
Chapter IX

Silver Machines

ί. Silver Machines

Silver machines are a device for avoiding the use of the fine structure theory in
proving results such as D κ . The idea is as follows. In proving, say D κ , as we did
in Chapter IV, the main tool was the hierarchy of skolem functions hρnfAn. Of
course, these functions, and the properties of them that we made use of, were
obtained by our fine structure theory. But the fine structure theory itself was not
used in the proof of D κ . Any hierarchy of functions with similar properties would
suffice. As we shall see, it is possible to construct such a functioinal hierarchy
without using the fine structure theory. The idea is as follows.

We shall say that an ordinal α is *-definable from a class X of ordinals iff there
is an if-formula φ(v0,..., vn) and elements βί9..., βn,γ of X such that α is the
unique ordinal for which

The idea behind the machine concept is this. Suppose we were to define a *-skolem
function for L as a function h such that dom(/ι) ^ ω x O n < ω , ran(/ι) c On, and
whenever a is *-definable from X c On, then α e h"(ω x X<ω\ where we use X<ω

to denote (J Xn. In order to construct, say, a D -sequence, we might then go on
n<ω

to define a hierarchy of (set) functions convering to h, possessing some kind of
condensation property. And to a point, this is the idea behind the definition of a
Silver machine. But there are some differences. For instance, we shall not work
with a single skolem function h but rather an infinite family of functions hi9i < ω.
Although hi will, in some sense, correspond to the function h(i, —) of the above
sketch, the index i will not be the Gόdel number of a formula as was the case with
the skolem functions of the fine structure theory, and for different indices i the
functions ht may be quite different in structure. (Hence there is no point in trying
to combine them into one function.)

One remark concerning the use of the word "machine". This stems from the
motivation which led Silver to develop the concept in the first place. "Silver
hierarchy" would be a more suitable term for the structure we shall develop here
(which is not quite the same as the original), but we shall, of course, stick to the
established usage.
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A structure

is said to be eligible iff:

(i) X c On;

(ii) < is the usual ordering on X;

(iii) for each i, ht is a partial function from Xk(i) into X, for some integer k(i).

If N is as above and λ is an ordinal, we set

We sometimes write N^ instead of N.
If N, λ are as above and A ^ X n λ, Nλ[A] denotes the closure of A under the

functions of Nλ.
Let Nj = (X\ <, (h{)i<ωy be eligible structures of the same similarity type, for

j = 1, 2. We write N1 <α N2 iff X1 c X2 and for all i < ω and all xx,..., xk(i) e X\

A machine is an eligible structure of the form

M = <On, <9(hdi«o>,

which satisfies the following three conditions:

I. Condensation Principle. If ΛΓo Mλ, there is an α such that N ^ Mα.

II. Finiteness Principle. For each Λ, there is a finite set H c A such that for any set

III. Skolem Property. If α is *-definable from the set X c On, then α e M[X];
moreover there is an ordinal i < [sup(X) u α]+, uniformly Σx definable from
X u {α}, such that α e Mλ[X].

Some explanatory comments are perhaps in order here. In the light of our
introductory remarks, the inclusion of the Condensation Principle and of the
Skolem Property in this definition should come as no surprise. But why the
Finiteness Principle? This says that the hierarchy (Mλ \ λ e On) grows very slowly,
with only finitely many new ordinals being calculated at each stage. Hence events
of set theoretic interest will occur only at limit levels of the hierarchy. This fact will
be of considerable use to us, much as we used the fact that the structures Lα are
only easily handled when α is a limit ordinal (as we saw in Chapter II).

There are several ways to construct a machine, but in essence the idea is that
the machine should code the truth definition associated with *-definability. The
following devices are introduced in order to facilitate our proof of the Condensa-
tion Property for the machine.
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Suppose N = <X, <, (hi)i<ω} is an eligible structure, where X is a set. Let *
denote sup(X), and set X* = X u {*}. Define partial functions hf, i < ω, on X*
as follows:

(a) if s e Xm and ht(s) is defined, set hf(s) = Λ£(s);

(b) if 5 e Xk ( ί ) and h^s) is undefined, set hf(s) = *;

(c) if s e (X*)k(ί) contains *, set hf(s) = *.

Let N* = <X*, <, (/zf)i<ω, {*}>. Though essentially the same as JV, ΛΓ* has the
advantage (for us) that all of its functions are total, which is the reason for its
introduction.

Suppose that S is a first-order language. The infinitary language S* is obtained
from iS by allowing the formation of countably infinite conjunctions and disjunc-
tions of quantifier free formulas. A universal sentence of 5* is a sentence of the
form

Vvo...Vvnφ(vo,...,vn)

where φ is quantifier free. A universal theory in S * is a consistent set of universal
sentences of S # .

Suppose that S is the first-order language of some eligible structure, and T is
a theory in S*. We say that T is tx-categorίcal if the structure <α, < > has exactly
one expansion to an S-structure satisfying T. (The definition of satisfaction for S*
is quite straightforward.)

The following lemma indicates how the above concepts can assist us in prov-
ing that our machine has the Condensation Property.

1.1 Lemma. Let M = <On, <, (hi)i<(O} be an eligible structure. Let S be the lan-
guage of the structures Mf. Suppose there is a universal theory T in 5* such that:

(i) T is (α + l)-categorical for all α;

(ii) M * N T for all α.

Then M has the Condensation Property.

Proof. Let N <ι Mα. Since M* N T and T is universal, we clearly have AT* N T. The
domain of N is a set of ordinals, so there is a unique ordinal α and a unique
isomorphism π:N ^ N, where N = <α, <, $i)i<ω> i s eligible. But ΛΓ* N T, so as T
is (ά + l)-categorical, N* = Mf. Hence N = M5, and we are done.

We are now ready to commence the construction of our machine. As a first
step we define a certain well-ordering of O n < ω .

It is easily seen that the following rules do define a well-ordering of O n < ω . Let
s , ί e θ n < ω .

(i) If 5 is a proper subsequence of ί, then any permutation of s precedes

any permutation of t.

(ii) If 5 is a permutation of ί, then s and t are ordered lexicographically,

(iii) Ifs = ( α 1 ? . . . , α j , ί = (α 1,.. .,αM_ 1, jβ 1,.. ., jSm)andj? 1,.. ., jSm< <xn, then
any permutation of t precedes any permutation of s. (In case n = 1 here,
aι,..., απ_! is interpreted as the empty string.)
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We denote by < * the well-ordering of O n < ω so defined. For later use, we note
that for s, t e On < ω , max(s) < max(ί) implies 5 < * t. (Proving this should help the
reader to understand the definition of < * more fully.)

For 5 G On < ω , we denote by s the ordinal corresponding to s in the ordering
< *, that is

s = otp«{t |t <**},<*».

Define functions i^:Onn->On by setting Pn(s) = s. These are the "pairing
functions". Note that fj((αi,..., απ)) ̂  m a x ^ , . . . , αM).

Define partial functions Qt from On to On by

Q.(α) = ί α i ' i f α = P"^αi'' * *' α ^ a n d l ^ n;

1 [otherwise undefined.

These are the "pairing inverses".
Notice that

P = <On, <9(PX<ωΛQdt<ω>

is an eligible structure. Indeed, P satisfies two of the machine axioms, as we prove
next.

1.2 Lemma. P has the Finiteness Property.

Proof. Let λ be given. For some n and some oιί,..., an ^ λ,

λ = Pn((ocu...,ocn)).
Set

H = {a1?...,aM} nλ.

Clearly, if A c λ + 1,

P i+1[A]cξpni)uif]uμ}. D

1.3 Lemma. P has the Condensation Property.

Proof. We use 1.1. Let S be the language of the structures PA*. It is clear that, for
fixed n, m, there is a first-order, quantifier free formula φn,m(vl9...,vn,
vn+1,...,vm)ofS which says

"(Όl9...,vJ<*(υn+l9...,Όjn.

Let To be the following universal S# theory:

To = {Vx(x = * v x < *)} u {Qnn = *\neω}

κj{\fx1...xn(x1 = * v ... v xn = *^PM(x) = *) |neω}

u {Vx1...xny1...ym[<Pn.m{*,9)-+(Pn{X) < Pm(y) v Pm(y) = * ) |
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It is easily seen that To is (α + l)-categorical for all α. And clearly, P* N To for
all α. So by 1.1, P has the Condensation Property. D

In order to incorporate the Skolem Property into our machine, we introduce
a first-order language, Γ, appropriate for *-definability.

The basic symbols of Γ are as follows:

variables: vn (neω);

connectives: Λ , ~ i ;

predicates: = , e ;

constants: tφ

Λ (for certain φ, α described below);

quantifiers: 3α (αeOn).

If φ is a formula of Γ, the rank of φ, ρ(φ), is the least α such that:

(i) if 37 occurs in φ, then y < α;

(ii) if tf occurs in φ, then γ < α.

For each α and each Γ-formula φ of rank α, the language Γ has a constant ί£,
and this is the only occasion on which such a constant is defined.

The definitions of the language Γ and of the rank function ρ thus proceed by
means of a simultaneous recursion, which is easily seen to be well-defined.

The language Γ is interpreted in L as follows. The interpretation of ί£ is the
set { x e L J NLαφ(x)), and the interpretation of 3*vn is (3xeLα). Clearly, each
member of L is denoted by a constant ί£, and elements of L α + 1 are just the
interpretations of the constants ί£ as φ varies. For each α, Lα has a canonical name
in Γ, namely t{^o = Vo\ This name is denoted by la. Similarly, α has a canonical name,
t°n{Vo\ which we denote by oα.

The formal definition of Γ in set theory is as follows.

(x = y) = (ly^x^y (x, y variables or constants);

(xe y) = (2}^x^y (x, y variables or constants);

(φ A ψ) = Qy^φ^ψ (φ, ψ formulas);

(—i φ) = <4>^φ (φ a formula);

<α>^<n>^φ (φ a formula).

Thus each formula of Γ is a finite sequence of ordinals. Using the pairing functions
Pn, we may now associate with each Γ-formula φ a unique single ordinal φ.
Similarly, each constant c of Γ is assigned an ordinal c. If the ordinal α denotes
a formula or a constant of Γ, we denote that formula/constant by nα~".



388 IX. Silver Machines

1.4 Lemma.

(i) // φ is a subformula of φ, then φ < φ.

(ii) // ψ is (3av) φ(v) and t is tθ

γ, where y < α, then φ(t) < φ.

(iii) // φ is (tl\ = O or (tl\ e t*% and if ρ(φ) ^ max(α1 ? α2), then φ < φ.

Proof (i) If φ is a subformula of φ, then as sequences of ordinals, φ is a sub-
sequence of φ, so φ <*φ. Hence φ < φ.

(ii) This is a direct application of clause (iii) in the definition of <*.

(iii) For definiteness, suppose αx ^ α 2 . Thus max(φ) = ω + α2 + 1. Since
ρ(ι^) ^ α 2 , max(^) ^ ω + α 2 . Hence max(ι/f) < max(φ). So, as we re-
marked earlier, φ < * φ , giving φ < φ. D

Our machine will need to be able to handle the elementary syntax of Γ.
Accordingly, we make the following definitions.

For v < ω. ω, let kv be the constant unary function with value v. Let / be the
unary function I (a) = ω + α. Let J be the unary function J(α) = α + 1.

Let

N = <On, <, (PM)n<

The eligible structure N can clearly handle the besic syntax of the language Γ.

1.5 Lemma. N has the Finiteness Property.

Proof Given λ, pick n, o^,. . . , ocn so that λ = i j((α x , . . . , ocn)) and let
H = {<*!,..., αn} n λ. H is uniquely defined, and if 1̂ c A + 1, then

Λ Γ A + 1 [ X ] c J V λ p π A ) u H ] u {A}. D

1.6 Lemma. AT /zαs the Condensation Property.

Proof If λ ^ co. ω and I < J V i , then X = Nλ and there is nothing to prove. For
the case λ > ω. ω, we use 1.1. Let S be the language of the structures Nf. Let To

be as in the proof of 1.3. To will take care of the P-part of N, so what we must do
is extend To to a universal S* theory which uniquely characterises the functions
kv9 /, J. Let Tx be the following universal S # theory.

7j = Γo u {VxVy[kv(x) = kv(y) I v < ω. ω)

u {VxVyffix = •) Λ ( Λ M*)=*)]v [(*<•)

Λ Λ (*,(*) < fc»W) A [ V (K(χ) = y)v (K.Jx) < y)W

u {VxVy[[x = * Λ I(x) = * A J(x) = *] v [(x < *)

Λ [ V ((* = fevW) Λ (/(X) = * β +,(*)))

v (x > kω.Jx) A I(x) = x)] A [(x < J(x)) Λ ^ X V J(X)
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Clearly, 7\ is (α + l)-categorical for all α ^ ω. ω. Moreover, iVα* N 7\ for α ^ ω. ω.
Hence by 1.3, if X<a Na9 where α ^ ω. ω, then X ^ Na for some unique α. D

Now, L-truth for Γ-sentences is clearly definable. So we may define a function
F from ordinals to {0, 1} as follows:

F(α) =

1, if α = φ where φ is a true sentence of Γ;

0, iΐ (x = φ where φ is a false sentence of Γ;

otherwise undefined.

We may now define functions G, H from ordinals to ordinals by:

G(α) =

if α = (3δvφ(v))A and 3*ϋ<jφ) is true and ί* is least

such that y < δ and φ{ry) is true;

otherwise undefined.

(β, if α = φ(f)Λ and β is least such that φ(oβ) is true;

[otherwise undefined.

Set
M = <On, <, (Pn)n<ω, (Qλ< ω , (k v ) v ^ ω . ω , /, J, F, G, Jf>.

Clearly, M is an eligible structure. We show that M is a machine.

1.7 Lemma. M has the Finiteness Property.

Proof. The proof of 1.5 is still valid. D

1.8 Lemma. M has the Skolem Property.

Proof Let α be *-defϊnable from X = {βί9..., βn, y\ α being the unique ordinal
such that \=Lγφ(d, βu ..., βn) where φ is some ^- formula . Obtain the formula
Φ(vo) of Γ from φ(v0,..., vn) by replacing vt by o^., for i = 1 , . . . , rc, and each
quantifier 3v by 3yf. Clearly, if ί is a constant of Γ, i/f(ί) will be a true sentence of
Γ (in L) iff the interpretation of t in L is α.

Let <S = ψ(vo)
A. Notice that δ is computable from βl9...,βn, y using the

functions of M (in fact the functions of N). Let

λ = svp{δ9βί9...9βn9γ9<x}.

Clearly, λ < suppf u {α})+, and λ is (uniformly) Σί definable from X u {α}. Then
δ E Mλ[X\ But H(δ) - α. Hence α e MA[X], as required. D

1.9 Lemma. M /ιαs ί/ze Condensation Property.

Proof If A ^ ω.ω and X o M λ , then by virtue of the functions fcv, we have
X = Mλ9 so there is nothing more to prove. For the case l ^ ω . ω w e use 1.1. Let
S be the language of the structures Mf. Let Tx be the universal S* theory defined
in the proof of 1.6. As we saw in 1.6, 7\ will take care of the ΛΓ-part of M. What
we must do now is extend 7\ to a universal theory T in S* which characterises
uniquely the remaining functions of M.
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Notice first that the functions F, G have the following recursive definitions (by
simultaneous recursion for F and G):

[F(*) = *] Λ Vx[F(x) = 0 v F(x) = 1 v F(x) = *]

Λ Vα[F(α) = l < - φ = (ί* = tt)A Λ F((Ψv)(φ(v) <-* φ(v))A) = 1]

v [α = (tζ = tt)A Λ v < τ Λ F((Ψv)(ψ(v)<->velv A φ(v))A) = 1]

v [α = (if = ί*)Λ Λ v < τ Λ F((Ψv)(φ(v)+->v<Ξlv A φ(v))A) = 1]

v [α = (tζ e ί t ) Λ Λ F((3vί;)(ιA(ί;) Λ (V v w)(wG^φ(w))) Λ ) = 1]

Λ (Ψw)(w E v<r+w elv A φ(w)))A) = 1]

v [α = (tφ

τ E φA A v < τ A F((3vv)(ιl/(v)

v [α = (φ A φ)A
 A F(φ) = 1 Λ F(φ) = 1]

v[oc = (-nφ)A AF(φ) = 0]

G(*) = * Λ VαVjS[G(α) = β^(χ = (3vι;φ(i?))Λ A β = (ίf)Λ Λ τ < v

Λ F(φ(tt)A) =lA(Vy<β)(y = tθ

ιAi<v^ F(φ(tθy) = 0 ] .

Using 1.4, it is easily seen that the above definitions are sound. The function H has
the following definition:

[H(*)=*] A VαVβ[#(α) = β<->a = φ(v)A A F(φ(oβ)
A) = 1

A(Vy<β)(F(φ(oγy) = 0)].

Roughly speaking, T will consist of 7\ together with the above definitions of
F, G, H. That T will be (α + l)-categorical for all α ^ ω. ω and that M* will be a
model of T for all α ^ ω. ω is clear. What we need to check, though, is that it is
possible to write the above definitions as universal sentences of S*.

The appearance of the constants 0,1 causes no problems, since the functions
kθ9kι yield these values for all x φ *. And the functions of N also enable us to
handle the passage from formulas to ordinals and back again. For the passage
from formulas to ordinals this is clear. For the reverse passage, considering the
definition of F as an example, we may commence the F(oc) = 1 clause thus:

F(α) = !<-> V [« = PnlQM, •••> G»(«)) A . . . ] .
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For each α which denotes a formula there will be a unique n such that
α = i l (βi(α), . . . , QM\ a n d (QM, , β»(α)) will be Γ α Ί , so the relevant disjunct
in the above will deal with n α ~". Allied to this is the classification of a formula into
its logical type. But there are only a finite number of types, and so we may form
a disjunction over these. We leave it to the reader to check the fine details now,
and declare the lemma proved. D

That completes the proof that M is a machine.

2. The Combinatorial Principle

We use the machine constructed above in order to prove the combinatorial
principle D from V= L. More precisely, we prove the following theorem:

2.1 Theorem. Assume V= L. Let A be a class of limit ordinals. Then there is a class
E <Ξ A such that:

(i) if K > ω is regular and A CΛK is stationary in K, then E n K is stationary

in κ\

(ii) Π(E) holds. D

We recall that D (E) says that there is a sequence (Cα | α e S), where S is the class
of all singular limit ordinals, such that:

(i) Cα is a closed unbounded subset of α;

(ii) otp(Cα) < α;

(iii) if α < α is a limit point of Cα, then α e S, α φ E, and Q = α n Cα.

Our proof of 2.1 using the machine M will be closely modelled upon the fine
structure proof in VI.6. In one aspect the machine proof is better: it is uniform on
α, avoiding the necessity of looking separately at different cases, which was a
feature of the fine structure proof. With the machine, the analogue of the most
difficult case in VI.6 works in all cases.

We assume V= L from now on. M denotes the machine constructed in
section 1. When we use the machine, a finite set of ordinals will often be referred
to as a parameter. Since we may identify finite sets of ordinals with members of
O n < ω in a canonical manner, the well-ordering < * of O n < ω gives us a well-
ordering of all parameters.

Let α be a limit ordinal, β > α. We say that α is singular at β if there is a
parameter p c β and a y < α such that Mβ[y u p] n α is cofinal in α.

2.2 Lemma. If oce S there is a β < α + such that α is singular at β.

Proof Let γ = cf(α), and let / be the < L-least map from γ cofinally into α. Let
δ < α + be such that fe Lδ. Set p = {α, δ}.

For ξ < y, f(ξ) is the unique ordinal ζ such that NLό "ζ is the value at ξ of the
<L-least map from cf(α) cofinally into α". So for each ξ < α, /(£) is *-definable
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from {ξ, α, δ}, and by the Skolem Property there is a β(ξ) < [max(/(ξ), ξ, α, (5}]+

such that /(£) G M^ }[{α, (5, f}]. Let β = supξ<yβ(ξ). Since 0(ξ) < α + for all ^ < y
and y < α, we have β < a + . Also, for each ξ < y, /(£) e M^[{ξ, α, δ}]. Hence
ran(/) c M^[y u/?]. Thus M f̂y u /?] n α is cofinal in α, and we are done. •

Let α be a limit ordinal, β > α. Let us say that α is semi-singular at β iff there
is a parameter/? c β such that whenever/? c X <ι M^ and I n α i s transitive, then

X n α = α.

2.3 Lemma.

(i) // α is singular at /?, ί/ierc α is semi-singular at β.

(ii) // cf(α) > ω and a is semi-singular at β (with parameter /?), ί/zerc a is singular
at β (with parameter /?).

Proo/. (i) Let /? ^ jS be a parameter and let y < α be such that M^ [y u /?] n α is
cofinal in α. S e t p ' = p u { y } . We show that α is semi-singular at jϊ with parameter
/?'. Let /?' c X <] M^ be such that I π α i s transitive. Since y e X, we have y c j .
Soas J < M^, we have Mβ[y u /?] ^ X. Hence I n α i s confinal in α. Thus as
I n α i s transitive, we must have X n α = α.

(ii) Let α be semi-singular at jβ with parameter/?. By recursion, define substruc-
tures Xn<3 Mβ and ordinals αM ̂ ζ α is follows.

Xo = Mβ[p\; cc0 = sup(X0 π α);

X n + 1 = M^[απ u/?]; α Λ + 1 = sup(Xw + 1 n α).
Set

X ω = 1J XM, α ω = s u p π < ω α M .

Clearly, Xω^ Mβ and X ω n α = α ω . Since p ^ Xω therefore, we must have
Xω n α = α, i.e. αω = α. Since cf(α) > ω, it follows that an = α for some n < ω. Let
ft be the least such. If n = 0, then M^ [0 u /?] n α is cofinal in α, and if n > 0, then
α π + x < αM = α and Mj3[αn_ t u p] n. α is cofinal in α, so in either case α is singular
at jS (with parameter /?). D

Let y < (x ̂  β. Let /? ^ jS be a parameter. We shall say that (7, /?) jumps below
cc in Mβ iff Mβ[y u /?] n α φ y.

2.4 Lemma. L^ί oceS, β^oc, p^βa parameter. The following are equivalent:

(i) α is semi-singular at β with parameter /?;

(ii) /or α/Z 7 < α, (y,p) jumps below cc in Mβ.

Proof, (i) -• (ii). Let y < α and set X = Mβ[y u /?]. Suppose X n α = y. Then since
/? c χ < ι M^ and y is transitive, we have y = X n α = α, which is absurd. Hence
X n oc ^ y, proving (ii).

(ii) -> (i). Let /? ^ X<i Mβ be such that X n α is transitive. Set y = X n α. Sup-
pose y < α. Then Mβ[y u /?] n α Φ y. But y u /? c X<π M^, so M^[y u /?] c X9

and we have X n α φ y, a contradiction. Hence y = α, proving (i). D
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The class £ of 2.1 consists of all ordinals cce A such that for some y ^ α and E
some parameter q^y.

(i) α is not semi-singular at y;

(ii) if α e A n α, then either (α, g) jumps below α in M y or else α is semi-singu-

lar at y with a parameter in My[α u g].

2.5 Lemma. Let κ> ωbe a regular cardinal, and assume that A ΓΛKIS stationary
in K. Then E ΓΛK is stationary in K.

Proof. Let C be a club subset of K. We show that C n E φ 0. Let /: K -• TC be C
defined by

/(α) = the least element of C greater than α. /

Then feLκ+ so for some ordinal θ <κ+, f is the θ-ih element of L in the θ
well-ordering < L . Let ρ < κ+ be such that ρ > 0 and (say) Lρ is a model of Z F " . ρ
By absoluteness,

/ = [the 0-th element of L in the ordering < L ] L p .

Let α be, if possible, the least ordinal in A n K such that α

(i) Mκ+ [α u {θ, ρ}] n K = α;

(ii) if /? c Mκ+ [α u {θ, ρ}] is a parameter, then α is not semi-singular at κ +

with parameter /?.

We show that α is well-defined here. Define a chain

by recursion, as follows. Let Xo<3 Mκ+ be such that θ,ρeX0 and
α 0 = Xo n K: G K:. If Xv<ι Mκ+ is defined and αv = Xv n K e K, let X v + x<i M κ + be X,
such that α v e α v + 1 = X v + x n K EK. If lim(v) and X^ is defined for all η < v and
such that aη = Xη nicEK for all η < v, let Xv = (J X^, αv = sup^< vα r /. Since

K > ω is regular, this definition causes no difficulty. Since {αv | v < K} is club in K,
we can find a v < / c such that lim(v) and α v e i n / c .

Since α,, u {0, ρ} c X^<i Xv<cι M κ + for all 77 < v, we have

But Xv n Λ: = αv. Thus

Mκ+ [αv u {0, ρ}] n K: = αv.

Thus αv satisfies condition (i) above.
Now suppose that p c M κ + [αv u {θ, ρ}] is a parameter. For some η < v,

/> c M κ + [α, u {θ, ρ}]. Thus j9 c χη^ Mκ+, and

X^ n αv = X^ n K: Π αv = αn < αv.
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Thus αv is not semi-singular at κ+ with parameter/?. This shows that αv satisfies
condition (ii) above.

It follows that α is well-defined, and indeed that α ̂  αv.
Now let

Then
π Γ α = id \ot and π(α) = K.

θ, $, q Let θ = π~ι(θ), ρ = π~1(ρ\ and set q = {θ, ρ}. We show that y, q satisfy the
definition of E for α. Notice that y = My[a u q].

Suppose that α were semi-singular at y. Then for some parameter/? ^ y, α will
be semi-singular at y with parameter/?. Let δ < α. Then by 2.4, My [(5 u /?] n α φ 5.
Applying π, and using the fact that π f α = id ί α, we have Mκ+ [δ u π(/?)] n α φ 5 .
Thus, whenever (5 < α, (£, π(/?)) jumps below α in M κ + . So by 2.4, α is semi-singular
at κ+ with parameter π(/?). But π(/?) c π"y = Mκ+ [α u {0, ρ}], so this contradicts
the choice of α. Hence α is not semi-singular at y.

Now let α e A n α be such that (α, q) does not jump below α in M r Thus

My[ΰκj q\n OIL = a.

Applying π and using the fact that π \ α = id f α, we get

Mκ+ [α u {θ, ρ}] n α = α.

Using property (i) of α we get

Mκ+ [α u {θ, ρ}] n K — α.

So by the minimality of α there is a parameter/? c Mκ+ [ά u {θ, ρ}] such that α is
semi-singular at κ+ with parameter/?. Let (5 < α. By 2.4,

Mκ+ [ ί u p ] n α φ ί .

Applying π " 1 ,

So as δ < α was arbitrary, 2.4 tells us that α is semi-singular at y with parameter
π~ *(/?). Since π-1(/?) c My[d u ^], this completes the proof that OCE E.

We obtain the contradiction which proves the lemma by showing that αeC.
Let v < α. Then /(α) is definable from v, θ in Lρ. Hence /(v) is ^-definable from
{v, θ, ρ}. So by the Skolem Property for M,/(v)eMκ +[αu{θ,ρ}]n/c = α.
Hence fa^u. Thus by definition of /, α is a limit point of C Hence αeC, and
we are done. D
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As a first step towards the construction of a D (E)-sequence, we construct a
sequence (Cα | α e S) such that:

(i) Cα is a club subset of α;

(ii) if α is a limit point of Cα, then δίe S and Q = α n Cα.

Let α £ S. By 2.2 and 2.3, we may define β(μ) as the least ordinal β such that β(oc)
α is semi-singular at β. Let /?(α) be the <*-least parameter p such that α is /?(α)
semi-singular at β(a) with parameter /?.

2.6 Lemma. β(α) is α limit ordinal

Proof. Let β = β(oc%p = p(oc). Suppose that β = λ + 1. By the Finiteness Property
for M there is a finite set H c A such that for any set A c β.

(*) M^[A] c M A p n Λ) u ff] u {A}.

Set q = p u /ί. We show that α is semi-singular at λ with parameter q, thereby
contradicting the definition oϊβ(oc) (which is greater than λ), and hence proving the
lemma.

Let q c X < i M λ , X n α transitive. Set 7 = M^[X]. Since 2 < β, we have

But by (*),

Hence either Y= Mλ[X] or else 7 = M λ[X] u {λ}. In either case we have

But X<α MΛ, so MΛ[X] = X, and we therefore have Yn α = X n α, so Γ π α is
transitive. But /? c y<α Mβ, so this means that Yn α = α. Hence X n α = α, as
required. D

2.7 Lemma. Let oce S, and set β = β(oc%p = /?(α). For ^v^ry y < α ί/zer̂  isaδ < β
such that (y,p) jumps below cc in Mδ.

Proof. Let γ < α. By 2.4, (y,^) jumps below α in M^; i.e. Mβ[y u /?] n α φ y. So for
some ordinal & y < ξ < α, we have ξeMβ[γu p\ Let ξ l 9 . . . , ξn be a finite se-
quence of ordinals such that ζn = ξ and for each i, either ^ e y u /? or else ξt is
obtained from ξί,...iξi_ί by an application of an M-function. By 2.6, β is a limit
ordinal, so we can find & δ < β such that δ > max(/?), ξ l 5 . . . , ξ π . Clearly,
£ G M*[ξi,. . ., ξB], so Mδ[y u /?] n α + y, as required. D

2.8 Lemma. Let α e S , and set β = β(a),/> = p((x). Then β = Mβ[oc u/7].

Proo/. Let X = Mβ[oc up]. Since I < M^, the Condensation Property for M
gives us a unique π and a unique λ such that π: X ^ M λ . Clearly, π fα = id \<x.
Since X = X[α u p], we have, applying π and setting g = π"/?, A = MA[α u q\ But
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λ ^ β and by an easy isomorphism argument, α is semi-singular at λ, so λ = β.
Again, the same easy isomorphism argument shows that α is semi-singular at A
with parameter q, so as q < *p we have q = p. Thus β = Mβ[ocv p\ as stated. D

2.9 Lemma. Let oce S, cf(α) > ω, and seί β = β(<x),p = p(μ). Then for some θ < a,
Mβ [θ u /?] is cofinal in β.

Proof. By 2.3(ii) there is a 0 < α such that M ^ u / ? ] n α is cofinal in α. We show
that Mβ [θ u p] is cofinal in /?. Suppose not, and pick δ < β such that

β

Let y < α. By 2.4, M [̂y u /?] n α Φ 7. If 7 ^ 0, we have M^[y u p]^ Mδ[y u p\
so M5[y u p] n α + 7. And if 7 > 0, then Mβ[θ u p]^ Mδ[θ u p]^ Mδ[y u p], so
as M^P? u p] n α is cofinal in α, M [̂y u /?] n α + 7. In either case, therefore, (7,/?)
jumps below ocinMδ. Since 7 < a was arbitrary, 2.4 tells us that α is semi-singular
at (5, contrary to (5 < β. D

We are now able to define Cα, α e 5 to satisfy conditions (i) and (ii) specified
above.

β,p Fix α e S, and set /? = β(oc), p = /?(α). We define increasing, continuous se-
(5(v), αv quences of ordinals, (<5(v) | v < λ\ (α v | v < /I), for some limit ordinal A =ξ α, by

recursion, as follows.

(5(0) = α0 - 0;

(5(v + 1) = the least δ ^ β such that αv u p ^ (5 and (αv,^) jumps below

α in M^;

α v + 1 = the least 7 < α such that (y,p)

does not jump below α in M $ ( v + 1 ) ;

(5 (η) = sup v < „ δ (v), if lim (η)

a, = sup v < r / a v ,

The definition breaks down when an ordinal λ is reached for which δ(λ) ̂  β or
α A ^ α.

Note that by continuity, for limit η, (ocη,p) does not jump below α in Mδ(η).
We show that (<5(v) | v ^ λ) is increasing. Suppose δ(v + 1)< 5(v). Since (αv,/7)

jumps below α in M 5 ( v + 1 ) , it follows that (αv,/?) jumps below α in M a ( v ) . This
contradicts the properties of αv. Hence <5(v) < δ(v + 1).

Next we show that for limit r\, aη is the least 7 ^ α such that (7, />) does not jump
below α in M ί ( l / ), just as is the case at successor stages. We prove this by induction
on η. Suppose 7 < ocη were such that (y,p) does not jump below α in Mδ{η). Pick
v < η such that αv > 7. Then as δ(v) < δ(η\ Mδ(v)[y u /?] n α = 7. By definition if
v is a successor ordinal, and by induction hypothesis if v is a limit ordinal, this
implies that αv ̂  7, contrary to the choice of v. This proves the result.

We now show that (αv | v < λ) is increasing. Well, we clearly cannot have
α v + 1 = αv. But if α v + 1 < αv, then by the properties of αv, (αv + 1,/?) must jump
below α in M 3 ( v ) , and hence also in Mδ{v+ υ , contrary to the known properties of
α v + ! . Hence αv < α v + j .
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Now, if δ(v) < β and αv < α, then by 2.7, δ{v + 1) < β, so by 2.4, α v + 1 < α.
Hence lim(Λ). Suppose (5 (A) < β. Then by 2.4, αA < α, which contradicts the choice
of λ. Thus (5(/l) = β. It follows that αA = α. For if α^ < α, then by 2.4, (αA,/?) jumps
below α in M 5 ( A ) , contrary to the properties of αΛ, δ (λ).

We set

a club subset of α. We shall show that if α is a limit point of Cα, then α e S and
Q = α n Cα. But before that, we note for later use that as ((5(v) | v < λ) is strictly
increasing and cofinal in β and (αv | v < λ) is strictly increasing and cofinal in α, we
have:

2.10 Lemma. cf(β(α)) = cf(α). D

For η < λ, now, set

Cα

Yη

Since Yη<\ Mδ(η), the Condensation Property gives an isomorphism

71 * J^ί ι — Y

Let n-\p)=pn. Notice that πη\aη = id \ocη.

2.11 Lemma. Let η < λ, lim^). Then ccηeS and β{aη) = ψ(η), p{ocη) = pη.

Proof. We show first that ocη is semi-singular at ψ(η) with parameter pη. By 2.4 it
suffices to show that for all y < απ, (y,pη) jumps below ccη in Mφ{η).

Let y < aη. By the properties of α,,

Combining these two facts gives

But aηu p ^ Yη<3 Mδiη). So we get

Applying π~x gives

as required.
Since aη is semi-singular at φ(η\ we must have ocη e S, of course, so the first part

of the lemma is proved.
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Suppose that β(aη) φ ψ(η). Then by the above, β(<xη) < φ(η). Since
δ(η) = supv<f7<5(v) and Yη = \J YV9 we can pick v < η such that δ(v) > πη(β(<xη)) and
πη{p{oin)) s Yv.

Now, (αv,/?) does not jump below α in M 3 ( v ) , so

Mδiv)[ccvup]nocη = αv.

But πη(p(oίη)) c yv = Mδ ( v )[α v u /?], so it follows that

M 5 ( v )[α v u ^(/?(a,))] n â  = av.

Thus as δ(v) > πη(β(ocη%

Mπrliβ{ari))[ccv u π ^ ί α , , ) ) ] n ccη = α v .

But clearly,

α, u π^ία,)) s π / M ^ ^ ^ i MXi|(/l(βf |)).
Hence

(π/'M^^)) [αv u π^OKα,))] n α̂  = αv.

Applying π " 1 ,

()]naη = α v .

But av< (xη. So by 2.4, α̂  is not semi-singular at jS(α )̂ with parameter ^(α^). This
is absurd, of course. Hence β(ocη) = φ(η). It follows at once that p(aη) < *pη.

Suppose that/?(αί/) <*pη. Then πη(p(aη)) <*p. So by definition of/?, α is not
semi-singular at β with parameter πη(p(aη)). So by 2.4, there is a y < α such that

M^[y v πη(p(ocη))] n oc = y.

Suppose first that y < ocη. By the above, we get

So as ocη u πη(p(ocη)) <Ξ

Applying π,"1,

But ^(f/) = ^(α^), so by 2.4 we have a contradiction.
Now suppose that y ^ α,. By 2.8 we have

pη c
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Applying πη9

p^Mδ{η)[aηκjπη(p((xη))l

Hence

p<Ξ=Mβ[aηvπη(p(ocη))].

So as aη =ζ 7,

p^Mβ[yu πη(p(ocη))].

Thus

Mβ[y u/?] <= M ^ y u πη(p(<xη))].

So by choice of γ,

Mβ

This contradicts 2.4. Hence we must have p(ccη) — pη, and the proof is com-
plete. D

2.12 Lemma. Let η < λ, lim(^). Set a = ccη9 β = β{oίη), p = p(ocη), and define I, η, α, β,p, I
(5"(v) I v < I), (άv I v < I), (Γv I v < I) from α just as λ, (δ(v) \ v < λ\ (αv | v < λ\ δ(v), αv, Fv

(Yv I v < λ) were defined from α above. Let π = πη. Then for all v < λ: π

(i) αv = αv;

(ii) π(5"(v + 1)) = δ(v + 1);

(iii) π"MΈ{y) = M ί ( v ) n Y,;

(iv) π 'T v = 7V.

Proo/. We first of all prove (i)-(iii) by a simultaneous induction on v.
By 2.11 we have:

π'.Mjj^ Yη = Mm[xvp], π(p)=p, π pα = id \δί.

Since α 0 = α 0 = 0 and δ(0) = δ(0) = 0, the first step in the induction is trivial.
Limit stages are immediate by continuity. So assume now that the result holds at
v < 1 Set δ = δ(v + 1), δ = π(δ). We prove that δ = δ(v + 1), α v + 1 = α v + 1 . Our
proof of the first of these equalities will also yield π"M% = Mδ n Yη.

Note that by definition of δ.

Applying π to άv u p c δ gives αv u p c ^. Also, we have

M^[άv u ^ ] n α φ α v ; Mδ-[αv+ x u ^ ] n α = α v + x ,

so as α v + 1 < α = ccη, we conclude that
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Applying π ϊ δ gives

Mδ[ocv up]n ocη φ αv.

Thus δ(v + 1) < <5. We show that δ ^ δ(v + 1) as well. We have

Mδ(v+1)[ocv u φ α φ α v ; M < 5 ( v + 1 ) [ α v + 1 u/>]n α = α v + 1 ,

so combining these two results gives

Mδ{v+1)[<zv u / ? ] n α v + 1 φ α v .

Thus for some ξ e o t v + 1 , ξ > α v , w e have ξ e Mδiv+1)[ocv u /?]. Hence we can find
a finite sequence ξι,...,ξn of ordinals in δ(v + 1) such that ξn = ξ and for all
ΐ = 1,...,«, either £f e αv u p or else £f is the value of some M function at some
members of {ξ1 ?..., ξI _1}. Now,

ξί9...,ξne Mδ{v + υ [ α v u p] c M5(ί?)[α^ u /?] = 7n,

so we can define ξt = π~x(<^) for i = 1,..., n. Since αv < £„ = ξ < α v + : < <xη9 we
have αv < fΠ = ξ < α v + x < α^. And for each i, either ξ"f e αv u /> or else ξ{ is the
value of some M-function at members of {ξu..., |"f_i}. So, if we set
ρ = m a x d Ί , . . . , ξn), we have feM ρ - + 1 [αv u p\ Hence

^ ρ- + i[αv u ^ ] n α φ αv.

Thus by choice of δ, δ ^ ρ + 1. Now set ρ = π(ρ). Since ρ = max(f x,..., ξn% we
have ρ = m a x ( ^ , . . . , ξn) < δ(v + 1). Also,

ρ e Λί ί ( v + 1 ) [α v u/>] c Mδiη)[ocηup] = Yη.

But the function J(y) = γ + 1 is an M-function, and δ(η) is a limit ordinal, so it
follows that

ρ + 1 eMδ(η)[(xηvp]= Yη.

Hence π(ρ + 1) = ρ + 1. Since δ ^ ρ + 1, applying π gives δ < ρ + 1 < δ(v + 1),
as required.

We now have π{δ{v + 1)) = δ(v + 1). It follows at once that

π ' % + i) = Mδiv+1) n 7,.

We prove that α v + 1 = α v + 1 .
By definition,

(i) Mδ[ccv+1

(ii) y <α v + 1 -^M^[y u / ? ] n α v + 1 φy.
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Since (π \δ): M j < Mδ and otv+1 u p c Mδ n 7̂  = π"Mδ, (i) and (ii) give

(i)' Mrfα v + i u ^] n α = α v + ! ,

(ϋ)' γ <ocv+1^Mδ[y u ^ ] n α v + 1 + y.

Hence α v + 1 = α v + 1 .
That completes the proof of (i)-(iii). We are left with (iv).
Using (iii) we have

π"Ϋv = π"(MJ(v)[αv u p]) = (Mδ{v) n Yη) [αv u p\

But

Mδ{v)[<xvvp]= 7 v c y^

so we have

(Mδ(v) n yn) [αv up] = Mδiv)[ocv u/?] = Yv.

Thus πr'Ϋv = Γv, proving (iv). D

2.13 Corollary. Let ae S. If α is α /imiί /?omί of Cα, ί/zβw α e S and Q = a n C a.

Proo/. Using the above notation, Cα = {αv | v < λ} and for some limit ordinal η,
ΰ = oίη. By 2.12, Q = { α v | v < I } . But ( α v | v < A ) is strictly increasing and
s u p v < I α v = α = sup v < r / α v , so I = η and Q = α n C α . D

Our next step in obtaining D (E) is to thin down the sets Cα to sets C'a such that:

(i) Q is a closed subset of α;

(ii) if cf(α) > ω, then Q is unbounded in α;

(iii) if α is a limit point of Q , then α e S and Q = α n Q

(iv) o t p ( Q < α.

It will then be a fairly easy matter to turn (Cα | α e -S) into a D (E)-sequence.
Let α e S , and set β = jB(α), p = ^(α). Define A,(δ(v)|v < A), (α v |v < A), j8,/?

(7,11/ < λ\ (πη\η< λ), (φ(η)\η < λ\ (pη\η < λ) as before.

2.14 Lemma. Let ηr<η2< λbe limit ordinals. Then sup Yηι < sup Yη2.

Proof Since otηι < ocη2, 2.4 gives

Applying π ^ : M ^ ^ ^ Yη2 and using 2.11,

Hence

Af,up

But
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So as sup Yηi ^ δ(r\γ\ we have

Thus sup Yηι < sup Yη2. D

In defining C« there are two cases to consider. Let y be the least ordinal such
that Mβ [y u p] is cofinal in β.

Case 1. y is a limit ordinal.

Set

C; = {aη I limfo) Λ (3£ < «„) [sup 7, = supM,K u />]]}.

2.15 Lemma. C'a is closed in α.

Proof. By the continuity of the sequence {Yη\η < λ). D

2.16 Lemma. Let cf(α) > ω. Then C'Λ is unbounded in α.

Proof. Let tf = {sup Yη | lim(ιy)}, X = { s u p M ^ u /?] | δ < y}. Clearly, H and K
are club in β. (By 2.10, cf(β) = cf(α) > ω.) Hence H n Kis club in /?. So we can pick
arbitrarily large limit ordinals η < λ so that sup Yηe K. For any such η,
sup 1̂  = supM^[^ u p] for some δ < y. But

sup Mβ [(xη up]^ sup Mj ( l f ) [α, u p] ^ sup 7,.

Hence we can find such a δ *ζ <xη. Then α ^ e Q . D

2.17 Lemma. otp(Q) < α.

Proof. Define θ C^On by letting ^(α^) be the least ξ ^ (xη such that
sup Yη = supM^f^ u/?]. By 2.14, θ is order-preserving. But by definition of γ,
mn(θ) c y. Hence o t p ( Q ^ y. But by 2.9, y < α. D

2.18 L e m m a . Let δί be α limit point of C'α. Then α e S , α falls under Casel, and

Proo/. Since C'Λ ̂  Cα, we know at once that α e S . Let y be least such that
Mβ[y u ^] is cofinal in β. We must show that lim(y) and that Q = a n Q .

Let a = aρ. Then ρ is a limit of limit ordinals η < ρ for which ocηeCa. For each
such 77 there is a least ^ ^ ocη such that sup Yη = supM^f^ up]. Since the se-
quence (Yη\η < λ) is continuous, taking the supremum over all such η gives

supYρ = supMβ[ξ up],

where ξ = sup ξη. We show that γ = ξ. Since lim(ξ), this proves lim(y).
η

Let τ = sup 1 .̂ Then since τ = supM^[ξ u p], we have
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But τ ^ δ(ρ) < β. Hence

So

τ = supMδiβ)[ξup].

But

ξ u p c z YQ^MHQ).

So,

τ = sup Yρ[ξ u p ] .

Thus

Applying π " 1 ,

^ " =

Hence y ^ ξ. Suppose that 7 < ξ. Then for some η,y < ξη. Now,

So

u p ] = J5".

Applying π ρ ,

supy β K, u p ] = supyβ.

But

yβK,up] = M,te)K
Hence

Thus

But

supMβ[ξη u p ] = sup Yη < sup 7ρ,

so we have a contradiction. Hence y = ξ.
Since α is a limit point of Cα, we know that Cd = α n Cα. So

Hence,

Q = {α, I limfa) Λ ŷ < ρ Λ (3 ξtζ α,) [sup ?, = sup M^K u p]]}.

Using 2.12(iv) we get at once,

That completes the construction and study of C'a in Case 1.
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Case 2. Otherwise.
We commence by defining a descending sequence of ordinals ηl9...9ηnϊor

some n. First let η be least (< α) such that sup Mβ[η u p] = β. Since we are not in
Case 1, η is a successor ordinal. Set nγ = η — 1. Thus

φί = supMβ[η1vp]< β.

Now suppose that η1,..., ηt- x are defined, where i > 1. Let η be least (< α) such
that supMβ[η u p u {f/i,..., ηt-x}] = β. If lim(?/), then n = i — 1 and the defini-
tion stops. Otherwise set ηt — η — 1. Then

Since ^ x > η2 > η3 > . . . , the definition stops after finitely many steps. We set

q = q(ot) = {ηi,...,ηn}9 φ = φ(α) = max(φ l 9 . . . , φn).
Set

Q = {α̂  I lim(f/) Λ ̂  c α2 Λ sup ̂  > φ

A(3ξ^ ocη) [sup 7̂  = supM^K u p u q]]}.

Since we shall have no further need to refer to the y of Case 1, we now define y to
be the least ordinal such that Mβ[y u p u q] is cofinal in β. By definition of g, we
have lim(y).

2.19 Lemma.

(i) C'a is closed in α;

(ii) if cf(α) > ω, then C^ is unbounded in α;

(iii) o t p ( Q < α.

Proof. Just replace /? by p u qin the proof of 2.15,2.16, and 2.17, (also, y has a new
meaning now of course.) D

2.20 Lemma. Let a be a limit point of C& say α = αρ. Then:

(i) α falls under Case 2;

(ii) πQ{q(S)) = 4 (i.e. g(α) = 4);

(iii) sup[πρ>(α)] = φ(α);

(iv) q = α n Q .

/ We prove (i)-(iii); (iv) then follows easily, much as in 2.18. In fact (iii) itself
follows from (i) and (ii) as we now prove. It suffices to show that for each
i= l , . . . ,n,

{ήu ..., ̂ - J ] ] =

sup

s u p n^MjjirJi u p u {ήί9...,ήi-ί}] = supMfi[^u p u {ηί9..., ηt-



2. The Combinatorial Principle D 405

In fact we prove that

πQ"Mβ[ήi u p u {ήx,..., ^_ J ] - Mβ[ηt u /? u Oh,..., ^_ J ] .

We have

πρ

ffMp[ήi υpu{ηl9...9ήi-ί}]=Yβ[ηiupv{ηl9...9 f7i-i}]

= Mί(ρ)[l/;U/>U {»/i,..., ^ i - J ] ,

by definition of 1̂ . But (5(ρ) ̂  sup YQ > φ9 so by definition of φ,

<S(ρ) > sup Mβfoi up u 0? l 5 . . ., ^ - J ] .

Hence
M / i f c u p u f e ηt- J ] = M i ( e ) ^i u p u { l̂9..., ηt_ x}].

That proves (iii), assuming (i) and (ii). We must therefore prove (i) and (ii) to be
done. In fact the proof of (i) is contained in the proof of (ii) so we simply concen-
trate on (ii). We prove by induction on i that for each i = 1,..., n, Ϋ\i is defined and
ήi = ηh and that if η is least such that Mβ[η u p u {ή1,..., ήn}] is cofϊnal in β, then
lim {η).

Suppose we have proved that for all 7 = 1,..., ί — 1, ήj is defined and ή} = η^
Since sup YQ > φh we have

sup7ρ >

Applying π^ 1 , we get

β>

If we can show that β = sup Mβ[(ηι 4- 1) u ^ u {̂ ?i, ., ^-1}], then by definition
we shall have r\x = ηt.

Since α = OLQ e Ca, there is a ξ ^ α such that

Hence as δ(ρ) ̂  sup YQ9

Mβ[ξκjpκj q] = MHρ)[ξ vpvq].

But ξ u p u <j c yρ<α M Λ ( β ) , so

^ K U f̂] = 7ρK U ̂  U ^[].
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Thus
sup Yρ = sup Ye[ξ u / ι u ? ] .

Applying π " 1 ,

P= sup Mp[ξ vpvq].
Now,

sup Mβ[ξ u p u g] = sup 7ρ ^ <5(ρ) < /J,
and

sup M^fai + 1) u/? u q] = β,

so we must have ηt + 1 > £. Thus

But {^, f/i+!,..., >/„} <Ξ r}i + 1. Hence

β =

as required.
For each limit ordinal η < ρ now, let ξη < <xη be least such that

sup Yη = sup Mβ[ξη

By 2.14, if ξ = sup I | < βξ I f, we have li

sup Yρ = sup( (J i;) = sup M^K u /? u
η<ρ

and for each ?/ < ρ, sup M^K, u p u q] < sup 7ρ. Since sup Yρ ^ δ(ρ), it follows
that ξ is the least ordinal such that supM ί ( ρ ) [ ί u / ι u ^ ] = sup 7ρ, and hence that
ξ is the least ordinal such that sup Yρ[ξ u p u ^] = sup 1 .̂ Applying π ~ x , we see
that ξ is the least ordinal such that supM^[ξ ^ P u ί ] = P- Since lim(ξ), this
means that the definition of q stopped at stage n + 1, so q = q. The proof is
complete. D

To complete the proof of 2.1 now, we use the sequence (C'Λ \ α e 5) to build a
D (E)-sequence. The following lemma sums up what we know about the sets C'a.

2.21 Lemma.

(i) C'a is a closed subset of a;

(ii) if cf(α) > ω, then C'Λ is unbounded in α;

(iii) otp(Q) < α;

(iv) if α is a limit point of C«, then δίs S and Q . D

The following lemma will enable us to avoid the class E on limit points of the
final D (E)-sequence.
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2.22 Lemma. If oce E, then C'a n A is bounded in α.

Proof. Let β = β(oc),p = p(a\ and adopt the notation used in the definition of Cα

and C'a. Since oce E there is a y ^ α and a parameter g c -y such that:

(a) α is not semi-singular at y;

(b) if α e ,4 n α, then either (α, g) jumps below α in My or else α is semi-singular
at y with a parameter in My[α u #].

By (a), y < β. Since supη<λδ(η) = β and supη<λocη = <x and jβ = Mβ[oc u/?], we

can find an ordinal η0 < λ such that

Suppose that CanA were unbounded in α. Then we could find a limit ordinal
η < λ such that η ^ η0 and α̂  e 4̂. By the definition of ocη9

So as q^Mδiη)[otηupl

Mδiη)[ocηυq]ncc = cιη.

So as y < δ (η),

My [ccη u q] n α = α,.

Thus by (b) above (with α = α )̂, α̂  must be semi-singular at y with some parameter
in My[<xη u q]. Consider the isomorphism

Let y = π~x(y), q = n~x(q). Using 2.4, we see easily that (since π~ x ϊ α̂  = id \ <xη)
ccη is semi-singular at γ with a parameter in My-[α^u^]. But by 2.11,
γ < ξ(η) = β((xη), so this is impossible. Hence C'Λ must l3e bounded in α. D

2.23 Corollary. IfoceS and α < α is a limit point of C'a n A9 then α φ E.

Proof Let α < α be a limit point of Ca n A. By 2.21 (iv), Q = α n Q . But α is a
limit point of CanA and hence of Q n 4̂, so sup Q n A = α. So by 2.22
ά φ £ . D

Now define sets C« by;

; - sup (C; n A), if sup (C; n ^) < α,
C" λ the closure of (C'a nA), if sup (C; n A) = α.
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Clearly, the sets C£ have the following properties:

(i) C"Λ is a closed subset of α;

(ii) if cf (α) > ω, then C'ά is unbounded in α;

(iii) o t p ( Q < α ;

(iv) if α G C«, then α G S, α φ £, and Q = α n C«.

Define sets Dα, α G S, by recursion, thus:

fUWyeCa, if sup(CD = a;
* lU{D γ |yeCβ"}u{α 1 I | f i<ω} ) i f s u p ( Q < α ,

where (απ| n < ω) is any sequence cofϊnal in α with α0 = sup(Q).
As in IV.5.1, it is easily seen that (Da\ α G 5) is a D (E)-sequence. The proof of

2.1 is complete.

Exercises

1. Using the argument from Chapter V.5 as a model, obtain a machine proof of
the Covering Lemma.

2. Obtain machine proofs of the results in Chapter VII concerning trees and large
cardinals in L.




