Chapter IX
Silver Machines

1. Silver Machines

Silver machines are a device for avoiding the use of the fine structure theory in
proving results such as [J,.. The idea is as follows. In proving, say [J,, as we did
in Chapter IV, the main tool was the hierarchy of skolem functions hy, 4. Of
course, these functions, and the properties of them that we made use of, were
obtained by our fine structure theory. But the fine structure theory itself was not
used in the proof of [1,.. Any hierarchy of functions with similar properties would
suffice. As we shall see, it is possible to construct such a functioinal hierarchy
without using the fine structure theory. The idea is as follows.

We shall say that an ordinal « is *-definable from a class X of ordinals iff there
is an #-formula ¢(v, ..., v,) and elements f§,,..., f,,y of X such that « is the
unique ordinal for which

t:Lyq)(o(z’ .[;1: "-’ﬂn)'

The idea behind the machine concept is this. Suppose we were to define a *-skolem
function for L as a function h such that dom(h) € @ x On~?, ran(h) < On, and
whenever o is *-definable from X < On, then a € h"(w x X =®), where we use X <¢
to denote | ) X" In order to construct, say, a [J-sequence, we might then go on

n<w

to define a hierarchy of (set) functions convering to h, possessing some kind of
condensation property. And to a point, this is the idea behind the definition of a
Silver machine. But there are some differences. For instance, we shall not work
with a single skolem function h but rather an infinite family of functions A;, i < w.
Although h; will, in some sense, correspond to the function h(i, —) of the above
sketch, the index i will not be the Gédel number of a formula as was the case with
the skolem functions of the fine structure theory, and for different indices i the
functions h; may be quite different in structure. (Hence there is no point in trying
to combine them into one function.)

One remark concerning the use of the word “machine”. This stems from the
motivation which led Silver to develop the concept in the first place. “Silver
hierarchy” would be a more suitable term for the structure we shall develop here
(which is not quite the same as the original), but we shall, of course, stick to the
established usage.
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A structure
N = <X’ <a (hi)i<w>

is said to be eligible iff:

(i) X = On;
(i) < is the usual ordering on X;
(iii) for each i, h; is a partial function from X*@ into X, for some integer k().

If N is as above and A is an ordinal, we set
NA = <X N /1, <’ (hz N lk(i)+1)i<w>'

We sometimes write N, instead of N.

If N, A are as above and A = X n 4, N;[4]denotes the closure of 4 under the
functions of N;.

Let N/ = <X/, ¢, (hi);<,» be eligible structures of the same similarity type, for
j=1,2.Wewrite N'< N?iff X' = X?and foralli < wand all x,, ..., X, € X",

hi(xg,. ., X)) = hi (x5 ..., Xie(i))-
A machine is an eligible structure of the form
M = <On’ <7(hi)i<w>a

which satisfies the following three conditions:
I. Condensation Principle. If N<a M, there is an o such that N =~ M,,.

I1. Finiteness Principle. For each / there is a finite set H = A such that for any set
Aci+1,

M;41[A] s M3[(A 0 A) v H]u {4}.

III. Skolem Property. If a is *-definable from the set X < On, then « € M[X];
moreover there is an ordinal A < [sup(X) u «]*, uniformly X, definable from
X v {a}, such that o € M,;[X].

Some explanatory comments are perhaps in order here. In the light of our
introductory remarks, the inclusion of the Condensation Principle and of the
Skolem Property in this definition should come as no surprise. But why the
Finiteness Principle? This says that the hierarchy (M, | A € On) grows very slowly,
with only finitely many new ordinals being calculated at each stage. Hence events
of set theoretic interest will occur only at limit levels of the hierarchy. This fact will
be of considerable use to us, much as we used the fact that the structures L, are
only easily handled when « is a limit ordinal (as we saw in Chapter II).

There are several ways to construct a machine, but in essence the idea is that
the machine should code the truth definition associated with *-definability. The
following devices are introduced in order to facilitate our proof of the Condensa-
tion Property for the machine.
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Suppose N = {X, <, (h;);<,» is an eligible structure, where X is a set. Let *
denote sup(X), and set X* = X U {*}. Define partial functions h¥,i < w, on X*
as follows:

(@) if s € X*@ and h,(s) is defined, set h*(s) = h;(s);
(b) if s € X*D and h;(s) is undefined, set h¥*(s) = *;
(¢) if s € (X*)*® contains *, set h¥*(s) = *.

Let N* = {X*, <, (h¥)i<e, {*}). Though essentially the same as N, N* has the
advantage (for us) that all of its functions are total, which is the reason for its
introduction.

Suppose that S is a first-order language. The infinitary language S* is obtained
from S by allowing the formation of countably infinite conjunctions and disjunc-
tions of quantifier free formulas. A universal sentence of S* is a sentence of the
form

Vog...Yv,0(vg, ..., U,)

where ¢ is quantifier free. A universal theory in S* is a consistent set of universal
sentences of S*.

Suppose that S is the first-order language of some eligible structure, and T is
a theory in S*. We say that T is a-categorical if the structure {«, <) has exactly
one expansion to an S-structure satisfying T. (The definition of satisfaction for S*
is quite straightforward.)

The following lemma indicates how the above concepts can assist us in prov-
ing that our machine has the Condensation Property.

1.1 Lemma. Let M = {On, <, (h;);<,» be an eligible structure. Let S be the lan-
guage of the structures M¥. Suppose there is a universal theory T in S* such that:

(i) T is (o + 1)-categorical for all o;
(i) M}E T for all a.

Then M has the Condensation Property.

Proof. Let N<a M,. Since M} F T and T is universal, we clearly have N* k T. The
domain of N is a set of ordinals, so there is a unique ordinal & and a unique
isomorphism n: N = N, where N = <d, <, (h));<.,» is eligible. But N*F T,so as T
is (@ + 1)-categorical, N* = M*. Hence N = M, and we are done.

We are now ready to commence the construction of our machine. As a first
step we define a certain well-ordering of On~?.

It is easily seen that the following rules do define a well-ordering of On=®. Let
5,t e On=?.

(i) If s is a proper subsequence of ¢, then any permutation of s precedes
any permutation of t.

(ii) If s is a permutation of ¢, then s and ¢ are ordered lexicographically.

(i) Ifs = (atgyeeer @)y 8 = (0tgy-ver Oy—y,B1s--e B @and By, ..., B < a,, then
any permutation of ¢ precedes any permutation of s. (In case n = 1 here,
oy,...,0,_ is interpreted as the empty string.)
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We denote by < * the well-ordering of On = so defined. For later use, we note
that for s, t e On =, max(s) < max(t) implies s < *t. (Proving this should help the
reader to understand the definition of <* more fully.)

For s € On=®, we denote by § the ordinal corresponding to s in the ordering
<* that is

§ = otp({{t|t <*s}, <*).

Define functions B,: On"— On by setting P,(s) = §. These are the “pairing
functions”. Note that P((oq, ..., ,)) = max(dy, ..., a,).
Define partial functions Q; from On to On by

o;, if o =PB((og,...,0,)) and i< n;
otherwise undefined.

Qi) = {

These are the “pairing inverses”.
Notice that

P = <Ona <, (R&)n<w, (Qi)i<w>

is an eligible structure. Indeed, P satisfies two of the machine axioms, as we prove
next.

1.2 Lemma. P has the Finiteness Property.
Proof. Let A be given. For some n and some a4, ..., a, < 4,
A= Ry, ..., ).

Set
H={ay,....,a,} N A.

Clearly,if Ac A+ 1,
P[] Bl(AnA)vH]U{i}. O

1.3 Lemma. P has the Condensation Property.

Proof. We use 1.1. Let S be the language of the structures P*. It is clear that, for
fixed n,m, there is a first-order, quantifier free formula ¢, ,(v,,...,0,,
Ups1s---50,) of S which says

W1y 0e s U) <¥Wpa1s-esr V)™
Let T, be the following universal S* theory:
To={Vx(x="v x <*)} U{Q,(*) = *Inew}
U{Vx;..x,(x;=*v...vx,=*>P(X) =%|new}

VAYX1 X Y1 Y[ @n (X, §) = (B(R) < Bi(§) v Bi(§) = *)[n,me w}
U {Vx V [x = B(Q1(x), ..., Qu(x)]}.

n<w
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It is easily seen that T, is (x + 1)-categorical for all o. And clearly, B* F T, for
all a. So by 1.1, P has the Condensation Property. [J

In order to incorporate the Skolem Property into our machine, we introduce
a first-order language, I, appropriate for *-definability.

The basic symbols of I" are as follows:

variables: v, (n€ w);

connectives: A,™1;

predicates: =, ¢€;

constants: t? (for certain ¢, a described below);

quantifiers: 3* (« € On).

If ¢ is a formula of I, the rank of @, ¢(¢), is the least o such that:

(i) if 37 occurs in ¢, then y < a;
(i) if #¥ occurs in ¢, then y < o.

For each o and each I-formula ¢ of rank «, the language I' has a constant %,
and this is the only occasion on which such a constant is defined.

The definitions of the language I" and of the rank function ¢ thus proceed by
means of a simultaneous recursion, which is easily seen to be well-defined.

The language I’ is interpreted in L as follows. The interpretation of ¢ is the
set {xeL,|F., @(X)), and the interpretation of 3*v, is (Ix € L,). Clearly, each
member of L is denoted by a constant t¢, and elements of L,, are just the
interpretations of the constants t¢ as ¢ varies. For each «, L, has a canonical name
in I, namely t"°=", This name is denoted by [,. Similarly, « has a canonical name,
tOn o) which we denote by o,.

The formal definition of I in set theory is as follows.

vy =<{n+6);
t2 =0T Ko+ a+1);
(x=y)=<1>"x"y (x, y variables or constants);
(xey)=<2>"x"y (x, y variables or constants);
(@AY)=3>"0 Y (¢, ¥ formulas);
)= "o (¢ a formula);

F0.0) =<5 "> " <n) "9 (¢ aformula).

Thus each formula of I is a finite sequence of ordinals. Using the pairing functions
P, we may now associate with each I-formula ¢ a unique single ordinal ¢.
Similarly, each constant c of I' is assigned an ordinal ¢. If the ordinal o denotes
a formula or a constant of I, we denote that formula/constant by "o™.
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1.4 Lemma.

(i) If @ is a subformula of V, then ¢ < .
(i) If ¢ is (3*0) Y(v) and t is t3, where y < a, then Y(t) < .
(iii) If o is (£ = t82) or (¢3! € t32), and if o() < max(ay, ay), then ¥ < ¢.
Proof. (i) If ¢ is a subformula of y, then as sequences of ordinals, ¢ is a sub-
sequence of ¥, so ¢ <*i. Hence ¢ < .
(i) This is a direct application of clause (iii) in the definition of <*.

(iii) For definiteness, suppose o; < a,. Thus max(p) = w + a, + 1. Since
oY) < oz, max(y) < w + a,. Hence max(y) < max(p). So, as we re-
marked earlier, ¥ <*o, giving < ¢. 0O

Our machine will need to be able to handle the elementary syntax of I
Accordingly, we make the following definitions.

For v < w.w, let k, be the constant unary function with value v. Let I be the
unary function I(x) = w + «. Let J be the unary function J(«) = a + 1.

Let

N = <OI1, <, (Bl)n<w, (Qi)i<wa (kv)VSw.wa 19 J>
The eligible structure N can clearly handle the besic syntax of the language I
1.5 Lemma. N has the Finiteness Property.
Proof. Given A, pick n,0q,...,a, so that A= PB((«,...,o,)) and let
H = {a,,...,o,} A H is uniquely defined, and if A = A + 1, then
N+1[AleNjAn ) uHJU{A}. O

1.6 Lemma. N has the Condensation Property.

Proof. If A< w.wand X< N,, then X = N, and there is nothing to prove. For
the case 4 > w.w, we use 1.1. Let S be the language of the structures N;*. Let T
be as in the proof of 1.3. T, will take care of the P-part of N, so what we must do
is extend T, to a universal $* theory which uniquely characterises the functions
k,, I, J. Let T, be the following universal S* theory.

T, = To v {VxVy[k,(x) = k,(y) |V S 0. 0)
UAVXYY[le =" A (A k() ="]V[(x <%

yIw.w

AN kX)) <k ALV (R(X) =)V (ko o(x) < T

<vSw.w VSo.0

U{VxVy[[x=*AI(x) =* A J(x) =*] v [(x <¥*)
Al <\/ ((x = ky(x)) A (L(x) = kg +,(x)))

YRw.w

V(X Zko.o(x) A I(X) =) A [(x <TG A (¥ <x v IX) <Y
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Clearly, T, is (« + 1)-categorical for all « > w .. Moreover, N} F T, fora > w. w.
Hence by 1.3, if X <« N,, where a > w. o, then X =~ N; for some unique &. [

Now, L-truth for I-sentences is clearly definable. So we may define a function
F from ordinals to {0, 1} as follows:

1, if « = ¢ where ¢ is a true sentence of I';
F(x) =10, ifoa= ¢ where ¢ is a false sentence of I';
otherwise undefined.

We may now define functions G, H from ordinals to ordinals by:

¥, ifa=(Fve®v)" and Fve(v) is true and ¥ is least
G() = such that y < 6 and (1) is true;
otherwise undefined.

B, ifa= @(v)" and B is least such that ¢(oj) is true;
otherwise undefined.

H(x) = {

Set
M = <On5 <5(Pn)n<w9 (Qi)i<w’ (kv)v<w‘wa I’ Ja F? Ga H>

Clearly, M is an eligible structure. We show that M is a machine.
1.7 Lemma. M has the Finiteness Property.

Proof. The proof of 1.5 is still valid. O

1.8 Lemma. M has the Skolem Property.

Proof. Let a be *-definable from X = {f,,..., B,, 7), « being the unique ordinal
such that F;_o(d, ,3 Lseeos [)g,,) where ¢ is some Z-formula. Obtain the formula
Y(vo) of I' from ¢(v, ..., v,) by replacing v; by o4, for i =1,...,n, and each
quantifier Jv by 3"v. Clearly, if ¢ is a constant of I, y/(t) will be a true sentence of
I (in L) iff the interpretation of ¢ in L is «.

Let 6 = ¥/(vy)”. Notice that é is computable from f,,..., S,, y using the
functions of M (in fact the functions of N). Let

A=sup{d, B1,..., Bu > 0}

Clearly, 4 < sup(X v {a})*, and Ais (uniformly) 2, definable from X U {a}. Then
0 e M,[X]. But H(6) = a. Hence o € M,[X], as required. [

1.9 Lemma. M has the Condensation Property.

Proof. If A< w.w and X < M, then by virtue of the functions k,, we have
X = M,, so there is nothing more to prove. For the case A > w.w we use 1.1. Let
S be the language of the structures M¥. Let T; be the universal S* theory defined
in the proof of 1.6. As we saw in 1.6, T; will take care of the N-part of M. What
we must do now is extend T, to a universal theory T in S* which characterises
uniquely the remaining functions of M.
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Notice first that the functions F, G have the following recursive definitions (by
simultaneous recursion for F and G):

[F(*) =*] A Vx[F(x) =0 v F(x) =1 v F(x) =*]
AYa[F(o) = 1o o= 0 =t)" A F(V'0) () @ y(©)") = 1]
V[e=@ =) Av <t A F(V0) ) ovel, A o)) =1]
V=@ =) Av<t A F(V) (@) ovel, A o)) =1]
Vie=(teth) A F(@0) (@) A (VW) (weveo oWw)") =1]
Vie=@et)h) Av<t A F(@0) ()
AW Wwevowel, A pW))") = 1]
Vie=(2et) Av<t A F(@ )W)
AW weveopWw)") =1]
Vik=(¢ AY)" AF(@) =1nAF@W)=1]
vVie=(19)" A F(@) =0]
Ve =(3"v) )" A G@) +*])
AVa[F(@)=0e. .. ... ... 1;

G(*) =* AVaVB[G() = o=@ vp@)* A B=()" AT<v
AFe)) =1A{y<p)(y=1t] A1 <v—>F(pt)")=0].

Using 1.4, it is easily seen that the above definitions are sound. The function H has
the following definition:

[H(*) =*] A VaVB[H(x) = foa=¢@®)" A F(plop)") =1

A (Vy < B) (F(o(0)") = 0)].

Roughly speaking, T will consist of T, together with the above definitions of
F, G, H. That T will be (x + 1)-categorical for all & > . and that M} will be a
model of T for all @ > w.w is clear. What we need to check, though, is that it is
possible to write the above definitions as universal sentences of S*.

The appearance of the constants 0, 1 causes no problems, since the functions
ko, ky yield these values for all x + *. And the functions of N also enable us to
handle the passage from formulas to ordinals and back again. For the passage
from formulas to ordinals this is clear. For the reverse passage, considering the
definition of F as an example, we may commence the F(ax) = 1 clause thus:

Flo)=1e\ [a=FRQ1®),..., Q@) A ...].

n<w
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For each a which denotes a formula there will be a unique n such that
o= B(Q,(x),..., Qux),and (Q(a), ..., Q,(x)) will be "o, so the relevant disjunct
in the above will deal with "o ™. Allied to this is the classification of a formula into
its logical type. But there are only a finite number of types, and so we may form
a disjunction over these. We leave it to the reader to check the fine details now,
and declare the lemma proved. [

That completes the proof that M is a machine.

2. The Combinatorial Principle []

We use the machine constructed above in order to prove the combinatorial
principle O from V= L. More precisely, we prove the following theorem:

2.1 Theorem. Assume V= L. Let A be a class of limit ordinals. Then there is a class
E < A such that:

() if k > w is regular and A N K is stationary in k, then E N k is stationary
ink,
(i) O(E) holds. O

We recall that [ (E) says that there is a sequence (C, | « € S), where S is the class
of all singular limit ordinals, such that:

(i) C, is a closed unbounded subset of «;
(ii) otp(C,) < a;
(iii) if & < o is a limit point of C,, then a € S, ¥ ¢ E, and C; =a n C,.

Our proof of 2.1 using the machine M will be closely modelled upon the fine
structure proof in VI.6. In one aspect the machine proof is better: it is uniform on
a, avoiding the necessity of looking separately at different cases, which was a
feature of the fine structure proof. With the machine, the analogue of the most
difficult case in VI.6 works in all cases.

We assume V=L from now on. M denotes the machine constructed in
section 1. When we use the machine, a finite set of ordinals will often be referred
to as a parameter. Since we may identify finite sets of ordinals with members of
On=¢ in a canonical manner, the well-ordering <* of On=<“ gives us a well-
ordering of all parameters.

Let a be a limit ordinal, f > a. We say that « is singular at f if there is a
parameter p < f and a y < « such that My[y U p] N « is cofinal in a.

2.2 Lemma. If o€ S thereis a p < o™ such that « is singular at p.

Proof. Let y = cf(«), and let f be the <;-least map from 7y cofinally into «. Let
6 < o™ be such that fe L;. Set p = {a, 5}.

For ¢ <y, f(¢) is the unique ordinal { such that k “{ is the value at & of the
< -least map from cf(x) cofinally into a”. So for each & < a, f(&) is *-definable
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from {¢, «, 8}, and by the Skolem Property there is a B(¢) < [max(f(¢), &, a, 6}]*
such that f(&) € My [{, 6, £}]. Let f = sup,<, B(S). Since B(&) < atforallé <y
and y < «, we have B <a’. Also, for each & <y, f(&)e Mp[{¢ «, 6}]. Hence
ran(f) € My[y U p]. Thus Mgy U p] N o is cofinal in «, and we are done. [J

Let o be a limit ordinal, B > «. Let us say that « is semi-singular at f§ iff there
is a parameter p = f such that whenever p = X <« Myand X N « s transitive, then
Xnoa=a

2.3 Lemma.

(i) If o is singular at B, then o is semi-singular at f.
(1) If cf(x) > w and o is semi-singular at B (with parameter p), then . is singular
at B (with parameter p).

Proof. (i) Let p = B be a parameter and let y < « be such that M;[y U p]n 2 is
cofinal in a. Set p'= p U {y}. We show that « is semi-singular at  with parameter
p'. Let p’ = X < M, be such that X n « is transitive. Since y € X, we have y = X.
So as X <« M, we have M;[y u p] < X. Hence X n o is confinal in «. Thus as
X N ais transitive, we must have X n o = a.

(i)) Let o be semi-singular at # with parameter p. By recursion, define substruc-
tures X, <1 M, and ordinals a, < o is follows.

Xo = Mﬁ[P]§ g = sup(Xo N a);
Xns1 = Mﬂ[fxn upl g =sup(X,yq N ).
Set
X, = X, Oy = SUPp < o 0p-
n<w

Clearly, X,< M; and X, na =a,. Since p = X, therefore, we must have
X, Nna=aie o, = a. Since cf(x) > w, it follows that o, = o for some n < w. Let
n be the least such. If n = 0, then M[0 U p] N «a is cofinal in «, and if n > 0, then
Op1 < &, = xand Mgla,_; U p] N ais cofinal in o, so in either case « is singular
at f (with parameter p). [

Lety < a < f. Let p = § be a parameter. We shall say that (y, p) jumps below
o in My iff Mgly U p]lna 9.

2.4 Lemma. Let €S, f > o, p = B a parameter. The following are equivalent:

(i) « is semi-singular at B with parameter p;
(i) for all y < a, (y, p) jumps below o in My.

Proof. (i) — (ii). Let y <a and set X = Mj[y U p]. Suppose X N a = y. Then since
P S X< Mg and y is transitive, we have y = X n o = o, which is absurd. Hence
X N a =y, proving (ii).

(i) — (). Let p = X <1 M, be such that X n o is transitive. Set y = X n a. Sup-
pose y <oa. Then My[y up]lna =y Butyupc X< My, so Mylyuplc X,
and we have X N o =+ 9, a contradiction. Hence y = «, proving (i). [
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The class E of 2.1 consists of all ordinals « € 4 such that for some y > « and
some parameter q < y:

(i) o is not semi-singular at y;

(ii) if x € A N a, then either (&, g) jumps below « in M, or else & is semi-singu-
lar at y with a parameter in M, [& U q].

2.5 Lemma. Let k > w be a regular cardinal, and assume that A N k is stationary
in k. Then E N k is stationary in k.

Proof. Let C be a club subset of k. We show that C n E + §. Let f:x — x be
defined by

f (o) = the least element of C greater than a.

Then feL,. so for some ordinal 6 <x*, f is the 0-th element of L in the
well-ordering <. Let ¢ < k™ be such that ¢ > 0 and (say) L, is a model of ZF ~.
By absoluteness,

f = [the 6-th element of L in the ordering < ]*

Let o be, if possible, the least ordinal in A N x such that

(i) M+ [eu {6, 0}]nKk =0
@) if p = M+ [o U {6, 0}] is a parameter, then « is not semi-singular at x™*
with parameter p.

We show that « is well-defined here. Define a chain
Xo<Xi=..<X,<..< M, (v<k)

by recursion, as follows. Let X,<1 M,+ be such that 0,0e X, and
2y =XoNnker.lf X, <« M. isdefinedand o, = X, nkex,let X,,,<a M. be
such that «, € a4y = X, Nk e k. If lim(v) and X, is deﬁned for all ¥ < v and
such that o, = X, nxex for all n <v, let X, = U X,, o, =sup,.,a,. Since

K > o is regular, this definition causes no difficulty. S1nce {a, | v <k}isclubinx,
we can find a v < x such that lim(v) and «, € A N k.
Since a, U {0, 0} = X,< X,<a M,.. for all n < v, we have
MK+ [av Y {0’ Q}] = Xv-
But X, n x = a,. Thus
M, o, U {0,0} ] n K =a,.
Thus «, satisfies condition (i) above.
Now suppose that p = M,.+[a, U {6, ¢}] is a parameter. For some 5 < v,

p s M, [, {0, 0}] Thus p = X,< M,., and

X,na, =X, 0kna,=0a,<a,.

XV’ aV
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Thus a, is not semi-singular at x* with parameter p. This shows that o, satisfies
condition (ii) above.

It follows that o is well-defined, and indeed that « < «,.

Now let

M, = M, [au {0, 0}]
Then
nlo=idla and =n(x)=x.

Let =n"1(0), 0 =n '(0), and set q = {0, g}. We show that y, g satisfy the
definition of E for a. Notice that y = M, [a U q].

Suppose that « were semi-singular at y. Then for some parameter p < y, o will
be semi-singular at y with parameter p. Let 6 < a. Thenby 2.4, M, [6 U p] N a =+ 4.
Applying 7, and using the fact that 7 [« = id [ &, we have M.+ [0 U ©t(p)] N a F 6.
Thus, whenever 6 < a, (8, 7(p)) jumps below ain M, .. So by 2.4, a is semi-singular
at k't with parameter n(p). But n(p) = n”y = M,+[o U {6, ¢}], so this contradicts
the choice of a. Hence « is not semi-singular at y.

Now let @ € A n o be such that (, g) does not jump below o« in M,. Thus

M,[avglna=a.

Applying 7 and using the fact that = [o = id [ «, we get
M, [@gu{f,0}]Nna=4a.

Using property (i) of « we get
M [@dv{6,0}]nK=ad.

So by the minimality of a there is a parameter p = M.+ [& U {0, ¢}] such that & is
semi-singular at x* with parameter p. Let § < d. By 24,

M. [duplna=*o.

Applying 771,

M6 urn ' (p)na*d.

So as < a was arbitrary, 2.4 tells us that & is semi-singular at y with parameter
n~'(p). Since n ™' (p) = M, [&@ U q], this completes the proof that « € E.

We obtain the contradiction which proves the lemma by showing that o € C.
Let v < a. Then f(a) is definable from v, 0 in L,. Hence f(v) is *-definable from
{v,0,0}. So by the Skolem Property for M, f(v)e M,+[x v {0, 0}] Nk = a.
Hence f”a < o. Thus by definition of f, « is a limit point of C. Hence o € C, and
we are done. [
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As a first step towards the construction of a [J(E)-sequence, we construct a
sequence (C, |« € S) such that:

(i) C, is a club subset of «;

(ii) if @ is a limit point of C,, then &€ S and C; =a n C,.

Let « € S. By 2.2 and 2.3, we may define f(«) as the least ordinal 8 such that

o is semi-singular at f. Let p(x) be the <*-least parameter p such that « is
semi-singular at (o) with parameter p.

2.6 Lemma. () is a limit ordinal.

Proof. Let f = B(a), p = p(«). Suppose that § = 4 + 1. By the Finiteness Property
for M there is a finite set H = A such that for any set 4 < f.

(*) Mgy[A]l= M;[(A n A)u H]uU {4}.

Set g = p U H. We show that o is semi-singular at 4 with parameter g, thereby
contradicting the definition of () (which is greater than 1), and hence proving the
lemma.

Let g = X<M;, X n o transitive. Set Y= My[X]. Since 4 < f, we have

M;[X]s My[X]=7Y.

But by (),
Y= My[X]<s M;[X]u {4}.

Hence either Y= M,[X]or else Y= M,[X] U {4}. In either case we have
Ynoa=M,[X]noa.

But X< M;, so M,[X]= X, and we therefore have Yna =X na,so Yn ais
transitive. But p = Y<a My, so this means that YN o« = o. Hence X na = «, as
required. O

2.7 Lemma. Let o € S, and set f = f(x), p = p(«). For everyy < a.thereisad < f8
such that (y, p) jumps below « in M.

Proof. Lety < a. By 2.4, (y, p) jumps below o in My;ie. My[y U p] n o + y. So for
some ordinal &,y < & < a, we have & e Mg[y U p]. Let &,,..., &, be a finite se-
quence of ordinals such that &, = ¢ and for each i, either £; €y U p or else &; is
obtained from &, ..., &;_; by an application of an M-function. By 2.6, § is a limit
ordinal, so we can find a 6 < such that 6 > max(p), &,,...,¢&,. Clearly,
Ee My[¢,, ..., E,], 50 Ms[y U p] N a * 7, as required. [

2.8 Lemma. Let a €S, and set f = B(a), p = p(x). Then B = Mpglo L p].

Proof. Let X = Mg[a U p]. Since X <« My, the Condensation Property for M
gives us a unique n and a unique 4 such that n: X ~ M. Clearly, = [« = id [ a.
Since X = X[o U p], we have, applying 7 and setting g = n”p, A = M, [« U g]. But

B(e)
p(®)



B.p

o(v),

)
av

396 IX. Silver Machines

J < B and by an easy isomorphism argument, o is semi-singular at 4, so 4 = f.
Again, the same easy isomorphism argument shows that « is semi-singular at 1
with parameter g, so as ¢ <*p we have g = p. Thus f = My[a U p], as stated. [

2.9 Lemma. Let a € S, cf(x) > w, and set f = B(a), p = p(x). Then for some 0 < a,
M,[0 L plis cofinal in B.

Proof. By 2.3(ii) there is a 6 < o such that M[6 U p] N «is cofinal in «. We show
that M,[0 U p] is cofinal in B. Suppose not, and pick é <f such that
Mg[0 L p] < 0.

Lety < a. By 2.4, Myly U p] n o 9. Ify < 6, wehave My[y U p] = M,y L p],
so M;[y u p]noa % 7. And if y > 0, then My[0 U p] = M,[0 U p] = M;[y U p], so
as My[0 U p] N ais cofinal in o, M;[y U p] N o # y. In either case, therefore, (y, p)
jumps below « in M. Since y < o was arbitrary, 2.4 tells us that « is semi-singular
at §, contraryto d < 5. [

We are now able to define C,, o € S to satisfy conditions (i) and (ii) specified
above.

Fix o € S, and set f = f(x), p = p(x). We define increasing, continuous se-
quences of ordinals, (6(v)|v < A), (a,|v < A), for some limit ordinal A < o, by
recursion, as follows.

0(0) = ap = 05
O(v + 1) = the least 6 < f such that o, U p = 6 and («,, p) jumps below
o in Mjy;

o,+1 = the least y < « such that (y, p)
does not jump below o in My, +1);

0(n) = sup,<,0(v),  if lim(n);

o, = SUP, <, 0y, if lim(n).

The definition breaks down when an ordinal A is reached for which §(1) > f or
oy = a.

Note that by continuity, for limit #, («,, p) does not jump below a in M,,.

We show that (6(v) | v < A) is increasing. Suppose (v + 1) < 6(v). Since (a,, p)
jumps below « in M, 1), it follows that (a,, p) jumps below o in Mj,,. This
contradicts the properties of «,. Hence §(v) < (v + 1).

Next we show that for limit , «, is the least y < « such that (y, p) does not jump
below ain Mj,, just as is the case at successor stages. We prove this by induction
on 7. Suppose y < «, were such that (y, p) does not jump below « in M,,. Pick
v < 7 such that «, > y. Then as 6(v) < d(1), Ms.,)[y U p] N « = y. By definition if
v is a successor ordinal, and by induction hypothesis if v is a limit ordinal, this
implies that «, < y, contrary to the choice of v. This proves the result.

We now show that (x,|v < 4) is increasing. Well, we clearly cannot have
®,+1 = o, Butif a,,, <a,, then by the properties of a,, (a,+;,p) must jump
below a in Mj,,), and hence also in M, 4 ,, contrary to the known properties of
®,4+1- Hence o, < oty 4 ;.
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Now, if 6(v) < B and a, < «, then by 2.7, 6(v + 1) < 8, so by 2.4, o, ; < a.
Hence lim(4). Suppose 6(1) < . Then by 2.4, a; < «, which contradicts the choice
of A. Thus 6(4) = B. It follows that o; = . For if a; < a, then by 2.4, (a;, p) jumps
below o in Mj;;, contrary to the properties of o, 6(4).

We set

Co={oyln <4},

a club subset of o. We shall show that if & is a limit point of C,, then & € S and
C; = & n C,. But before that, we note for later use that as (6(v)|v < 1) is strictly
increasing and cofinal in f and (o, | v < 4) is strictly increasing and cofinal in o, we
have:

2.10 Lemma. cf(f(«) = cf(x). O

For n < 4, now, set
Y, = Mgl © P
Since Y,<1 M;,, the Condensation Property gives an isomorphism
Ty My = Y.

Let n, !(p) = p,. Notice that 7, [ a, = id [ a,.
2.11 Lemma. Let n < A, lim(n). Then o, € S and B(x,) = Y (), p(e,) = py-

Proof. We show first that «, is semi-singular at /(1) with parameter p,. By 2.4 it
suffices to show that for all y < «,, (y, p,) jumps below «, in M.
Let y < a,. By the properties of a,,

Ml U pl oo = ay,

M,y v ploa+y.
Combining these two facts gives
My U p]noy 7.
But o, U p © ¥, <0 M;,. So we get
Yy uplno,+y.
Applying 7, ' gives
Mymly ol oay 7,
as required.

Since , is semi-singular at (1), we must have a, € S, of course, so the first part
of the lemma is proved.

> Y (1)

Py
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Suppose that B(a,) # ¥(n). Then by the above, f(x,) <y(n). Since
3(n) = sup,<,6(v)and Y, = | ) Y,, we can pick v < # such that §(v) > =, (B(c,)) and
7(p(a,) < Y, .

Now, (a,, p) does not jump below a in M), SO

M; o, v pl Ny, = a,.

But 7,(p(,) € Y, = M;,)[a, U p], so it follows that

M&(v) [av o nn(p(an))] N (X,, = &,.
Thus as 6(v) > =, (B(ay)),

Mn,,(ﬁ(ay,))[av v n,,(p(oc,,))] N oy = Ay
But clearly,

ay U m,(play) = T "M @y <t M, 8 @)
Hence

(7" Mpa,) (2 © T(p(0))] 0 2ty = 20,

Applying 7, ',

Mgyl © ply)] N oa, = a,.
But a, < a,,. So by 2.4, a, is not semi-singular at f(a,) with parameter p(«,). This
is absurd, of course. Hence f(a,) = ¥(n). It follows at once that p(«,) <*p,.

Suppose that p(«,) <*p,. Then n,(p(a,)) <*p. So by definition of p, a is not
semi-singular at § with parameter 7, (p(«,)). So by 2.4, there is a y < a such that

Mply v m(p(a)] N o =y.
Suppose first that y < a,. By the above, we get
M&m)[)’ v m,(pay)] N Oy = 7.
So as a, U m,(p(a,) = Y,< M;,,
Y[y v my(plag)] noy =y,
Applying 7, ',
My mly © play)] N oy =7.

But /(1) = f(a,), so by 2.4 we have a contradiction.
Now suppose that y > a,. By 2.8 we have

pn S W('?) = ﬁ(an) = Mﬁ(a,,)[an Up(ar])]
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Applying =,,

p = Mé(rl) [(Z,, ) nn(p(an))]'
Hence

ps Mﬁ[an o TC,,(p(OC,,))].

So as a, <y,

p < Mgly v m,(p(ay))]-
Thus

Mgy v pl = Mgy v m,(p(a,))].
So by choice of y,
Mylyvplna=y.
This contradicts 2.4. Hence we must have p(a,) = p,, and the proof is com-

plete. O

2.12 Lemma. Let n <4, lim(n). Set & = «,, B = B(o,), p = p(,), and define 1, n
M |v<i), @l|v<d), (V,|v<i) from a just as 4, (6(v)|v<A), (a,|v<4i), &
(Y, |v < 1) were defined from o above. Let n = m,. Then for all v < 1: /4
(M) a, = o,

(i) =(6(v + 1)) =6(v + 1);

(iii) TE”MS(V) = M&(V) (@) Kl;

(iv) n"Y, = Y,.
Proof. We first of all prove (i)—(iii) by a simultaneous induction on v.

By 2.11 we have:

M= Y, =M;,levpl, n(p)=p, nla=idla.
Since &, = o = 0 and 5(0) = 6(0) = 0, the first step in the induction is trivial.
Limit stages are immediate by continuity. So assume now that the result holds at
v <A Set § =8(v + 1), 6 = n(d). We prove that 6 = 6(v + 1), &, ; = o,4,. Our
proof of the first of these equalities will also yield n"Mz= M; N Y,.

Note that by definition of §.

(m10): Ms<a M.
Applying 7 to &, U p < J gives a, U p < 0. Also, we have

Ma‘[d_vuﬁ]ﬂ&*&v, MS[&v*f—luﬁ]m(i:&v-f-l’

so as &, < & = a,, we conclude that

Mjla, U p]l N o, + d,.
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Applying = | § gives

M;lo, U pl N, * a,.
Thus 6(v + 1) < 6. We show that 6 < d(v + 1) as well. We have

My, wploaFa,;  Mygiplays, Uplna=o,,4,
so combining these two results gives

M; s y[o O IO oy * 0y
Thus for some e, ., & > a,, we have & € My, 1y[o, U p]. Hence we can find
a finite sequence &,,..., ¢, of ordinals in (v + 1) such that &, = ¢ and for all

i=1,...,n, either & e a, U p or else & is the value of some M function at some
members of {&,,...,&,_}. Now,

Ciroos En€ Msa oy U pl = Myloy, pl =Y,

so we can define & =n (&) fori=1,...,n. Since o, < &, = E <ty y < o,, We
have o, < &, = ¢ < a4y < a,. And for each i, either &, e a, U p or else &, is the
value of some M-function at members of {&,...,&_;}. So, if we set
¢ =max(f,,..., &), we have £e M, , [, U j]. Hence

M§+1[avU]3]ﬁ&'—#dv.

Thus by choice of 5, § < g + 1. Now set ¢ = n(9). Since ¢ = max(,,..., &,), we
have ¢ = max(¢,,..., &) < do(v + 1). Also,

Q€ M;, 41yl U plE Mygplo, U p] =Y.

But the function J(y) =y + 1 is an M-function, and d(y) is a limit ordinal, so it
follows that

0+ 1eM;q,lo, upl=1Y,.
Hence n(0 + 1) = ¢ + 1. Since § < ¢ + 1, applying w gives 6 < ¢ + 1 < d6(v + 1),

as required.
We now have n(6(v + 1)) = 6(v + 1). It follows at once that

"My 4y = Msp+1y 0 Y,

We prove that &, ; = o, 4.
By definition,

(1) M&[avﬁ-l Up]m&=av+1,
(11) Y <O‘v+1—’M¢§[‘yUp]mav+1 *V
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Since (n | 8): My<a My and o, Up = M; N Y, = n"Mj, (i) and (ii) give
(1) Mjleysq U PplN A= 0y4y,
(i) y <oyr1=>Mslyvplna,, 7.

Hence @, ; = a,, .

That completes the proof of (i)—(iii). We are left with (iv).
Using (iii) we have

n"Y, = 1" (Msy) &, U p]) = (M50 0 Y,) [, L p).
But
Mé(v)[av o P] = Yv = Y,,,

so we have
(Mé(v) N Y;’) [av Up] = M&(v)[av Up] = Yv

Thus Y, = Y,, proving (iv). O
2.13 Corollary. Let o€ S. If & is a limit point of C,, then ¥ € S and C; = & N C,.

Proof. Using the above notation, C, = {«,|v < A} and for some limit ordinal #,
&=, By 212, C;={a,|v< A}. But (a,|v < A) is strictly increasing and
sup, . 7%, = & = sup,<,%,,80 A=nand CG;=anC,. [

Our next step in obtaining [J(E) is to thin down the sets C, to sets C, such that:

(i) C, is a closed subset of a;
(ii) if cf(e) > w, then C, is unbounded in «;
(iii) if & is a limit point of C,, then &4 € S and C; = & n Cg;
(iv) otp(Cy) < a.
It will then be a fairly easy matter to turn (C,|« € S) into a [J(E)-sequence.

Let €S, and set f = p(a), p=p(a). Define A (O6W)|v<i), (alv<2),
(Yyln < A), (myln < A), @) |n < 2), (p,|n < 4) as before.

2.14 Lemma. Let 1, < n, < A be limit ordinals. Then sup ¥, <supY,,.

Proof. Since a,, < a,,, 2.4 gives
Mﬁ(anz)[am b p(anz)] N &y, * Xy -
Applying ,,: M, ) = Y,, and using 2.11,

Y;lz[am Y p] N U"'lz =|: a'll'
Hence

My, [0, O P10 0y, F oty
But

My, W pl O o= oy, .

1

B, p
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So as sup ¥, < 6(n,), we have

Moy, [0, © PI O gy = .

Thus sup Y,, <supV,,. U

In defining C, there are two cases to consider. Let y be the least ordinal such
that My[y U p]is cofinal in B.

Case 1. v is a limit ordinal.
Set

Co = {ay|lim(n) A (3¢ < o) [sup ¥, = sup My[¢ L p]]}.
2.15 Lemma. C, is closed in o.
Proof. By the continuity of the sequence (Y,|n < 4). O
2.16 Lemma. Let cf(x) > w. Then C, is unbounded in a.

Proof. Let H = {sup Y, |lim(n)}, K = {supM,[é U p]|é < y}. Clearly, H and K
are clubin . (By 2.10, cf(f) = cf(«) > w.) Hence H n K is club in f8. So we can pick
arbitrarily large limit ordinals n < A so that supY, e K. For any such 7,
sup Y, = sup M[6 L p] for some § < y. But

sup Mg[a, U p] = sup M, [a, U p] = sup Y,.

Hence we can find such a 6 < «,. Then o, € C;. [
2.17 Lemma. otp(C,) < o.

Proof. Define 0: C;—On by letting 0(x,) be the least ¢ <, such that
sup Y, = sup M4z[¢ U p]. By 2.14, 0 is order-preserving. But by definition of 7,
ran(f) < y. Hence otp(Cy) < y. But by 29,y <a. O

2.18 Lemma. Let & be a limit point of C,. Then d € S, & falls under Case 1, and
Ci=anC,.

Proof. Since C, = C,, we know at once that &€ S. Let j be least such that
Mj[7 U p]is cofinal in 8. We must show that lim(5) and that C; = & n C,.

Let @ = o,. Then g is a limit of limit ordinals # < ¢ for which «, € C,. For each
such 7 there is a least ¢, < a, such that sup Y, = sup My[¢, U p]. Since the se-
quence (Y, |n < 4) is continuous, taking the supremum over all such 7 gives

sup Y, = sup My[¢ U p],

where ¢ = sup &,. We show that 7 = £. Since lim(¢), this proves lim(7).
n
Let © = sup ¥,. Then since © = sup M;[¢ U p], we have

M[¢ U p]= M.[ U p].
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But 7 < §(¢) < B. Hence

My[€ U p]= M;,[¢ v pl.

So
T = sup Ms,)[¢ L pl.
But
Supc Y,<a M.
So,
T = sup (£ U p).
Thus

sup Y, = sup Y,[§ L p].

Applying 7, ',
B = sup Mp[¢ L p].

Hence 7 < £. Suppose that j < &. Then for some 7, y < £,. Now,

sup My[7 U p] = B.

So
sup Mg[¢, U p] = .
Applying m,,
sup Y,[¢, v p]=sup ¥,.
But
Y,[&y v pl= M;[E, v ]
Hence
sup M;,)[&, U pl=sup ¥,.
Thus
sup My[&, U p] = sup ¥,
But

supMy[l, upl=sup Y, <supl,

so we have a contradiction. Hence 7 = £.
Since & is a limit point of C,, we know that C; = & n C,. So

Gy ={a,n <o}.
Hence,

C; = {0, |lim(n) A n <@ A A& < o,) [sup ¥, = sup My[¢ L plJ}-

Using 2.12(iv) we get at once,
Ci=n,"Ci=anC,. O

That completes the construction and study of C, in Case 1.

403
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Case 2. Otherwise.

We commence by defining a descending sequence of ordinals 7, ..., n, for
some n. First let n be least (< «) such that sup My[n U p] = f. Since we are not in
Case 1, 1 is a successor ordinal. Set #, = n — 1. Thus

@y = sup Mgy[n, U p] < B.

Now suppose that #,, ..., 5;-, are defined, where i > 1. Let n be least (< o) such
that sup My[n U p U {ny,...,n;—1}] = B. If lim(y), then n = i — 1 and the defini-
tion stops. Otherwise set #;, = n — 1. Then

@i =sup Mg[n; 0 p U {ng,...,m-1}]<B.

Since 1, > n, >#n; > ..., the definition stops after finitely many steps. We set

g=4q@)={ny,....,n} @=¢@)=max(@..., Q).

n

Set
Co=1{o|limHn) Aqg=a, AsupY, > o

A (3¢ S o) [sup Y, = sup My[E L p v q]]}.

Since we shall have no further need to refer to the y of Case 1, we now define y to
be the least ordinal such that M;[y U p U q]is cofinal in B. By definition of g, we
have lim(y).

2.19 Lemma.
(i) C, is closed in «;
(i1) if cf(a) > w, then C, is unbounded in a;
(iii) otp(C) < a.

Proof. Justreplace p by p U qin the proof of 2.15, 2.16, and 2.17, (also, y has a new
meaning now of course.) [

2.20 Lemma. Let & be a limit point of C,, say & = a,. Then:

(i) & falls under Case 2,
(i) mo(q(@) = q (i.e. q(@) = g);
(iii) sup[m,"@(@)] = ¢(x);
@iv) C;=an C,.
Proof. We prove (i)—(iii); (iv) then follows easily, much as in 2.18. In fact (iii) itself

follows from (i) and (ii) as we now prove. It suffices to show that for each
i=1,...,n

sup(m,"sup Mplif; U p U {fly, ..., M- 1}]] =
ie sup Mg[n; O p U {Ny, ..o, iz}l
SuanﬂMﬁ[ﬁi VP, .o} = SupMﬁ[’?i upu{ng,....mi-1}]
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In fact we prove that

T Mgl O p Oy, o} = Mg[n; O p U {ny, ..., m- 41}
We have
”oﬂMﬁ[ﬁi VP fimid = Y mupui{ng...,ni-}]
=M;gplmiopv{ng,....ni-1}],

by definition of Y,. But d(g) > sup Y, > ¢, so by definition of ¢,

0() > sup My[n; W p U {ny,...sMi-1}].
Hence

Mg po N, im 3] = My op o {ng,...oni- 1}

That proves (iii), assuming (i) and (ii). We must therefore prove (i) and (ii) to be
done. In fact the proof of (i) is contained in the proof of (ii) so we simply concen-
trate on (ii). We prove by induction on i that foreachi = 1,..., n, 7; is defined and
fi; = n;, and that if  is least such that My[n U p U {7, ..., 7,}]is cofinal in f, then
lim (7).

Suppose we have proved that forall j = 1,...,i — 1, 77; is defined and #7; = 7;.
Since sup Y, > ¢;, we have

sup Y, > sup Mg[n, U p U {ny,..., Mi-1}]
= supMsmivpu{ng....ni-1}]
=sup Y,[mup o {ng,....m-1}]

Applying 7, ', we get
B> M}f['h Up v {ﬁla---’ﬁi—l}]'

If we can show that § = sup Mg[(n; + 1) U p U {7, ..., ;1 }], then by definition
we shall have 77; = 7;.

Since & = a, € C,, there is a ¢ < & such that
sup Y, = sup Myl upuUq]
Hence as (¢) = sup ¥,
My[E v puql=MselCupuql]
But{ Upugqc Y,<s M;,,so

M;pléupuql=Y,[Eupuql
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Thus
sup ¥, = sup Y,[£ U p U gl.

Applying 7, ',

B =supMgéupuql
Now,
sup My[E U p U q]=supY,<d() <P,
and
sup My[(n; + Y p U q] =B,

so we must have n; + 1 > &£. Thus

B = sup Myl(n; + 1) v p L 4.
But {r’is Hit1seees ”n} <= n; + 1. Hence

ﬁ_= SUPME[(W; + 1) UﬁU {711""’ r’i—l}]
= sung[(nl + I)Uﬁ Y {r-ll,'--sﬁi—l}],

as required.
For each limit ordinal n < ¢ now, let &, < «, be least such that

sup Y, = sup My[¢, v p U q].
By 2.14, if ¢ = sup, ., ¢,, we have lim(¢),

sup Y, = sup(|J Y,) = sup My[¢ U p L 4],
n<e

and for each n < g, sup My[&, U p U q] < sup Y,. Since sup ¥, < 6(g), it follows
that £ is the least ordinal such that sup M;, [ U p U q] = sup Y, and hence that
¢ is the least ordinal such that sup Y,[¢ U p U ¢q] = sup Y,. Applying 7, !, we see
that ¢ is the least ordinal such that sup Mg[¢ U p U q] = B. Since lim(¢&), this
means that the definition of g stopped at stage n + 1, so § = q. The proof is
complete. [

To complete the proof of 2.1 now, we use the sequence (C,|a € S) to build a
I (E)-sequence. The following lemma sums up what we know about the sets C,.

2.21 Lemma.
(i) C, is a closed subset of a;
(i1) if cf(a) > w, then C, is unbounded in o;
(iii) otp(Cy < a;
(iv) if a is a limit point of C,, then &€ S and C;. O

The following lemma will enable us to avoid the class E on limit points of the
final [J(E)-sequence.
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2.22 Lemma. If o € E, then C, n A is bounded in .

Proof. Let = B(a), p = p(a), and adopt the notation used in the definition of C,
and C,. Since a € E there is a y > « and a parameter g < 7 such that:

(a) « is not semi-singular at vy;

(b) if @ € A N a, then either (&, g) jumps below «in M, or else & is semi-singular
at y with a parameter in M, [x U q].

By (a), y < B. Since sup, <, 6(7) = f and sup, ., o, = aand f = M o L p], we
can find an ordinal 4 < 4 such that

qu{r} € M40 [0, U P

Suppose that C, n 4 were unbounded in a. Then we could find a limit ordinal
n < 4 such that n > n, and a, € 4. By the definition of «,,

Mgl wplna =a,.

So as q<s Ma(,,) [oc,,up],
Ml wglna = a,.
So as < 6(’1)’

M, o, ug]lnoa=a,.

Thus by (b) above (with & = «,), , must be semi-singular at y with some parameter
in M, [, U q]. Consider the isomorphism

Tyt My gy = Msylo, © pl.

Let j = n, '(y), § = m, '(g). Using 2.4, we see easily that (since n, ' o, =id &)
a, is semi-singular at j with a parameter in M;[x, U g]. But by 2.11,
7 < &(n) = B(a,), so this is impossible. Hence C;, must be bounded in . O

2.23 Corollary. If o € S and @ < o is a limit point of C,, " A, then & ¢ E.

Proof. Let & < o be a limit point of C;, n 4. By 2.21(iv), C; =a4n C,. But & is a
limit point of C,n A and hence of C;n A, so supC;n A =4 So by 2.22
a¢E. O

Now define sets C; by;

Cr = C, —sup(C,n A), if sup(C,nA4) <a,
* " |the closure of (C,nA4), if sup(C,nA)=«.
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Clearly, the sets C, have the following properties:
(i) C; is a closed subset of a;
(i) if cf («) > w, then C} is unbounded in «;
(iii) otp(C;) < a;
(iv) faeC,,thende S, a¢ E, and C; = an Cj.

Define sets D,, o € S, by recursion, thus:

D — U{D,lyeCi}, if sup(Cy) = «;
* U{Dy|yeC;’}u{oc,,|n<w}, if sup(C)) < a,

where (o,|n < w) is any sequence cofinal in « with ag = sup (Cy).
As in IV.5.1, it is easily seen that (D,|« € S) is a [J (E)-sequence. The proof of
2.1 is complete.

Exercises

1. Using the argument from Chapter V.5 as a model, obtain a machine proof of
the Covering Lemma.

2. Obtain machine proofs of the results in Chapter VII concerning trees and large
cardinals in L.





