G B, hm(X) € B and hm(X) = X mod Imz (see Oxtoby [Ox]).

(3) Note also that (B 4- /®z)//®z splits where B -f /®z is the Boolean algebra

of subsets of (0, 1) generated by B and 7®z and J®z = {A : A is a subset of

some member of /mz}. A function exemplifying this can be defined as follows:

for each real r let Er be an ultrafilter on (0, 1) such that if A C (0, 1) and

1 = limε^0[Leb(An(r-ε,r + ε))/2|ε|], then A G Er and for every X G

let

mz.Clearly h(X) = hm(X) mod Imz hence h(X) - X mod J

(4) The dual problem, replacing "measure zero" by "meager" can be solved

too. I.e.

(*) it is consistent with ZFC that B/BΠ/fc does not split (if ZFC is consistent).

The proof is like the proof of 4.3, replacing "measure zero" by "meager" ,

it is done explicitly in [Sh:185] [were also Theorem 4.3 was proved].

(5) The author was asked this problem by Fremlin and Talagrand during the

Kent Conference, summer 79, who said it is very important for measure theory;

Talagrand even promised me flowers on my grave from measure theorists. I did

not check that yet . . .
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4.5 Main Lemma. Let M be an Ki-oracle (so CH and even ONI hold) and h be

a homomorphism from B to B with kernel /mz, such that h(X) = X mod Imz

for every X G B.

Then there is a forcing notion P of cardinality HI satisfying the M-

chain condition, and a P-name X (of a Borel set) such that for every generic

G C P x Q over V (where Q is the Cohen forcing) there is no Borel set A in

V[G] satisfying:

α) A = X[G]

/?) for every 5 G £v, if £V1G1 C X[G] mod Imz then (/ι(£))v[Gl C A,

7) for every B e Bv , if BVW Π X[G] - 0 mod /mz then (/iGB))^] Π A = 0.

4.6. Proof of the Theorem from the Main Lemma. For simplicity our ground

model is a model of V = L. We intend to define a finite support iteration

(Pi, Qi '• i < MZ) such that \Pi\ < ^2 and P^ |= NI-C.C. for ί < ω^

We also want to define a sequence (Fi : i < ω2), Fi G VPί , F^ C [β x #]v

(more exactly a P^-name of such set), such that for any P C [B x B]v "2 , the

set

is stationary in ω%.

This is possible, using <>{δ<ω2 .cf(δ)=^}'

(Fi is a P-name. So it becomes meaningful after we have defined P^, but

using 0{δ<ω2:cf(δ}=ωι} we obtain a schematic definition of the P^-s which does

not depend on the actual construction of the P^'s or just guess P\i and F^i.

See more detatils for the second case in Claim 5.3).

So how do we define Pi for i < ω^ As we are going to iterate with finite

support, Pi(i < ωz) will be determined as soon as we define (Qi : i < ω%) by the

relations P0 = {0}, P +i = Pi*Qi and Pδ = Ui<δPi for limit δ and Pjti = Pi/Pj.

Actually, we will define by induction Q^ Pjti G VFj and ^i-oracles Mi G VPί+1

(actually a Pi+ι-name) and M? G VPi for j < i < ω^ (remember that having

defined Qi we have determined Pi+χ so we can go about our next task). We

define by induction demanding that:
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(*)i for each j < i in the universe Vp*+l, the forcing notion PJ+IJ satisfies the

Mj-c.c (if j 4-1 = i this is an empty demand).

For i = 0 we have nothing to check. For i limit use the claims on FS

iteration from II and Claim 3.2. So to carry the induction assume that i < ω%

and QJ (j < i) and Mj G Vp*+l (for j < i) have been defined (so also Pj for

j < i, and (*)t holds). For each j < i, let P^ G VFj be the (Prname of the)

forcing notion (of power NI) such that P^ = Pj * P^ i.e. PijGp.. We assume

that FΪ G VPi is a splitting homomorphism; otherwise we let Qi be a P^-name

of the Cohen forcing and Mi be any Ni-oracle in VPί+l (remember that 0^

holds in the ground model and the P 's satisfy the NI-C.C. and have power < N2

and Cohen forcing satisfies every Ni-oracle). Let M/ G VPί (for j < i) be an

Ni-oracle with the property: if Q N M/-C.C. in VPi then Pj+i,i * Q N Mj-c.c.

in y^+1 (note that M/ exists by Claim 3.3., by the induction hypothesis).

Now, let M* G VPί be an Hi-oracle such that M*-c.c. implies M/-C.C. for j < i

(existing by Claim 3.1). Apply now the main lemma 4.5 in VPί (for h = F^) to

obtain P = Qi G ΐ^Pί and Jf j (a Qi-name so actually a Pi_|_ι-name) satisfying

the conclusions of 4.5, so by the choice of M*, j < i implies in VPJ+1, the

forcing notion PJ+I^+I = P7 +ι)i*Q ί satisfies the Mj-c.c. Finally apply Lemma

Pi*Qi
2.1 in VPί+l —V " f o r the type appearing in (α) — (7) of 4.5, to obtain an

Ni-oracle Mi G VPί+l such that the above mentioned type is omitted in any

generic extensions of VPi+1 with forcing notions satisfying the M^-c.c. and such

that: if R is a (P-name of a) forcing notion satisfying the M^-c.c. in VPi+l then

Qi * R satisfies the M*-c.c. in VPi. Now we can check (*)i+ι

As Pω2 satisfies the HI-C.C. (by 1.6(1)) and has power ^2, there are at most

^2° — ̂ 2 Pω2-names of reals; on the other hand we have added reals ^2 times,

so yPc,2 μ«2H° = N 2 ».

To conclude the proof of 4.3, assume that F G VPωz is a splitting homo-

morphism. Then there is some i < ω^ such that Ff[#]v l = Fi is a splitting

homomorphism in VPi (and cf(z) = HI). So at stage i we had Qi introducing

X G B and an Ni-oracle Mi G VPi+1 such that P(X) cannot exist in generic

extensions of VPί+l with forcing notions satisfying the M^-c.c. Examining our
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construction and remembering Claim 3.2 it is easy to prove by induction on

a < ujϊ that for a > ί we have VPί+1 \= "Pi+ι?α satisfies the MΪ-C.C.". Hence

VPωz = (ypΐ+ι)p;+ι,"2 is such an extension of VPi+l, a contradiction. U4.3

4.7. Proof of the Main Lemma ^.5. In this proof let Se denote the set of

sequences ά = (α^ : i < ω) such that the sequence is monotone, α^ ^ a$+i, for

i < ω, a*i is rational, but aω is irrational, and (α^ : i < ω) converges to aω (and

they are from the interval (0,1)).

4.7A Definition. Let P = P((άα : α < β)) where β < ωl,ά
a G Se and α£ for

α < β are pairwise distinct, denote the following forcing notion: p E P iff the

following three conditions hold:

(a) p = (t/p, /p), where Up is an open subset of (0,1), cl(E7p) is of measure

< 1/2, and fp is a function from Up to {0,1};

(b) there are n and 6/, (for / < n), // (for i < n) such that 0 = bo <

61 < < 6n_ι < 6n = 1 and Up = U^1//, Iι is an open subset of

(&ιΛ+ι) and even cl(//) C (fe/,6/+ι).

(c) // is either a rational interval, fp\Iι constant, or for some α < β

and fc/ < ω, Iι = ^kl<m<ω(a^m,aξm^1), Λ>rKm4-2^α4m-f2i+ι) is

constantly i when /c/ < 2m, m < α;, i G {0,1}.

The order on P is: p < q iff Up C Uq, fp C fq, and cl(E7p) Π t/g = [7p.

Finally we let XP = V{fpl{0} : P G GP}.

4.7B Stage 1. We will define here a statement, in the next stage prove that

it suffices for proving the main lemma, and later prove it.

(St) Let PS = P((aa : a < (5)), δ < ωι be given, δ > ω as well as a countable

model M£ of ZFC~ such that P$ G M£, a condition (p*,r*) G P<5 x Q and a

(P$ x Q)-name y? of a definition of a Borel set (this is a candidate for h(Xp)

i.e. the A in 4.5; Q is of course Cohen forcing).

Then we can find άδ G Se such that (Vα < ί)[αf, 7^ α£] and letting

= P((άa : a < 5)), the following conditions hold:
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. (A) Every pre-dense subset of PS which belongs to MS is a pre-dense subset

of PS+I (note that if MS is quite closed this implies the same for (Ps x

Q,P 5+ιxQ), see 2.3(1)).

(B) There is (j/,r;) G PS+I x Q, such that (p*,r*) < (p',r') and one of the

following holds, for some n:

(El) (p',r') lhP δ + l x Q "α* G Bo[<p], and Un<m<ω(αJm+2,αJm+3) nXP,+1 =

0" and "α* G /ι(Un<m<ω(αfm+2,αlm+3))";

or

(B2) (j/y) lhPi+lXo"αf, t Bo(φ) and lUm<>ln,<n+ι) £ XPi+l"

4.7C Stage 2. It is enough to prove the statement (St).

We choose Ma and άa G Se by induction on α < ω\ such that β < a =>
aω ^ aωi and we a^so choose pre-dense subsets J7 of P((a^ : β < α)) for

7 < ωa -f ω such that: 7 < ωαi 4- ω, αi < 0:2 implies J7 is a pre-dense subset

of P((άβ : /? < α2}) (of course αi < α2 implies P({αα : α < QI)) C P((άα :

α < α2)), moreover P((άa : α < QI}) Cic P((άa : a < 0:2)), read Definition

4.7A). For a < ω choose any αα G Se with Z7 = {(0,0)}. Generally make

sure {lu α+n : n < α;} include { J : I G U/3<a^0> ^ a pre-dense subset of

P((a& : β < a))}. Now in stage α > ω a bookkeeping gives us a (P$ x Q)-

name φa as in (St). Choose Mα including U7<α^7' ^«5 ffi '- β < α)? choose

αα as in (St) and choose {Zωα+n : n < α;} such that all forcing statement

mentioned in clause (B) of (St) continue to hold if we replace P^+i by any

P such that P<5+ι Cic P and each Xωα+n is pre-dense in P for n < ω and

each predense subset of P^ which belongs to MS appears in {Xωa+n : n < ω}

(possible by 2.1(A)(2)). Clearly P = P((αα : α < ωi)) satisfies the M-c.c.

For the conclusion of 4.5 let X = Xp and (p*,r*) G P x Q force A is a

counterexample, (so (α), (/?), (7) there hold) so for some δ G [ω,α;ι], A = ψξ.

Remember that if (p',rf) lί~pδ+1χQ "α5 G Bo(φ)n then this remains valid

if we replace P^+i by any forcing notion P, P^+i Cic P provided that certain

(countably many) maximal antichains of P$+ι remain maximal antichains of P
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which we have guaranteed.

If clause (Bl) holds then B = Un<m<uXαin+2>α4m+3) contradicts clause (7)

of 4.5 (for A =Bo(£)) and if clause (B2) holds then B = Un<m<c>4m> <n+ι)

contradicts clause (β) of 4.5 (for A =Bo(</?)). We get a contradiction, so P,

X from above proves the main lemma 4.5 (which suffices for proving theorem

4.3).

So from now on we concentrate on the proof of (St).

4.7D Stage 3. Choosing άδ. So let Pδ, (άa : a < δ) , φ, M5* and (p*,r*)

be given, as in the assumption of (St), choose λ big enough (i.e. λ = Dg"),

TV a countable elementary submodel of (ff(λ),G) containing P^, (α"α : α <

i),£,M6*,fc.

Choose a real αf,, which belongs to (0,1) \ cl(t/p*) but does not belong

to any Borel set of measure zero which belongs to N. This is possible as by

demand (a) in the definition of P((άa : a < ί)),cl(C/p*) has measure < 1/2.

So (0,1) \ cl(i/p*) has positive measure, whereas the union of all measure zero

Borel sets in TV is a countable union hence has measure zero. So αf, is a random

real over N and N[a^\ is a model of enough set theory: ZFC~-f- "P8(ω) exists"

(where P(A) is the power set, Pn+l(A) = P(Pn(A))) (all those facts are well

known; see e.g. Jech [J]). Clearly αf, G /ι((0,αf,)) or αf, G ft((αf,, 1)), so w.l.o.g.

the former occurs. It is also clear that for every ε > 0, αf, G ft((αf, — £,αf,))

[Otherwise, choose a rational 6, αf, - ε < b < αf,, then αf, ^ Λ((αf, — £,αf,)) =>

αf, 6 ft((0,6)). Hence αf, G ft((0,6)) \ (0,6), but this set has measure zero (by

the property of h) and obviously belongs to N].

Now let (bn : n < ω) G -/V[αf,] be a strictly increasing sequence of rationale

converging to αf,. Next in A^[αf,] we define a forcing notion R (the well known

dominating function forcing):

R — {(/»^) : / a function from some n < α; to α;, satisfying (Vi < n ) f ( i ) >

z, and g is a function from ω to ω}.

The order is
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(/,<?) < (/',<?') i f f f Q /', (VZ)fl(O < a' (I) and

(Vi)[i <Ξ Dom(/')&i £ Dom(/) => 0(i) < /'(ί)].

Choose a subset G of R (remember that R G AΓ[α£,]) generic over AΓ[α£,],

next define a function /* - /*[G] - U{/ : (/,#) G G} G (JV[α*])[GJ. So it

is known that (W[α£,])[G] = C/V[α£,])[/*] and a finite change in /* preserve

genericity, i.e. if /' : ω — » ω, (Vi < ω)f(i) > i and {n : /*(n) ^ /'(^)} is

finite then for some subset G' of jR generic over N[α^\ we have /' = f[G'\

and (N[αδ

ω])[G\ = (#[<£])[/*] = (N[αs

ω})[f] = (N[αs

u})[G'}). We shall work

for a while with the model N[α£,][/*]. We define (in this model) a sequence of

natural numbers (n(l) : / < ω), defining n(l) by induction on /. Let n(0) = 0,

and n(l + 1) = f * ( n ( l ) ) . Now we define for m < 4 and k < ω a set A^,

So A^m = 0,1,2,3) is a partition of (60, «£,) modulo measure zero as

{bn : n < ω} has measure zero, but remember αf, G /ι((6o,α£,)) hence for

some unique m(*),α£ G Λ(A^( l l l )). Note that < G JV[α*][/*], but h\N[αδ

ω][Γ]

does not necessarily belong to this model, so we determine ra(*) in V. As we

could have made a finite change in /* (replacing /*(0) by /*(n(m(*))), legal

as /*(n(m(*))) > n(m(*)) > m(*) > 0) we can assume αf, G ft(-Ag).

As αf, G Λ((αf, — ̂ ,«f,)) for every ε, and as h is a homomorphism, αf, G

h(A§) for every fc.

First let us try to choose άδ = (6n(/) : / < α;)Λ(αf;).

4.7E Stage 4. Condition (A) of (St) holds.

This means:

4.7E1 Subclaim. Every pre-dense subset J of P§ which belongs to M§ is

pre- dense in PS+I.

Proof of the Subclaim. As M§ G N clearly J G N. Let p G P$+ι, p $ P<5, so

by the definition of P^+i there are q G P£ and rational numbers CQ,CI and a

natural number /(O) such that

0 < C0 < aδ

ω < Cι < 1, C0 < 6n(4i(0))ϊ C0 > ί>n(4i(0))-lϊ

cl(t/q) Π [co, ci] - 0, E7P - Uq U ̂ (0) U Af\ fp = fq U 0 ,ί(0) U 1 «(0) .
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(OA is the function with domain A which has constant value 0; similarly l^ )

Before we continue we prove:

4.7E2 Fact. Let r £ Pδ,J C P§ be dense, (CQ, GI) C (0, 1) be an open interval

disjoint from Ur. Then

C — {x G (CQ, ci) : there is r\ G J such that r\ > r and x φ cl(Urι}

has measure \c\ — CQ\ (subtraction as reals).

Proof of the Fact. The condition is equivalent to "(CQ,CI) \ C has measure

zero", so we can partition (CQ,CI) into finitely many intervals and prove the

conclusion for each of them. So w.l.o.g. the measure of (CQ,CI) is < 1/2. Now

for every ε > 0 we can find ΓQ, r < ΓQ G P§ such that Uro Π (CQ,CI) = 0 and

Uro has measure > 1/2 — ε (but of course < 1/2). As J C Pδ is dense, there

is r2 G ι7, r0 < r2 € P^ So (ignoring the sets cl(Z7ΓI) \ Urι , Z = 0, 2 which have

measure zero):

(i) (c0,cι) \ UΓ2 C C (by C"s definition);

(ϋ) (co^On^ct/^^ .
Hence

(iii) Leb((c0, Cl) \ C) < Leb((co, ci) Π t/r2) < Leb(C/Γ2 \ Uro) < Leb(ί/Γ2) -

Leb(C7ro)

As this holds for every ε we finished the proof of the fact. Π4.7E2

4.7E3. Continuation of the proof of the subclaim. Let J\ — {r G P§ : (3gι G

v7)(^ι < r)}, so v7ι is a dense open subset of P§ and JΊ G TV. Now for every

k > n(4Z(0)) let

Tfc = {ί : ί G P<5 , ί/t is the union of finitely many intervals whose endpoints

are from {&/ : n(4/(0)) < / < fc} and Leb(C7^ U Ut) < 1/2}.

So Tk is finite, and for every teTk,q<q(Jte Pδ, and of, φ cl(Z7t) (where

g U ί = (l/g U I7t, fq U /t), of course; on q see beginning of the proof of 4.7E).
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Now in the model TV (as Mδ G N hence Jι G N) we can define, for each k and

t G Tk:

Dt

 d= {x G (CQ,CI) : there is r G Jι,r > q U ί,x <£ cl(E7Γ)}.

By the fact 4.7E2 we have proved, we know that (CQ,CI) \Dt\Ut has

measure zero (note, cl({7t) \ Ut has measure zero). As αf, G (0,1) \ C/t and aδ

ω

does not belong to any Borel set of measure zero which belongs to ΛΓ, clearly,

(*) for every k > n(4Z(0)) and ί G Tfc we have αf, G Dt.

So for each k > n(4Z(0)) and t G Γfe, there is rt G P<5,rt € JΊ, t U ς < rt

such that aδ

ω φ c\(Urt). Hence for some g(t) < ω, [&#(*), αf,] Π cl([7Γt) — 0 and

(af>~A(i)) < l/2-Leb(l7rt). As Tk is finite, we can define a function g : ω —> ω,

by #(fc) = max{#(t) : t G Tk}. Clearly g G N[αf,], because, in defining # we have

used Jι, n(4/(0)), (fy : / < ω), αf,, but not (6n(i) : I < ω), (n(l) : i < ω) or /*.

Hence for every large enough l , g ( l ] < /*(/)> because /* dominates N[a^\ Γ\ωω.

So by the choice of the n(Z)'s, for every large enough l,g(n(l)) < n(/-hl). Choose

a large enough /, let k = n(4Z) + l, Ut = Up\[bn^ι(^,bk]Jt = fp\Ut, t = (Ut, ft)

and it belongs to Tk. Now rt and p are compatible, (the "(αf, — 6p(t)) <

1/2 - Leb(E/rt)" guarantees that Leb(Up U t/Γt) < 1/2: other parts should be

clear too). So we finish the proof of the subclaim 4.7E1. HU.TEi

This really proves part (A) of (St).

4.7F Stage 5. Condition (B) of (St). Remember ψ is a P§ x Q-name of a (code

of a) Borel set (and it belongs to AT, hence the HO maximal antichains involved

in its definition are, by 4.7E1 maximal antichains of P<5+ι x Q), so it is also a

(Pδ+i x <9)-name. Pick a large enough k such that:

p* - (Up. U Ak

0 U A%, fp* U 0Λj U IAJ) belongs to Pm.

So pί G JV[α*][/*] and (pj,g*) > (p*,ςf*) in Pδ+l x Q, so there is (p;,r') >

(pϊ,^*) forcing an answer to "αf, G Bo[<p]", i.e. (p7,/) H-p6+1xg"αί; e Bo[y?]" or

(p7,/) ll-p6+1xQ"αf, i Bo[y?]". If the second possibility holds, then (B2) holds,

so condition (B) of (St) holds (remember we have made of, G h(A$) for every

fc in stage 3).
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So suppose (p',rr) H-p6+1xg"α£, G Bo[^]". Observe that the truth value of

such a statement can be computed in AΓ[α£,][/*] (i.e., we get the same result in

the universe and in this countable model). But /* is .R-generic over N[aδ

ω}. So

if something holds, then there is (/o,#o) G G is such that:

(α) (/o,0o) ll-Λ'ΌΛr') I^Pδ+1χQ"αf, e Bo[v>]" ",

(/?) /o C /*, (Vi < ω)[i i Dom(/0) =Φ <*>(<) < Γ(01-

(Note that the definition of P$+ι depends on /*.) So if we change /* in

finitely many places, maintaining (/?), it will still be true that (p',r') H-p5+lXQ

"of, G Bo[</?]". But we can do it in such a way that only finitely many n(Z)'s

are changed and for some n the old AQ becomes A%, and the old Aίj becomes

AJ+1, so now clause (Bl) of (St) will hold.

In any case (B) of (St) holds, hence we have finished proving (St) hence by

4.7C we have finished the proof of the main lemma and by 4.6 we have finished

the proof of the theorem. D4.5

§5. Automorphisms of P(α;)/finite

General topologists have been interested in what AUT(P(ω)/finite) can be.

(P(ω) is viewed as a Boolean algebra of sets, 'P(α;)/finite is the quotient when

dividing by the ideal of finite subsets of ω). Or equivalently: what can be the

group of autohomeomorphisms of /3(N) \ N?

Note that AUT(P(ω)) is isomorphic to the set of permutations of ω

(Per(ω)). It is well known that:

5.1 Claim. (CH) P(α )/finite is a saturated atomless BA (= Boolean algebra)

of power KI, so it has 2Hl automorphisms (saturated in the model theoretic

sense). Π5.ι

5.1 A Remark. This claim will not be used here.
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It is also easy to note that:

(*) If / £ Per(ω) the set of permutations of ω, then A/finite -> /(A)/finite is

an automorphism of P(ω) /finite.

Moreover:

5.2 Claim. If / is a one-to-one function, Dom(/), Rang(/) are cofinite subsets

of ω then A/finite —> f(A)/finite is an automorphism of P(ω)/finite. (Such an

/ is called an almost permutation of ω, and the induced automorphism is called

trivial, and we say it is induced by /). U5.2

5.3 Claim. If V = L, or just V f= "2*° = HI, 2*1 = H2 and Osj holds where

5? = {5 < H2 : cf(<5) = Hi}" Λen we can define for i € S?, f?1, F< such that:

(a) P? is a c.c.c. forcing of cardinality HI and for simplicity the set of elements

of P* is i.

(b) Fi is a P*-name of a subset of [P(ω) x P(ω)]yPi

(c) if (Pi : i < ω2) is <£-increasing continuous sequence of c.c.c. forcing notions

of cardinality HI, the set of elements of P$ is C ω2 and Pω2 = (Ji<u;2 ̂ ' ̂

is a PU;2-name and F C [P(ω) x 'P(^)]^ ^ 2, i.e. this is forced then the set

{i-.S^-.P* = P* and F\[P(ω)]yPi = FJ is stationary in ω2.

Proof. Translate everything to Pω2-names and apply 0{<5<ω2:cf(5)=Nι} (remem-

ber the Hi-chain condition). Dδ.a

5.4 Claim.

Suppose Pi (i < ω2) are as in Claim 5.3, F G [AUT(P(ω)/finite)]yP"2 and

{i < ω2 : cf(ί) = HI and F\[P(ω)/finite]yPί is

(i) not in VPί or

(ii) not an automorphism of [P(ω)/finite]y * or

(iii) induced by some almost permutation / of ω

(f e VPί i.e. a P^-name, of course)}
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is stationary.

Then F is trivial.

Proof. Since the sets defined by (i) and (ii) are not stationary,

S = {i < ω2 :cf(i) = Hι,F\[P(ω)/Gmte]yPi is in VPi,

and is a trivial automorphism }

is stationary.

For i G 5, let fa G VPί be an almost permutation of ω inducing

F\[P(ω) /finite] v * . By a suitable version of Fodor's lemma we can find /* G

Fp-2, 5* C S stationary, such that (Vi G 5*) [fa = /*]. Clearly /* induces

F\[P(ω)/Άmte}yPω2. D5.4

We want to show:

5.5 Main Theorem. CON(ZFC) implies CON(ZFC +2*° = N2+ every auto-

morphism of P(ω)/fmite is trivial). In fact, if φm and 0^2, where S$ = {δ <

ω<2 : cf(ί) = NI}, then for some c.c.c. forcing notion P of cardinality H2, the

conclusion holds in Vp .

We postpone the work concerning specifically automorphisms of P(ω) /finite to

the next section. To be precise we will prove there the following.

5.6 Main Lemma. Suppose

V N "2*° = Hi, M* is an ^-oracle, F G AUT(P(ω) /finite) is not trivial".

Then there is a forcing notion P such that

i) |P| = «ι,
2) P satisfies the M*-c.c.

3) P introduces a subset X of ω, such that if Q is the Cohen forcing, then in
P*Q

V ~ there is no Y C ω satisfying {Y Π F(C) =αe ί'ί-B) <^ X Π C =αe .B :

C,B G [P(α;)]v} (where ̂  =αe A^ means A Cαe ^t and ̂ f Cαe A, where

-4 Cαe A
1 iff A \ A t is finite) or even just satisfying {Y Π F(C) =ae F(B) :

XnC=aeB where B, C G [P(α;)]y }.
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5.6A Remark. Note we really replace F by some F^ from P(ω) to P(ω) such

that F(A/&mte) = Ft( A)/finite; but we do not distinguish.

Proof of 5.5 (assuming 5.6). The proof of 5.5 from 5.6 is very similar to the proof

of 4.6 (just replace "splitting homomorphism" by "nontrivial automorphism".

Note that 5.6(3) corresponds to 4.5 (a)-(j)). D5<5

5.7 Claim. In our scheme (of oracle c.c., as used in 4.6) we can demand:

1) for any second category A C [P(ω)]v ω<2 we have {α < ω2 cf(α) = HI =ϊ

AΓ\ [P(ω)]v τ G VPi and is of 2nd category} contains a closed unbounded

set.

2) if A C ['P(ω)]v * , A G VPi, A is of 2nd category, then there is an oracle M

(in VPi) such that for any forcing notion P G VPί satisfying the M-c.c.,

in (VPi)p the set A remains of the 2nd category.

Proof. For 1) It follows by 2). For 2) see 2.2.

5.8 Conclusion. 1) We can add in 5.5 that in Vp any second category set

contains such a subset of cardinality HI.

2) We can find HI-dense sets of reals, some of the first category, some of the

second category.

3) Baumgartner's construction [B4] cannot be carried out here as his conclusion

fails.

Proof. 1), 2) Left to the reader.

3) Baumgartner [B4] proved the consistency of: if for I = 1,2, Ag <Ξ R,

\Aι Π (c,d)| = HI for any reals c < d then (Aι,<) = (A2,<); but this fails

in Vp by part (2). His proof was: for given AI, A2 in a universe satisfying CH,

builds a c.c.c. forcing notion P, such that Ihp "(Aι,<) = (A2,<)" So for an

Hi-oracle M, and A\,Aι from V (where V \= O^J there is no such P satisfying

the M-c.c.
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§6. Proof of Main Lemma 5.6

Since the proof is quite long it will be divided into stages.

Stage A. Preliminaries. For a sequence A = (Ai : i < a) (a < ω\) of almost

disjoint infinite subsets of ω, define

P(A) = {f :/ is a partial function from ω to 2 = {0,1},

/ is a finite union of functions of the form:

(1) finite functions,

(2) 1A. \ finite,

(3) 0Λi \ finite}

where IA (I £ {0,1}) is the function /(α) = ί if α G A, undefined otherwise,

and /\finite means /f(Dom(/) \ A) for some finite A.

The idea of the proof is as follows: we try to define A = (Ai : i < ω\} such

that: P(A) will satisfy the requirements of the lemma for X whose characteristic

function is U{p : p G GP(A)} We will have a general pattern for defining A.

Our work will be to show that if all instances of this pattern fail then F must

be trivial.

Our first worry is how to make P(A) satisfy the M*-c.c. The following

(*1) takes care of this while leaving us with a sufficient degree of freedom in

the construction of A.

(*1) If A — (Aj : j < α), α < α i, Ma is a countable collection of pre-dense

subsets of -P(-A), B C ω is almost disjoint from each A j ( j < α) and is

infinite, then we can find disjoint, infinite CΊ, C2, CΊ U C2 = B such that

for every I <E {1,2} and every A C Q, if \A\ = \Ct \A\ = K0, then every

I G MQ is pre-dense in P(AΛ (A, Q \ A}).

Remark. Note that by 2.3, the same statement holds if we replace P(A) by

P(A) x Q, where Q denotes the Cohen forcing.
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Proof of (*1). We define by induction on n < ω a number kn < ω and disjoint

finite subsets C£, C% of B such that C\ U C% = B Π kn and

m < n =» C^ = Cl

n n fcn & C^ = Cl Π fcn.

In the end we will let C/ = \Jn<ω Cl

n.

In each stage we deal with an obligation of the following kind:

J G Ma is a pre-dense subset of P(-A), r is a term for a member of

P(Ά" (A,Cι \ ^4}) (or €2 in the other case); note: A, CΊ, are not known yet,

still A C CΊ; our task is to ensure r will be compatible with some member

of J no matter how A and CΊ are defined as long as CΊ C £?, C^ C Ci and

C*nd = 0.

r has the form / U iA\k^Jd\A\k where i, j G {0, 1}, k < ω, / G P(A) (if

this union is not a function, then we don't need to do anything.) We don't know

what AnC* is. There are 210-1 subsets of C\ : AI, . . . , At, . . . , for 1 < i < 2|c-1

look at ji = f U ̂ £\/c U Jc^\At\k Suppose this is a function, then it belongs

to P(Ά), hence is compatible with some gt G I. Now Dom(^) Π B is finite (for

B being almost disjoint from every Aj and gι G J C P(A)).

Let : Jkn>£ = Max(Dom(#) Π 5) for 1 < ί < 2|c-1, and /cn?0 = A:n;

+ 1 : 0 < I < <2\c^;

Taking additional care to make CΊ = (Jn<ωC^ and C2 — Un<α;C^ infinite,

we obtain what we need. Π(*i)

In view of (*1), it is convenient to introduce the following notation:

Q will denote Cohen forcing. For OL <ω\, Pa will denote the forcing notion

corresponding to A — (Aj : j < a) (we delete a from our further notation when

α is fixed).

Pέ[A] will denote P(A ~ (A, d \ A)) for t G {1, 2}, A C Q as in (*1).

P?[A\ will denote Pέ[A] x Q.
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I f p , q e Pωι x Q then we let p = ((p)0, (p)ι) and q = ((<?)0, (<?)ι), we will

write pU ςr for ((p)0 U (g)0, (p)ι U (9)1). For p G Pωι, q G Pωι xQ,p(Jq means

(P U (g)o, (g)ι), etc. We identify Pωι with PUl x {0} C Pωι x Q.

For A C B, Chj; will denote 1̂  U QB\A

Stage B: The outline of the proof. We say that F is trivial on A C α; iff there

are A! ΞΞae A and / : Afl^lω such that F(£) Ξae f ( B ) for each 5 C A'. Let

«/ = {^4 C ω : F is trivial on A}.

We should distinguish two cases:

Case 1: J is dense, i.e. for every A G [ω]Ho we have J Π [Λ]N° ^ 0

Case jS: there is A+ G [a;]H° such that [A+]"° Π J = 0.

We will construct the sequence ^4 = (A^ : α < α i) by induction. During

the induction we will require 0ι, where

Θi Aa G J in Case 1 for each a < ω\ and ω\A0CA+m Case 2.

Note that in Case 2 Aa C A+ guarantees ^4α ^ J for 0 < a < ω\.

In stage C below we shall describe the inductive construction of (Aa : a <

ωι) and (Ma : α < ω\) and we show that either P((Aa \a <ω\)) satisfies our

requirements or in some step a the statement (*2) defined in stage C holds.

In stage D we shall show that if (*2) holds, then F is trivial on any B

provided that B is almost disjoint from {Ai : i < α}, so B G J, hence Case 1

holds.

In stage E we shall construct a function g which generates F on α;, which

proves that F is trivial. This concludes the proof of the main Lemma.

Stage C: Note that (*1) enables us to construct A as follows: We let (An : n < ω)

be any pairwise disjoint infinite subsets of ω satisfying Θi from Stage B. At

each later stage, we can use (*1) for any infinite B which is almost disjoint

from each earlier set (we can always find such B: arrange the earlier sets in an

ω-sequence (Bn : n < α>), and let B = {bn : n < ω} where bn G Bn\Um<nBrn).

Then we choose by induction on a G [ω,ω\) the set Aa.

What about Mα? It includes M* (in order to prepare the satisfaction

of the M*-c.c., M* is given in the assumption of 5.6), as well as additional
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pre-dense subsets which will be specified in the sequel, when their necessity

becomes apparent; and of course Ma increases with a and is a model of ZFC~.

Sometimes, these will be subsets of Pa x Q which are to remain pre-dense in

P t [ A ] , but we can deal with such subsets in the framework of (*1) without

difficulty by 2.3(1). Also, we will preserve pre-density above a given condition,

but all these pre-dense sets are in Ma provided Ma is closed enough.

Altogether our induction hypothesis on α G [ω^ω\) are ®ι and

Θ2 (Aβ : β < a) is a sequence of infinite, pairwise almost disjoint subsets of

ω and Pa

 d= P((Ai : i < α» (and Pωι will be P((Ai : i < ωι))).

Θ3 Na is a countable set of pre-dense subsets of P((Aβ : β < α)) increasing

(but not continuous) in α, M* C Mα, and Na is equal to Ma Π { J : I a

pre-dense subset of P((Aβ : β < α})} where Ma is the Skolem hull of Na

in (ffp+), €,<!,+ ).

Now, in using (*1) we can choose between various candidates for B, and

for each of them we can choose between various continuations of A (namely,

we can choose ί E {1, 2} and A C Q). How do we choose?

In the verification of 3) of the lemma, we have to consider all possible

Y which are Pωι x Q-names of subsets of ω. By CH and the HI-C.C., we can

find Pa x Q-names Yα, which are determined schematically before the actual

construction of A, so that the sequence

(Ya : ω < α < ω\ , a an even ordinal )

will contain all possible Y, each appearing Ni-times. [More explicitly, we can

identify a Pωι x Q-name of a Y C ω with (qi,j,ti,j :i,j <ω), Qij G Pωι x Q,

tij a truth value, for each i < ω the sequence (q^j : j < ω) is a maximal

antichain, ςfίj<7 Ih "[i G Y] = t^". We consider Ya only if Ma already contains

each (qij : j < ω), so they remain maximal antichains. Of course we do not

know apriori Pωι but we can make a list of length ω\ including all possible

Pi(i < ω\) and Ya. As there are < HI candidates, and each candidate appears

HI times everything is clear]. Our choice of B (hence CΊ, C2 by (*!)), ,̂ A

will be as follows: whenever possible, we choose them so that θi from Stage B
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holds and

[Ch£t \\-PQ[A] Ύa Π F(Cέ) =ae F(A)n] is false .

Assume now that Pωι was obtained by such a procedure fails to satisfy

the requirements of the lemma. As 5.6(1) is clearly satisfied and we ensured

the satisfaction of 5.6(2), only 5.6(3) may be false. We will show that this is

exemplified by X = (J{f~l({l}) : / € G} where G C Pωι is the name of the

generic subset of Pωι. If the existence of an appropriate Y is not forced already

by (0,0) the minimal condition in Pωι x Q, then some r G Pωι x Q forces that

there is such Y and in this case Pωι \{p : p > (r)o) satisfies the requirements

of the lemma (as the Mα's take care of the satisfaction of the M*-c.c. for such

restrictions of Pωι as well). Hence we may assume that (0,0) forces the existence

of such Y. So, there is Y = Ya(ω < a < ω\, a even) which realizes the relevant

type, and w.l.o.g. α is large relative to Y (remember each Y appears NI times.)

Since Chςi \\~puι XQ "X Π Cι = A" (referring to the Ci and A with which we

actually choose at stage α), it follows that Ch£t \\-Pωι xQ "YΓ\F(Ct) =ae F(A)n.

(F from the assumption of 5.6.)

Now, when we are at stage α we know Ya, Pa but not Pωι. So we want to

show that this is already true if we consider forcing in P®[A]. As the forcing

relation for each formula n G Y is not affected by this shift, our only problem

arises from the fact that equality is forced to hold only ae. This difficulty is

overcome as follows: if, on the contrary, there is p > Ch^£ in P)P[A] forcing

Ύ Π F(Cι) ^ae F(A)n, then for each k < ω the set of those conditions

"knowing" some counterexample to the equality above k is pre-dense above

p in P^[A]; so, as we remarked above, we can assume this pre-density is still

true in Pωι x Q, but (as p > Oι$£) p \\-PωιχQ Ύ Π F(Ct) =ae F(A)n, a

contradiction (i.e. we can discard this case instead taking care of it).

So, Ch££ ll-pQ[Λ] Ύ Π F(Ci) =ae F(A)". But we chose B,t and A doing

our best to avoid this, so we must have had no better choice; thus:

Fact. If Pωι does not satisfy our requirements then there is α < α i, a > ω such

that (*2) below holds:
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(*2) Assume Aj(j < α), Mi(i < α) were determined as well as a Pα-name

Y — Ya of a subset of ω. Let B be any infinite subset of ω almost disjoint

from each Aj(j < α) such that B G J if Case 1 holds, (in Stage B), and let

B — C\ U CΊ be some partition obtained as (*1). Then for every ί G {1,2}

and every A C Q such that | A| = |Q \ A| = NO, we have:

T

Note that (*2) is a kind of definition of F, not so nice though; so our aim is

to show that if F is definable in this weak sense then it is very nicely definable:

is trivial.

Stage D: Under (*2) we have F is trivial on B (i.e. for some one to one

g : B -» ω, for every B' C β, F(B') =ae {g(m) : m G B'}.

We will eventually show that (*2) implies that F is trivial but first we

want to prove that F\P(B) is trivial (this will be accomplished in (*13) below;

however those proofs will be used later, too).

We now assume B is as in (*2) and concentrate on CΊ; C^ can be treated

similarly, putting together we can get the result on B. So now we shall use

P?[A] foτACCi.

Let Pa x Q = {pi : έ < α;}, and let for n < ω, Xn be a dense subset of

PC, xQ,In = {qf :i<ω}, such that qf lhP t t X Q "[n G Y] = tf" (t? denotes a

truth value, 1 is true, 0 is false).

We want to show that F\P(C\) is trivial (i.e. for some / : C\ — •» ω for

every C' C Ci, F(C7) -ae {/(n) : n G Ci} (so Rang(/) =ae F(d)). To do this

we partition CΊ into three pieces, C\ — AQ U A\ U A^ and we shall prove (step

by step):

(a) F\A* is nicely defined by (*6) on a set of 2nd category.

(b) F \A? is continuous on a set of 2nd category.

(c) F \A* is trivial apart from a set of first category.

(d) F is trivial on A*.
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We shall now define by induction on k < ω a natural number Uk and a

function /& : α& —» {0,1} where α/- — [nk,rik+ι) Π CΊ. We will take A* =

Um<u; α3m+ΐ for i < 3. We want our n/c, /£ to satisfy (*3) and (*4) below:

Let us denote by IF(k) the set of the functions /, Dom(/) a proper initial

segment of CΊ \ [0, n fc), Rang(/) C {0,1}.

(*3) (a) n0 - 0

(b) n j f e +ι>n J b,Rang(Λ) = {0,l}

(c) For any £ < &, m < n&, a function / from CΊ Π [0, n&) to {0,1} and t

denoting a truth value, the following holds:

if for some i, tf = t and / U /fc U pi U ςβ* G Pα x Q

then for some j, t™ — t and for every /ι G /F(fc 4-1),

/ U /fc U h U p^ U gj1 G Pa x Q.

(*4) For every I < k and go> Pi functions from [0, n&) Π CΊ to {0,1}, one of the

following holds: (F is from the hypothesis of the Main Lemma 5.6):

Case (da): for no m G F(C\) \ [0, n^+i) are there ΐ(0) < ω, i(l) < ω,

t™, ^ t^x, and /ι G IF(k -h 1), 5uc/ι ίftαί for every M,

/ι C Λt G /F(fc 4-1) implies

Po U /jt U /ι^ U p£ U ^]70x and ^i U fk U Λ^" U pi U gj?i)

are both in Pa x Q.

Case (dβ): for every fe(*) > k and function /ι from [nfc+^n/^*)) Π Ci to

{0,1} there are m G F(CΊ) Π K(sll),nfc(*)+ι), i(0) < ω,

z(l) < α; 5wcΛ ^/ιαί t^0s 7^ ^ί?i)> an<i f°r everY ^^ ^ IF(k(*) H- 1),

are both in Pa x Q.

We have now to convince the reader that we can define Uk, fk that satisfy

(*3), (*4). Assume that we have defined n 0 , . . . , n^-i, njfc and / 0,..., fk-i and

we want to define nk+ι,fk We have finitely many tasks, of three types:

(i) instances of (*3), (c) namely: given i < /c, m < n^, / : C\ Π [0, n&) —>

{0,1} and t, we have to satisfy "z/for some i . . . "
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(ii) instances of (*4) (dα), namely: given i < fc, #0,#ι £ {0, l}[°'nfc)nCl,

we try to satisfy "for no m..." (but sometimes we fail - then we will

remember this failure in (iii), at all later stages).

(iii) failures of (*4)(dα) in the past: given a task of type (ii) which we did

not fulfill at a previous step, we have to satisfy (dβ) for /c(*) = our

present k.

We will define fk by taking approximations of it in ZF(fc), each one of

them intends to fulfill one task and contains its predecessor - this ensures that

once we have constructed an approximation fulfilling a given task, the fk that

we will eventually obtain will also fulfill it. Our initial approximation is an

arbitrary element of IF(k) assuming the values 0 and 1.

So now we deal separately with each type:

(i) Assume such i exists (with fk interpreted as our current approximation

of it). The addition of h can create a contradiction only inside C\ (by the

definition of IF(k +1)), and since C\ is almost disjoint from the domain of any

condition in Pa (in this case (pi U <7™)o), by defining fk in the dangerous finite

portion C\ Π Ώom(pι U 9^)0? as (pt U <7Γ)Γ^Ί (and extending for making its

domain a (proper) initial segment of C\ \ [0, n^)) we fulfill our task.

(ii) Let IFc(k) denote the subset of IP(fc) consisting of those functions

containing our current approximation of fk Assume that:

<8>ι There exists / G IFc(k) such that for every m G F(Cι), m >

Sup(Dom(/)), and for every /f G IPc(fc), /t D /, and for every i(0),i(l) < ω,

if for every /" G ZFc(fc), /" D /t both 9o U /" \JPi U ς^0) and 9l U //; (Jp£ U ̂ 1}

are in Pα x Q ίften t^0) - t^1}.

Assuming this, we take such / as our next approximation of /&, which will

satisfy this instance of (da). So if we fail, we put burden on the future cases of

(iii) but we know that:

®2 For every / G IFc(k) there are m G F(CΊ), m > Sup(Dom(/)) and

/f G IFc(fc), /f 2 / and i(0),i(l) < CJ sucΛ tftαt t^0) ^ t 1̂} and for every

/" G JFc(fc), /" 2 /t both ^o U /" U pt U <?™0) and ̂  U /;/ U pi U ̂ 1} are in
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(iii) Adapting our notation to that of (ii), we denote our present k as fc(*)

and consider some k < fc(*) and assume that the property <8>2 (written at the

end of (ii)) held for t < k and #0, 9ι € [°>n*)nCΊ{0, 1}. (This we have found in

stage fc, note there are for each k only finitely many triples (A#o, #ι) )

By the formulation of case (dβ) we are given h € K+ι>nfc(*))nCΊ{θ, 1};

let /£, v be our current approximation of /&(*) and use the property <g)2 for

/ — fk U h U /]j?(#) to obtain ra, /t, ΐ(0), ΐ( l) as described there. Letting A#\ =

/t \ (fk U /ι) = /t f(Dom(/t) \ [njk, ftfc(*)]) and extending it if necessary to ensure

that m < njfe(*)+ι, we obtain the next approximation to /&(*) fulfilling our task.

So the definition of n^, /& can be carried out, so we have gotten (*3) and

(*4).

D(*3),(*4)

Our treatment from here on concentrates on A* — U/c<u,α3fc+ 1 (remember

ajς = [n/^n/c+i) Π C\). The other "two thirds" of C\ can be treated similarly.

Let /* - Uk<ω(hk U/3fc+2), Ai - Γ"1^!})- Notice that by (*3) (b)' both Aι

and its complement in Dom(/*) are infinite.

Thus, from (*2) it follows that:

(*5) For every A C A*, 'Ch%. U/* \\-pQ[AuAl] Ύ Π F(d) =ae F(A\JAl)
n.

Hence, for every A C A*,Ch^* U /* can be extended to a condition (in

P®[A U AI\) forcing equality above a certain n and in particular deciding for

each m > n in F(Cι) whether it belongs to Y (as no other names are involved

in the equality). Looking at P(A*) as a topological space, we conclude (as

\Pa x Q\ = Ho):

(*6) There exists a condition p* G Pa x Q, a finite function /ι* satisfying

Dom((p*)o) Π A* C Dom(h*) C A*, and n* < ω such that

^ =f {A C A* : /ι* C Oι̂  and for each m > n* in F(CΊ) we

have: [p* U Ch%. U /* H-pgμuAl] "m G F" or p* U Oι̂  U /*

H p^μu^l^^r]}

is of the second category everywhere "above" h* (i.e., its intersection
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with any open set determined by a finite extension of h* is of the second

category) .

We now define, for A G A,

Fι(A) = {me F(d) : p* U ChA

A, U /* lhpgμιMι] "m 67"}-

It follows from (*5) that

(*6A) F(A U Ai) =ae Fι(A) for all A e A.

We will verify next that A is a Borel set. The demand ft* C Cft^* defines an

open set, and then we have a conjunction over all m > n* in F(Cι) of conditions

each requiring that p* U Ch^* u /* decide whether m belongs to Y. Denoting

Aq — {A C A* : q is incompatible with p* U Cft^* U /*} for q G Pα x ζ), and

remembering that Jm = {q™ : i < ω} is dense in Pa x Q and we can preserve

its pre-density in PI [A U AI], we see that A C A* satisfies the requirement for

m iff it belongs to [n{A?™ : i < ω,t™ is true }] U [Π{Λ,m : i < ω,t™ is false}].

As each Aq is open, we have shown that A is Borel.

As A is a Borel set, we know by a theorem of Baire that (by extending ft*)

we may assume that { A C A* : A ^ A, and ft* C Cft^* } is of the first category.

Let k be large enough so that n^k > ft*, maxDom(ft*) and £ < 3/c — 1

where p* = p^.

For A G ^4, let t™ denote the truth value of m £ Fι(A). Then for every

TO- ^ [ftsfcj ftsfc+a) Π F(Cι) we know p* U Cft^* U /* is compatible with some ςf1

but is not compatible with any q™ such that t^1 ^ t^J (remember the definitions

of Fι(A) and ^4 and observe that m > n*, m G F(CΊ)).

Hence by (c) of (*3), t^ is determined, for A G A and m G [fts/ofts/c+s) Π

F(Cι), by αι^4[0,n3fc+4) ^ Oι^Γ[0,ft3fe+2); that is: t^ = t iff for some i,

t^1 = t and for every ft G IF (3k + 4) we have

OιA

A, f[0, ft3fe+2) U /* t[0, n3fe+4) U ft U p* U ̂ m G Fα x Q.
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Now we want to show that t™ is determined (for A, m, k as above) by

4* \azk+ι alone. So let us assume that A^\ A^ G A and Ch^° \a3k+ι =

Ch^ Γαsfc+i, and for some m G [n3k, 713^+3) ΠF(CΊ) we have t™(0) φ t™(1) . Let

for t = 0, 1, & = (Chj ? U Γ)r([0,n3fc-ι) ΓΊ Ci). From the way t™(0), t™(1) are

determined (see end of previous paragraph) and from t™(0) ^ t™(1) it follows

that at stage 3k — 1 of (*4), for the above #o> <7ι and p* = pi, clause (dα) fails

(take h = /* f (α 3 fcU α3fc+2 U α3fc+3 )UGΛ^.* Γ^sfc+i, which does not depend on ί).

Hence (d/?) holds in this case. Using this, we want to construct B^\B^ G A

such that A^Πn3k-ι = B^Πn3k-ι for i = 0, 1, and B^\n3k-ι = B^\n3k.l

and we shall choose them in such a way that for infinitely many m G F(Cι),

Ch1^* an<^ C^A* determine t^(0),t^(1), respectively, to be distinct. Since

B<°> =αe β
(1), also by (*6A) we know Fι(B^) =ae F(B^(JA1) =ae F(B™ U

AI) —ae Fι(B^), so this will be a contradiction. Thus, it remains to show

how to carry out the construction of B^\ B^ . We do it by an ω-sequence of

finite approximations, the set of finite approximations is {(ei, 62) : for some n,

ei, e2 are finite functions from ^4* Π [0, n) to {0, 1} e*, includes CTi^l^31 and

We start with the respective characteristic functions of A^\A^ up to

n3k-ι. As A^\A^ G ^4, both characteristic functions contain h*.

As {̂ 4 C A* : A φ A and h* C C7ι̂  } is of the first category, we have a

countable family of nowhere dense subsets of P(A*) which are to be avoided

by βWjβί 1), to ensure B^,B^ G A. So we arrange all these tasks (each

time dealing with either B^ or B^ and one nowhere dense subset) in an ω

sequence, and by the definition of "nowhere dense" we obtain each time a finite

extension of our former approximations which ensures the implementation of

our task. Say (An > n < ω) is this sequence of nowhere dense sets, and we

choose (6^,62) for i < ω approximations such that for i — 3j, (e1^1 ^ e1^1)

ensure £(0) φ Aj and maxDom(eΐ

1) > j, for i = 3 j + 1 (e^1 , elj~l) ensure

jB^1) $ AJ, and for i = 3j 4- 2 (e\+1 , e1^1) ensure that for some k < j and

m G [nfc,Πfc+ι) is as required (i.e. Ch%° , Ch^ί determine t^(0), t^(1) are

distinct). If we succeed, £(0) = \Ji<ω e\, B^ = \Ji<ω e\ are as required. Why

can we carry the construction? The least trivial case is the last.
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We will show that our construction is all right by proving: if/c(*) > 3k — I

and fc(*) = 1 (mod 3) then there is m G F(Cι) Π [nk^^nk^+ι) such that for

t = 0,1 there are i(t) < ω such that t^0) / t 1̂} and for every h G IP(fc(*) + 3)

we have Ch%? ί[0, nkM) U /fcw U /* r[0, nfcW+3) U h U p* U q%t} G Pα x Q. To

prove this, use (dβ) for such fc(*) and h — (Ch^ U /*) t[^3fc?^/c(*)) We thus

get the desired contradiction.

So, by the last four paragraphs and (*6A), as F is an automorphism and

AI is fixed, we have proven (for the last equality: we can just subtract F(Aι)):

(*7) There are functions G'k : P(cizk+ι) — > /P(F(A*)n[n3fc, n3fc+3)) such that for

every A G A we have F(A) =ae F(A\jAι)\F(Aι) =ae Fι(A)\F(Aι) =ae

Now, (*7) would be good enough (as we shall see later) if it were not restricted

to A. So we want to achieve a similar result without this restriction.

We define by induction a sequence of pairs (u^gi) (I < ω) such that (ui :

ί < ω) is a partition of A* \Dom(/ι*) into finite subsets and gt : ut —* {0, 1}, as

follows: for r < ω, let Λr be the r-th element in a sequence of nowhere dense

subsets of P(A*) showing that {A C A* : A (£ A,h* C Ch%+} is of the first

category. Each (ut,gt) is defined so that:

(i) Ui is disjoint from um for all m < L

(ii) if ί G (A* \ Dom(/ι*)) \ Um<€um then ί G ut.

(iii) if A C A*, gt C Ch%* and i = 2k or t = 2k -h 1 then A £ ,Afc.

To see that this is possible, use the fact that At is nowhere dense taking

into account one after another all the elements of υ{0, 1} where υ = (Um<^um)U

Dom(/ι*).

Now, for t = 0, 1 let Bt* = Ur<α;U2r+t and #t* = Ur<u,^2r+t, Bt = 9t~l ({ID-

Then Dom(^t*) = Bϊ and (BJ,Bϊ,Dom(Λ*)) is a partition of A*. Prom (iii) it

follows that if A C A*, h* U #t* C Ch^ then A G Λ
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Prom (*7) we can thus derive a definition for F(AΓ\BQ) working uniformly

for all AC A* extending G'k to G£

G'ί(A Π £?* Π a3k+l) = G'k([(A Π £*) U Bi] Π α3fc+ι) \ F(Bι)

(where F(B\) G P(ω) denotes one fixed representative of the equivalence

class F(Bι)). Similarly we can derive a definition for F(A Π BJ). Prom these

two definitions (we can use F(\Jn<ω u2n+ι), F((Jn<ω ^2n), ) remembering that

Dom(/ι*) is finite, we obtain:

(*8) There are functions Gk : P(a3k+ι) — > P(F(A*) Π [713*, 713^+3)) such that

for every A C A* we have F(A) =ae Uk<ωGk(A Π α3fc+ι).

With this result in hand, we have good control <ΛF\P(A*). We prove first:

(*9) For every large enough k and disjoint 61,62 ζ α3/c+ι?

Otherwise there is an infinite S C ω, and 61,62 ^ α3fc+ι for k G 5,

&fc Π 6£ - 0, Gfc(6j) Π Gfe(6|) ̂  0. Then let Al = (Jkesb^ A2 = Ufc€S6§. Clearly

AI Π A2 = 0 and AI, A2 C A*, and F(Aι) ΠF(A2) ^αe 0. This contradicts that

F/finite commutes with Π.

As F commutes with U we can get similarly:

(*10) For every large enough k and disjoint 61, 62 C

Gk(blUb2)=Gk(bl)(JGk(b2),

and as F is onto (and monotonic) we have:

(*11) For every large enough fc, for any singleton 6 C 03^+1 we have: Gk(b) is

a singleton (and also Gk is onto F(A*) Π [nsfc, 713^+3).
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Define g, Ώom(g) = A*, Gk({ί}) = (g(ί)} for i G α3fc+ι, k large enough. So

clearly by (*8)-(*ll):

(*12) For every A C A*, F(A) =ae 9 (A) — {g(i) : i G A} and g is one-to-one.

Remember that A* is one third of C\. Doing this separately for each third

and then the same for C%, we obtain for every B which is almost disjoint from

each Aj(j < α): (that we can get a one-to-one g is proved like (*9)):

(*13) There is a one-to-one function #, Dom(^) =ae J5, such that (Wl C B)

[g(A) =ae

Stage E: F is trivial on ω.

Let / be the ideal generated by {Aj : j < α} and the finite subsets of ω.

Let /! d= {B Cω:(\/Ae I)\B Π A| < K0}. Clearly, /i is also an ideal.

Remember J = {A C α; : F is trivial on A}. In stage D we have shown

that F is trivial on sets in /i (if (*2) holds). If Case 2 from stage B holds then

there is A+ e [ω]κ° such that [A+}"° Π J = 0, hence cj \ A0 C A+ but there are

£Γs as in stage B and by it (*2) holds hence by stage D we know that B G J

and obviously B Π AQ is finite. So B gives contradiction. Hence Case 1 of Stage

B holds i.e. J is dense. We now outline the rest of the proof, and then shall

give it in details. Using the knowledge we gathered on F in the previous stage

we construct count ably many functions {gp : p G Pa x Q} such that for each

B G /i Π J there is p G Pa x Q such that gp \B induces F on B.

Next we shall put these functions together to get a single function g such

that g induces F on every A G I\. Finally we shall show that in this case g

defines F.

Notice:

(*14) Every A which is not in / contains an infinite subset in /i.

To see this, let (Bn : n < ω) be an ω-enumeration of the generators of /

(i.e. {Aj : j < α}). We try to define a sequence (αn : n < ω) such that αm / an

for m < n and αn G A\Um < n5n. If we succeed we obtain a subset as required.
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If we cannot define αn, then A C (Um<nJBm) U {αm : ra < n}, hence A G /,

contrary to our assumption.

Let £ e J Π /i be infinite, B = Cι U C2 as in (*1).

(*15) Let g induce F|T(£) (in the sense of (*13)), and let t e {1, 2}. Then for

every p G Pα x Q there are g, p < q G Pα x Q and n such that:

(Vm G C,)(m > n => [<?U {(m,0)} lhP α X Q ^(m) £ Γ'D

and:

(Vm G Ct)(m >n^ [q\J {{ra,l}} I^P«χQ "<?(™) G F"])

Proo/ o/ (*15). It is enough to prove it for ra G CΊ, so £ = 1. Suppose it fails

for #, p. Let {qe : I < ω} be the set of all conditions in Pa x Q above p. Let

n i—> ((n)o, (n)ι) be a mapping of ω onto ω x ω.

We will define an increasing sequence of finite functions functions hn(n <

ω), Dom(/ιn) C CΊ, Rang(/ιn+ι \ /ιn) = {0,1}, and if n e CΊ then n G

Dom(/in+ι); we will also define mn G CΊ(n < α;), as follows:

We let Λo - (p)0r(Dom((p)o) Π Ci).

Assume that we have defined Λn, and we will see how we define mn and

/in+ι. If ftn is not compatible with ^(n)0 then mn is chosen arbitrarily and

ΛΠ+I 2 ftn is chosen in accordance with our requirements above. If hn is

compatible with <7(n)0, we use our assumption for q — hn U <?(n)0 Notice that if

m is large enough then m ^ Dom((<?)0) Π CΊ and [m G CΊ =» ί/(m) is defined,

^(m) G -F(CΊ), ^(m) > (n)ιj. So we can find m = ran G CΊ satisfying all these,

and kn G {0,1} such that /ιnU^(n)oU{(mn, A:n)}FPαXQ^(mn) ^ y iff fcn - 0".

Note: kn = 0 is a failure of the first conclusion of (*15), kn = 1 is a failure of

the second conclusion of (*15) . We will choose kn = 0 if possible.

Let 4 > hn U q(n}o U {{mn, fcn)} force "^(mn) G F iff A;n - 0". Let /ι^+1 -

(gt)0|-(Dom((4)0)nCi), and let hn+1 3 Λ^+i satisfy Rang(Λn +ι\Λn) = {0,1}

and n G Dom(/ιn+ι) if n G Ci \ Um<n Dom(Λm).

Now, Ώom((Jn<ωhn) = CΊ. Let A C Ci be the subset with characteristic

function Un<α,ftn. So A and Cι\A are infinite, so by (*2) we know Chci "~pQ[Λl

αr Π F(Cι) =αe F(A)". By our choice of ft0, Ch^ = Un<ω/ιn is compatible

with p, so some extension ofpUCh^ in P;P[A] forces the equality above some
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integer. So there is n such that:

9(n)o U Ch^ lhpgμ] Ύ n F(Cι) \ (n)χ = F(A) \ (nh"

sadF(A)\(n)1=g(A)\(n)ί.

We refer now to the definition of ran, /ιn+ι,fcn, suppose that fcn = 0,

the other case is similar. Since hn C Ch,£1 is compatible with <7(n)0, we had

Qn l [~P«χQ "#(mn) £ ϊ™ where ς£ was above /ιnU<?(n)0U{(mn,0)}. Now, mn φ A

since ftn+1 says so, hence 0(mn) ^ g(A). As 51 (mn) > (n)ι, g(mn) φ F(A)\ but

#(ran) G F(CΊ), hence g(n)o U C7ι̂  lhpgμ] "s(ran) ^ y». But ς£ forces the

opposite (we know it in Pα x Q, but it does not matter), and they are compatible

(because q^0 C ̂  and C7ι̂  and g^ are compatible by our choice of ft^+i), a

contradiction. So we have finished the proof of (*15).

We define now, for every p G Pa x Q, a partial a function from ω to cj as

follows: flfp(m) - fc iff [pU {(m,0)} lhp a X Q "fc ^ Y" and p U {{m, 1)} lhP α X Q

"fc G y" and fc is the only one satisfying this].

Our intention in defining gp is to have countably many functions which

induce F\P(B) uniformly for all B G /i.

(*16) For every B G J Π /i and every p e Pa x Q there is 9, p < <? G Pα x Q,

such that B Cαe Dom(^9) and (VA C B)[F(A) =ae 9q(A)].

Proof of (*16). If B is finite, then there is nothing to prove, so we assume that

B is infinite. Let g exemplify B G J (remember /i C J).

Let us call /c a candidate to be gp(m), if it satisfies the first two parts of

the definition (but maybe not the uniqueness requirement). We notice that if

k is a candidate to be gp(rn) and k^ is a candidate to be gp(rrύ) and ra ̂  m^,

then k ^ fcΐ (consider p U {(m,0), (m^, 1)}, it forces both k φY and fct G y).

Notice also that in (*15) we have shown that for every large enough m G Q

(and appropriate q) g(m) is a candidate to be gq(m).

Thus, given B and p, we apply (*15) first for i — 1 and p, and then for

ί = 2 and the condition obtained for £ = 1, obtaining q > p such that for

every large enough m G -B, #(m) is a candidate to be gq(m). Now, it suffices to

show that B Cαe Dom(gq), since whenever <?q(ra) is defined there is only one
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candidate, but g(m) is one, so for almost all m G B we have gq(m) = g(m) and

we know that g induces F\P(B).

Assume that B <£ae Ώom(gq). Then w.l.o.g. B is disjoint from Όom(gq)

and we have km (m G B} such that fcm and g(πι) are distinct candidates to be

gq(m). Let C = {km : m G B}. Then C is infinite and disjoint from g(B) (as no

k is a candidate for two ra's). We let D' = F~l(C)', more exactly F(D') =ae C

(possible as F is onto). Choose an infinite D C D1 such that D G J. Then as

g(B) =ae F(B), D1 is almost disjoint from B.

Case I: D G /i

In this case, we apply (*15) for D and q twice (as we did above for B and

p) to obtain q^ > q such that for large enough mϊ G D, g^(mϊ) is a candidate to

be #9t(rnΐ) (where #t induces FΓP(-D)). But for large enough m^ e D, m^ £ B

and #ΐ(mΐ) is a candidate to be gqϊ(m) for some ra G JB (as g*(D) =ae F(D),

F(D) Cae {fcm : m G B}, and <? < gt G Pa x Q), a contradiction (as in the

beginning of the proof of (*16) we observe that no k is a candidate to be gqτ (n)

for two rt's).

Case II: D <£ /i.

Then w.l.o.g. D C Aj for some j < α. By strengthening q we can assume

w.l.o.g. that \AJ \finite < qoτ OA., \finite < q. Assume that the former is the case

(the second case is dealt with similarly). Then q \\-pω XQ "Aj Cae X", hence

Q lf~pw ι xQ "F(Aj] Cαe y". As we have seen in the proof of (*2), by preserving

the pre-density of (countably many) appropriate subsets above corresponding

conditions, we can conclude that q lhp α X Q "F(Aj) Cae Y
n. Hence there are n

and qt > q in Pa x Q such that ςt lhP a X Q "nt G Yn for all nf G F ( A j ) , nf > n.

But F(D) Cae C Π F ( A j ) , so taking n\ = km large enough we know that n^ is

a candidate to be gςt (m) - a contradiction.

So we have finished the proof of (*16).

(*17) For Pι,p2 £ Pa* Q, B = {n : gpl(n),gp2(n) are defined and distinct} G /.

Proof of (*17): If not, then by (*14) there exists an infinite B' C B which

belongs to /i, but as we are in Case 1 (from stage B, as said in the begining of

stage D) there is an infinite B\ C B' which belongs to J. Together BI G I\ Π J
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is such that gpl, gp2 are defined everywhere in B\ but they never agree there.

By (*16) we can find for i = 1,2 condition ̂  > pi such that BI Cae Ώom(gqi)

and (VA C Bι)F(A) =ae 9qi(A). It follows that gqι \Bι =ae 9q2 Γ-Bi; otherwise,

we have an infinite B% C B\ on which the functions never agree, and we can

divide B2 into three parts each having disjoint images under the two functions

(decide inductively for n € BZ to which part is belongs, a good decision always

exists as the functions are one-to-one); one part at least is infinite, call it £3,

then F(B$) is almost equal to both gq^(B^) and gq2(B^) which are disjoint.

But, whenever gpλ,gqλ are both defined they must agree (since qι > Pi), and

the same holds for P2><72j so we obtain that gpl \B\ =ae gp2 ί^i? contradicting

our assumption. So (*17) holds.

By arranging the conditions in Pa x Q in an α -sequence and using (*17)

we obtain that there is a partial function g° from ω to ω such that for every

p G Pa x Q we have

{n : gp(n) is defined but g°(n) is not defined or is ^ 9P(n)} € /.

Hence, by (*16), for every B G JΠ/i, B Cαe Dom(#°) and (VA C B)F(A) =ae

9°(A).

We have almost achieved our goal of inducing F\P(B) uniformly for all

B G J Π /i - the missing point is that we want gQ to be one-to-one. But this

must be true after discarding from Dom(<7°) a set from /, because otherwise

we can construct (bn : n < ω) with bn ^ bm for n ^ m, ^°(?>2fc) = 9Q(bzk+ι)

and B — {bn : n < ω} G J Π /i (see the proof of (*14) noting J Π /i is

an ideal); then for large enough n and an appropriate gq (inducing F\P(B))

g®(bn) = gq(bn), so gq is not one-to-one, a contradiction. Since discarding a

set in / does not affect the other properties of g0, we have a one-to-one g°

inducing F\P(B) uniformly for all B G J Π /i. But any element of /i contains

an element of J Π /i, so #° induces FίP(J3) for all B G /i [Why? Assume

5 G /i, -*[F(B) =ae 9Q(B)], then one of the following occurs:

(a) F(B)\g°(B) is infinite, so as F is onto for some infinite Bl C B, F(Bι) Π

gQ(B) = 0 and we can find £2 Q #ι which belongs to J, so F(JB2) =αc



§6. Proof of Main Lemma 5.6 193

g°(B2) but g°(B2) C g°(B) whereas F(B2) Cae F(Bl) <ae ω \ g°(B)

contradiction,

(b) g°(B) \ F(B) is infinite so there is an infinite BI C B such that g°(Bl) C

gQ(B) \ F(B) and we get a similar contradiction.]

As we are in Case 1 (from Stage B, see beginning of Stage E) (Vj < a)Aj G

J, and they are almost disjoint, there is gl, one-to-one partial function from ω

to cj, so that for every B G /, F(B) =ae 9
l(B) and B Cae Dom^1). Clearly

Dom^1) U Dom(#°) is co-finite (use (*14)).

Let /* be the ideal that /U/i generates. Let D = {n : gl(n) ^ g°(n) and

both are defined}.

If D φ Γ we can find (as we found B3 C B2 in the proof of (*17)) DI C D

such that D! φ Γ and gl(Dl) Γi gQ(Dι) = 0.

As F is onto, for some D\ C D l5 F(D|) =αe F(£>ι) Π ί/0(Z)ι). Then

jDJ G /i, otherwise it has an infinite subset D'{ G /, so F(D'{) =ae gl(D'{)

hence F(D'{) Cae g
l(Dl), but F(D'{) Cαe F(.D{) Cαe ^

0(A), a contradiction.

Similarly, DI \ D\ G /; so DI G /*, a contradiction.

So D G /*, hence by trivial changes in g°, gl we get D = 0. Let g — ̂ 1 Ug°.

For every A G /*, -F(-A) =αe ^(-4), so as /* is dense, F is an automorphism,

this holds for any A.

As F(ω) =ae g(Dom(g)), Rang(^) is co-finite.

Why can we assume g is one-to-one? No integer can have an infinite origin

set A, since then F(A) is infinite while g(A) is a singleton. Only finitely many

integers can have a non-singleton origin set, otherwise we would have two

disjoint infinite sets with the same infinite image under g. So we can throw

out the problematic finite part of g.

Thus F is trivial. Πδ.6,5.5




