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Chapter VI

The Fine Structure Theory

The basic ideas of the fine structure theory have already been outlined in I V.4. In
this chapter we develop rigorously the material sketched there. We commence
with a certain class of set functions - the rudimentary functions - and then, with
the aid of these functions we shall define a new hierarchy of constructible sets,
namely the Jensen hierarchy, (Jα | α e On). This hierarchy has all of the important
properties of the usual Lα-hierarchy, with the difference that each level in the
Jensen hierarchy has many of the properties of the limit levels of the Lα-hierarchy
(notably amenability). The Jensen hierarchy is thus a more convenient hierarchy
as far as a detailed examination of individual levels is concerned. Certainly it is
possible to carry out a comparable study of the sets Lα, but only at the cost of
some considerable (though in a sense "trivial") technical difficulties. Intuitively,
we may regard Jα as a slightly expanded version of Lα which is closed under simple
set functions such as ordered pairs, etc. This is not totally accurate (as we shall see),
but it should serve the reader well enough until a more complete understanding
is achieved.

ί. Rudimentary Functions

The definition of rudimentary functions has already been given in Chapter IV, but
is repeated here for convenience.

A function f:Vn-+V is said to be rudimentary (rud for short) iff it is generated
by the following schemas:

(i) f(xu...,xn) = xi (Ki<n);

(ii) f(x1,..., xn) = {xi9 xj} (1 ^ i, ^ n);

(iii) f(xί 9...,xJ = xi-xj (1 ^ U j<n);

(iv) f(xu ..., xn) = %i(x i , . . . , x j , . . . , gk(xl9 ., *„)),
where h,g1,...,gkare rudimentary;

(v) f(y, x2,..., xn) = (J g(z, x2> , xj, w h e r e g i s rudimentary.
zey

Notice that in the above definition we have made use of proper classes, which
is not strictly allowable in ZF set theory. There are two ways of avoiding this, both
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of relevance to our later development. Firstly, since any "rudimentary function"
from Vn to V will be built up from functions of types (i)-(iϋ) in the above list by
means of finitely many applications of the composition rules (iv) and (v), we could
replace any mention of the "function" by the LST formula which is implicit in the
construction of the function via these schemas. In other words, we are just making
use of our usual (and we hope familiar by now) conventions concerning proper
classes in ZF set theory (Chapter I). An alternative approach is to regard the " F "
in the above definition as being some set (e.g. a Fα) which is large enough to contain
all of the sets which we are interested in at any one time, in which case the
rudimentary functions defined are genuine functions (i.e. they are sets). Since the
untimate goal in set theory is to study the properties of sets, this second approach
is clearly adequate. Nevertheless we choose to take the "class function" approach
as basic for one important reason: it emphasises the uniformity of the rudimentary
functions; how their construction is quite independent of any particular set do-
main under consideration.

A similar situation has already arisen in Chapter II. When we studied the
Lα-hierarchy, we proved "global" results concerning the logical complexity of the
LST formulas which define the Lα-hierarchy, as well as "local" results concerning
the definability (using the language <gv) of the hierarchy within given levels of the
hierarchy (1.2.6 and 1.2.7 provide good examples of this parallel development).
Here, the rudimentary functions are used (instead of the language t£v) to define
the Jensen hierarchy of constructible sets: global results will be proved using class
rudimentary "functions" (which correspond to LST formulas), and local results
will be proved using set rudimentary functions (which are genuine sets, as are the
formulas of Ĵ V).

From now on, except for occasional remarks, we leave it to the reader to
supply the relevant "rigorisation" of our development in the appropriate fashion.

To continue with our definition then, if A is a class we say that a function
f:Vn-+V is rudimentary relative to A (A-rud for short) iff it is generated by
schemas (i)-(v) above and the schema:

(vi) / ( * ! } , , , , χ J = AπXi (1 ^ i ^ n).

lϊp is a set, we say that a function f\Vn^V is rudimentary in parameter p (or
simply rudimentary in p) iff it is generated by schemas (i)-(v) and the schema:

(vii) f(xι,...,xn)=p.

By a rudimentary definition of a rudimentary function / we mean a sequence
/o, ...,/„ of functions such that fn=f and for each i ^ n, f is obtained from
/0, ...,/•-1 by means of a single application of one of the schemas (i)-(v) above.
Similarly for an A-rud definition of an A-rud function and a rud in p definition of
a function rud in p.

A class R c Vn is said to be rudimentary iff there is a rudimentary function
/: Vn->V such that
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Similarly for an Λ-rud class and a rud in p class.
The following lemma lists some of the basic properties of rudimentary func-

tions. In each case, the simple proof is given in parentheses alongside the state-
ment of the result.

1.1 Lemma.

(1) The function id (the identity function) is rud. (By schema (i).)

(2) The function f(x) = \Jx is rud. (By schema (v) together with (1) above.)

(3) The function f(x, y) = xuy is rud. (f(x, y) = [j {x, y}9 so use schema (ii)
and (2) above.)

(4) The function f(xl9..., xn) = {xi,..., xn} is rud. (By schema (ii), the function
g(x1, ...,xn) = {xn} is rud for each n. But,

{x 1 , . . . , x B + 1 } = {xl9...,xn}v{xn+ί}.

So argue by induction on n, using schema (iv), together with (3).)

(5) The function f(xl9..., xn) = (xi , . . . , xn) is rud. (By definition,

(x 1 , . . . ,x π ) = {{xj, {xi,(x 2 ί . . .^π)}}

So argue by induction on w, using schemas (ii) and (iv).)

(6) The function fm(x) = m is rud for each meω. (We have:

/o(x) = 0 = x - x ; /1(χ) = l = {0}; /2(x) = 2 = {0,1}; etc.

So use schemas (iii) and (iv), together with (4), and proceed by induction on m.)

(7) The relations (x φ y) and (x φ y) are rud. (We have:

(xφj;)~{x}-)/*0;

(x + y)+-*(x - y) u (y - x) Φ 0.

The result is clear now in view of earlier results.)

(8) // f(y9 x) is rud, so is the function g(y9 x) = (f(z, x)\zey). (Use schema (v),
together with previous results and the identity

zey

(9) // f:V^V is rud and R ̂  V is rud, then g:V-*Vis rud, where we set

f(x), if R(x),

0, if - , R(x).
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(Let r be a rud function such that

Then

θW= U /(*)•)
yer(x)

(10) Let χR be the characteristic function of R. Then R is rud iff χR is rud. (If χR is
rud, then since

R is rud, by definition. Conversely, if R is rud, then χR is rud by (6) and (9).)

(11) R is rud iff-iR is rud. (By (10), since χR(x) = 1 - χ-, *(*).)

(12) The relations (x e y) and (x = y) are rud. (By (7) and (11).)

(13) (Definition by Cases) Let f: Vn^Vbe rud for ί =!„..., m. Let Rt c Vn be
rud for i = 1,..., m, and such that Rι n Rj = 0 for i +j and Rx u ... u Rm — Vn.
Define f: Vn-+V by

Then f is rud. (For each i = 1,..., m, set

/,(*), if Rι(χ)

0, if - i Rt{X).

By (9), each f/ is rud. But then / is rud, since

(14) // R(z, x) is rud, so is the function

f(y,x)=yn{z\R(z,x)}.
(Set

By (9), h is rud. Hence / is rud, since

f(y, x) = U A(z, ί).)

(15) Lβί i^(z, x) be rud and such that for any x there is at most one z such that
R(z, x). Then f is rud, where we define

(that zey such that R(z, x\ if such a z exists,

10, if no such z exists.
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(By (14) and the identity

(16) // R(y, x) is rud, so are (3z e y) R(z, x) and (Vz e y) R(z, x). (Let r be a rud
function such that

Then

(3zey)R(z,x)^{Jr(z,x)*(fr,
zey

so (3z G y) #(z, x) is rud. The second part now follows using (11).)

(17) The function f(x) = f]x is rud. (Use (12), (16) and (14) and the identity

f(x) = ([Jx)n{z\(Vyex)(zey)}.)

(18) The function f(x, y) = x n y is rud. (Because /(x, y) = f] {x, y}.)

(19) // Rt c Vn are rud for i = 1 , . . . , m, then S = Rx u . . . u Rm and

T= Rί n ... n Rmare rud. (Let rf = χR. for each i. Then

Tίx)^^^) u ... u rm(x) + 0.

The result follows easily now.)

(20) The functions (x)0 and (x)x are rud. (For example,

_ ί that ZE[JX such that (3 v e (J x) (x = (z, t?)), if such a z exists,
0 [ 0, if no such z exists.

Now use (15).)

(21) Define

that z E (J (J x swc/z ί/zαί (z, y) e x, z/ ί/zerβ is a unique such z,

[ 0, z/ ί/zβre Z5 no unique such z.

the function /(x,};) = x(y) is rud. (By Definition by cases.)

(22) The functions dom(x) and ran(x) are rud. (We have:

dom(x) = {ze{J{Jx\(3we{J[Jx)((w, z) e x)};

(23) The function f(x,y) = x x y is rud. (By the identity

xχy = U U {(">»)}•)
uex vey
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(24) The function f(x, y) = x \ y is rud. (By the identity

x Γ y = x n (ran(x) x y).)

(25) The function f(x, y) = x"y is rud. (Since x"y = ran(x \ y).)

(26) The function x~x is rud. (By definition,

x'1 = u"(x n(ran(x) x dom(x))), where

u(z) = ((z)li(z)0).) D

By now, the reader may well have observed that all of the results in the above
lemma are valid if we replace " rud" by " Σ o " . (In class terms, a function is said to
be Σ o iff it is of the form

{(y,i)\Φ(y,*)h

where Φ is a Σ o formula of LST. In set theoretic terms, a function / is said to be
Σ o iff there is a Σ o formula φ of i f such that for any x, y, if M is a transitive set
such that i c j e M , then

By 1.9.15, these notions are, in a sense, "equivalent".) However, it is not the case
that the class of rud functions is the same as the class of Σ o functions. As we shall
show presently, the rud functions form a proper subcollection of the Σ o functions.
Strange as it may at first seem, in the case of relations, the notions of being rud
and of being Σ o do coincide (as we prove later). The reason why there is no
paradox here is that, whereas a function / is Σ o just in case it is of the form
{(y, x) I Φ(y, x)}, where Φ is a Σ o formula of LST (so the fundamental concept is
that of a relation, functions being treated as simply special kinds of relation), a
function / is rud iff it can be built up using the schemas for rud functions (i.e. the
fundamental concept is that of a function, and relations are effectively identified
with their characteristic function).

In order to show that every rud function is Σ o , it is convenient to introduce
the following auxiliary notion.

Say a function f:Vn^>V is simple iff, whenever R(z, y) is a Σ o relation, the
relation R(f(x\ y) is also Σ o .

The following lemma shows that simplicity is characterised by two special
cases of the simplicity requirement.

1.2 Lemma. A function f:Vn-+V is simple iff:

(i) the predicate z ef(x) is Σ o ; and

(ii) whenever A(z) is a Σ o predicate, so too is (3z e/(x)) A(z).

Proof (->) Trivial, since (i) and (ii) are special cases of the simplicity requirements.
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(<-). Using (i) and (ii) we shall prove by induction on the logical complexity of R
that if R(z, y) is Σ o , so too is R(f(x), y).

(a) Suppose first that R(z, y) has the form (z = yt). Then

(Vz ef(x)) (z e yd A (VZ e yi) (z e/(*)).

By (i), the clause (Vz e j;̂ ) (z ef(x)) is Σ o , and by (ii) the clause (Vz e/(x)) (z e yd is
Σ o . Hence R(f(x)J) is Σ o .

(b) Now suppose R(z, y) has the form (z e yf). Then

By part (a) above, the clause (f(x) = z) is Σ o . Hence R(f(x% y) is Σ o .

(c) Suppose that R(z, y) has the form (yt e z). Then

This is Σ o by (i).

That takes care of all the primitive (i.e. atomic) cases.

(d) If R(z, y) has the form S(z, y) A T(Z9 y) the induction step is immediate.

(e) If R(z, y) has the form ~Ί S(z9 y) the induction step is also immediate.

(f) Suppose that R(z, y) has the form (3 u e yt) S(u, z, y). Then

R(f(*),9)~{3ue yd S(u,/($),$),

and the induction step follows at once.

(g) Finally, suppose that R(z, y) has the form (3u e z) S(u, z, y). Then

R(f(*)> J0<->(3" e/(x)) S(u, f(xl y),

and the induction step follows from (ii). D

1.3 Lemma. // / is rud, then f is simple. Hence all rud functions are Σ o .

Proof. Let / be rud, and let /0, ...,/„ be a rud definition of /. Using 1.2, we shall
prove by induction on i ^ n that f is simple. (Such a proof is said to be "by
induction on a rud definition of / ".)

It is clear that schemas (i), (ii) and (iii) for rud functions all give simple func-
tions. (In each case it is trivial to check conditions (i) and (ii) of 1.2.)

To handle schema (iv) we use the definition of simplicity. Let

f(x) = h(gί{x),...,gk(x)),
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where h,gί9...,gk are already known to be simple. Let R(z, y) be Σ o . Define S by

S(zί9..., zk9 y)*+R(h(zί9..., zk), y).

Since h is simple, S is Σ o . But

So, as gl9..., gk are simple it follows (in k steps) that R{f(x)9 y) is Σ o .
Finally, for schema (v) we use 1.2 again. Suppose that

f{y,x2,...,xn) = U 9(u9x29...9xJ9

uey

where g is known to be simple. Then

z ef(y9 x)^(3uey)(zG g(u, x)).

Since g is simple, by 1.2(i) the clause (z e g(u, x)) is Σ o . Hence (z e/(j;, x)) is Σ o .
Again, if A(z) is Σ o , then

(3z e/(y, x)) Λ(z)~(3 W e y) (3z e ff(u, Jc)) ̂ (z).

Since g is simple, by 1.2(ϋ) the clause (3z eg(u, x)) A(z) is Σ o . Hence
(3z e/(y, x)) A(z) is Σ o . The proof is complete. D

That the converse to 1.3 is false will follow from the following result.

1.4 Lemma (Finite Rank Property). Letf: F"-> V be rud. Then there is a peω
such that for all xl9..., xn,

rank(/(Xi,..., *„)) < max (rank (x j , . . . , rank(xπ)) + p.

Proof. By induction on a rud definition of /. The details are trivial. D

Consider now the constant function f:V-+ V defined by

/(x) = ω (all x).

By 1.4, / cannot be rud. But / has the Σ o definition

y =f(x)<^On(y) A lim(j ) Λ (VZ G y) (succ(z) v z = 0).

But as the next lemma shows, the graph of / (i.e. the set {(y, x) | y =/(χ)}) is rud.

1.5 Lemma. Let R c Vn. Then R is rud iff it is Σ o .

Proof. \{R is rud, then χR is rud, so by 1.4 χR is Σ o , so R is Σ o . Conversely, by 1.1,
parts (11), (12), (16), (19), the class of all Σ o relations is a subclass of the class of all
rud relations. D
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A useful consequence of 1.5 is that, because of 1.1 (14), if R(y, x) is a Σ o relation,
then the function

f(y,x) = {zey\R(z,x)}

is rud. We utilise this fact in our next, highly relevant result.
A class M is said to be rudimentary closed iff f"Mn c M for all rud functions

f:Vn^V{dλ\ή).

1.6 Lemma. Let M be a transitive set containing ω. If M is rud closed then it is
amenable.

Proof. Recall that a transitive set M is amenable iff:

(i) (Vx,yGM)({x,y}eM);

(ii) (VxeM)((JxeM);

(iii) ωe M;

(iv) (Vx, y G M)(x x y e M);

(v) if JR c M is Σ0(M), then (Vu e M ) ( K n w e M).

Assume that M is rud closed. By definition, the functions /(x, y) = {x, y} and
/(x) = (Jx are rud, so M satisfies (i) and (ii) above. And by the hypotheses of
the lemma, M satisfies (iii). By 1.1 (23), the function /(x, y) = x x y is rud, so (iv)
is valid. That leaves us with (v). Let R c M be Σ0(M). Suppose R is
Σjf ((p l 9.. .,/?„)). Let S be Σ^ such that

(VxeM) [Λ(x)

Since 5 is Σ o , it is rud (by 1.5). So by 1.1 (14), the function

f(u, x1 ?...,xπ) = M n {x|S(x, X!,...,xM)}

is rud. Hence SLSpί9 ...,pneM and M is rud closed,

«eM->/(M,/> 1,.. .,ίJeM.

In other words,

MeM->Mπl? e M ,

as required. (Notice that we have here made use of "localised" versions of 1.5 and
1.1.) D

The converse to 1.6 is false. But by strenthening amenability clause (v) a little,
it is possible to obtain a complete characterisation of rud closure in amenability
like terms. We leave this as an exercise for the reader. (Hint: See what is required
in order to prove the "converse" to 1.6.)

The rudimentary closure of a set X is the smallest rudimentary closed set Y
such that X ^ Z It is immediate that the rudimentary closure of X is of the form

{/(x) |/ i srudandxeX}.
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1.7 Lemma. // U is transitive, then the rud closure of U is transitive.

Proof. Let W be the rud closure of U. We prove by induction on a rud definition
of / that for any rud function /: Vn -> V and any xx, ...,xne W,

CZWΛ...Λ TC(xn) c= W~

Since U is transitive and, as noted above,

W= {/(x)|/is rud andxeί/} .

this proves the lemma.
If / ( * ! , . . . , xn) = xi9 (*) is a propositional tautology.
If f(x1,..., xn) = {xi9 Xj}, then

TC(f(x1,..., xj) = Γ C f e , x,.}) - {xjf x,.} u T C(x<) u TC(xj),

and (*) is immediate.
lϊ f(x1,...,xn) = Xι - Xj, then

T C ( / ( x l 9 . . . , xj) = ΓCfo - x, ) ci TCίxJ,

and again (*) is immediate.
If /(x 1 , . . . ,x I I ) = % 1 (x 1 , . . . ,x I I ), . . . ,s f k (x 1 , . . . ,x π )), where h9gl9...9gk are

rudimentary and where (*) holds for h9gί9...,gk9 then (*) for / follows from the
application of (*) first to each of g1,..., gk and then to h.

Finally, suppose f{y9 x2,..., xn) = \J g(z, x2, -9 xn)> where g is rudimentary

and where (*) holds for g. If TC(y) ^W9 then TC(z) c p^ for all z e y , so by
applying (*) to g(z9 x 2 , . . . , xπ) for each z e y w e get (*) for / by taking the union
according to the definition of /

The proof is complete. D

We consider now the notion of relatively rudimentary functions. We show that
these reduce, in a natural way, to combinations of rud functions and the function
/(x) = A n x.

1.8 Lemma. Let A c V. If f: Vn -• V is A-rud, then f is expressible, in a uniform
way with respect to any given A-rud definition of f as a combination of rud
functions and the function a(x) = A n x.

Proof. Let P(f) mean that / is expressible as a composition of rud functions and
the function a defined above. We shall show that if / is ,4-rud, then P(f). The
proof is by induction on a rud definition of/. (The uniformity will be an immediate
consequence of the proof.)

Clauses (i), (ii), (iii), and (vi) in the definition of ,4-rud functions cause no
difficulties in the induction. And clause (iv) is taken care of by virtue of the fact that
a composition of compositions is itself a composition. The only trickly step is the
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proof that if P(g) holds and / is defined by

f(y, x) = U #(z> *)>
zey

then P(f) holds. We do this by induction on the "complexity" of g. More precise-
ly, let P0(h) mean that h is rud, and, inductively, let Pn+1{h) mean that

h(x) = ho(x, A n hx(x\ ...,Anhm(x))

for some hθ9hl9...9hm such that P0(h0)
 a n d i j (ft i ) , . . . , Pn(hm) are all valid. By the

definition of P, it is clear that

So it suffices to prove that R(ή) holds for all n, where R(ή) means:

if Pn(g) and f{y9 x) = [j g(z, x), then P(f).
zey

We do this by induction on n.
For n = 0 there is nothing to prove, since in this case / is itself rud. So suppose

that n > 0 and that R(n — 1) holds. Let g be given such that Pn(g). Thus

g(z9 x) = ho(z, x9Anh1(z9x),...,An hm{z, x))9

where P0(h0) and Pn_1 (ΛJ, . . ., PB_ t (ΛJ Set

g(z, x, u) = ho(z, x9unh1(z9x)9...,un hm(z, x)).

Clearly, P^^g). Set

/(y, x, u) = U g(z9 x, u)9

zey

h(y, x) = [\J h^z, x)] u ... u [U ΛM(z, x)]
zey zey

By R(n - 1), both P(f) and P(S). But

f(y> *) = {] 9& x) =?(y, x,An h(y, x)).
zey

This proves R(n). D

A structure of the form M = <M, A}9 where i ς M , i s said to be rud closed iff
/ " M " c M for all ,4-rud functions f\Vn-+V (all n).

1.9 Lemma. Lei = <M, ̂ 4>, w/ierβ M is transitive and A c M. Tfen M is α
closed structure iff M is a rud closed set and the structure M is amenable.

Proof A direct consequence of 1.6 and 1.8. D
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1.10 Lemma. Let A <=VIff:Vn^> Vis A-rud, then f \ Mn is uniformly Σ{M>AnM>

for all transitive, rud closed structures <M, A n M>.

Proof By 1.3 and 1.8. D

The following lemma shows that, in a certain, obvious sense, the rud functions
have a finite "basis". In the statement of the lemma, we allow the use of "dummy
variables" so that, for later convenience, all of the "basis" functions are binary.

1.11 Lemma (The Basis Lemma). Every rudimentary function is a composition of
some or all of the following rudimentary functions:

F2(x, y) = x x y;

M*, y) = {(w, z,v)\zex Λ(u,υ)ey};

FΛ*> y) = {(", v, z) I z e x A (M, I?) e y};

FΊ{x9y) = en(x x x);

F8(x,y) = {x"{z}\zey}.

Proof It is easily seen that each of the above functions is rudimentary. Hence if
# denotes the class of all functions obtainable from Fo,..., F8 by composition,
then every function in # is rudimentary. We prove the converse, that every
rudimentary function is a member of <β.

If φ is an J^f-formula and xo,...,xn are variables of JSf, say x 0 =
υi{0),..., xn = vi{n), we usually write φ ( x 0 , . . . , xM) to indicate that the free variables
of φ are all amongst x o , . . . ,x B , Let us call the expression " φ ( x 0 , . . . , x j " a repre-
sentation of φ. Thus, any S£-formula has infinitely many representations: if the free
variables of φ are all amongst vo,...,vn9 then

φ ( υ 0 , . . . , υn), φ ( v θ 9 . . . , v n 9 v n + 1 ) 9 φ ( υ θ 9 . . . 9 υ n 9 v n + 1 0 , ί;n + 3 )

are all representations of φ.
For each representation φ ( x 0 , . . . , xπ) of an ££-formula φ we define a function

t φ ( x 0 , . . . , X n ) ( u ) = { ( a θ 9 . . . 9 a J \ a θ 9 . . . 9 a n e u A \ = u φ ( ά θ 9 . . . 9 ά n ) } .

As a first step towards proving the lemma, we show that tφiX0tmmmtXn) e <# for any
φ(x0, , xw). The proof is by induction on the construction of φ.
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(a) Suppose that φ ( x 0 , . . . , xn) is the formula (Xj e x,), where 0 =ξ i < j ^ n. Thus

tφiX0,...,Xn)(u) = {(a0,..., an) I a0,..., an e u A Nu(αt e άj}}

= {(ao,...,an)\ao,...,aneu A ί^eα,.}.

The main complicating factor is the presence of the "superfluous" variables
x 0 , . . . , %i_ i, xi+!,..., Xj- i, x j + 1 , . . . , xn. This is where we use the functions F 3

and F 4 . (Remember that, by definition,

( X O , . . . , Xn) = (Xo, ( X l , . . . , Xn)) =

We shall assume that 0 < i, i + 1 <7, j < n. This is the most complicated case,
with "superfluous" variables in all possible locations. All other cases are degener-
ate versions of this one. Let us write G°(x, y) for -F2(x, y) and, inductively,
G w + 1 (*,}>) for F2(x, Gw(x, j;)). Thus Gme% for all m. Note that, in particular,
Gm(w, u) = um + 2 for all m. Let

Then H e%>. But we have

= {(α, fc, c) I c e un~j A (α, b)e(en u2)}

= {(a, b,c)\ceun~j A a,b eu A aeb}.
Thus,

F 3(W, H(u)) = {(d, e, / ) I e e ii Λ (d, / ) e fl(u)}

= {(α, e, (b, c))\eeu A (α, fe, c) e jff(n)}

= {(α, e,b,c)\eeu A (a, b, c) e H(u)}.
Similarly,

F 3(M, F 3(M, H(U))) = {(a, e, f, b, c) \ e, fe u A (a, b, c) e H(u)}.

So if we write Fx(y) for F3(x, y) we have

FJ-i-1(H(u)) = {(a,eu...,ej-i-ub,c)\

e1,...,ej-i-1eu A (a,b,c)e H(U)}.
Then

G l(M,iϊ'- i-1(H(w))) = { ( / i , . . . , / i - i , α ^ 1 , . . . , β J _ i _ 1 , 6 , c ) |

/ i , . . . ,/ i- i ,e i , . . . ,e ./- i- i e u Λ (α, ft, c) e H(u)}

= tφiX0,...,Xn)(u).

T h u s ί φ ( X O t . . . f J C f i ) e * .
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( b ) S u p p o s e t h a t φ = φ v θ a n d t h a t tψ{X0t.mmtXn)9 t θ i X 0 t t m m t X r d e ^ . T h e n

tφiX0,...,Xn)(u) = tψiXθtmm,tXn)(u)u tθiXθ3,mmtXrύ(u)

= F5(F0(tφiX0 Xn){u), tθiX0tmmmtXrd(u)), u).

(c) Suppose that φ = —i φ and that ^ ( X o,...,X n ) e # . Then tφ{X0tmmmtXn) e # because

tφiX0,...,Xn)(u) = u- tψ(XOtmmmtXn)(u) = F^u, tψiX0t...tXn)(u)).

(d) I f φ = φ A θ a n d ^ ( x o > . . . , X n ) , ί , ( X o , . . . , J C n ) G ^ t h e n ί < , ( ; c o , . . . , X M ) G ^ b y ( b ) a n d ( c ) .

(e) lϊφ = 3yφ and ί^,,0 ,,,, e * , then ^^0,...,^) e tf, because

(f) If φ = Vy^ and ^ ( y,X o,...,X n ) e * , then ίφ(»Of...fXn) e if by (e) and (c).

(g) lΐφ(xθ9...9 xn) is the formula (xf = x7), where 0 ^ ί, j < n, then ίφ (Xo,... t Xn) e # .
To see this, let 6(3;, xθ9..., xn) be the formula

By (a), together with (b), (c), (d), tθ ̂  XOtmmm9Xn)e<g.Let\l/(x0,..., xn) be the formula
y, χ 0 , . . . , xn). By (f), ^ ( X o . . . .,X n ) e * . But clearly,

u φ ( o , . . . , d π ) iff N I I U ( u

Thus,

^(xo,.. ,χn)(M) = {(ao,...,an)\aθ9...,aneu A N t t U ( u l l ) ^ ( d 0 , . . . , d π )

But we saw in (a) that the function F(u) = un + i is in # (if n = 0, use
F(w) = u - (M - u) instead), and by F 5 , Fo the function F(w) = u u (IJ u) is in (€.

Thus ίφ(xo , „ ) £ « .

(h) N o w suppose that φ(xθ9...9xn) is the formula (xf e Xj) where 0 < j < ί ^ π. To
see that tφ{XQ^^Xn)e%>, argue as follows. Let φ(y, z, xθ9..., xw) be the formula

(j/ez) Λ (y = x ί) Λ (z = Xj).

By (a), (g), (d), tψiy.z.xo.....χj e * . But clearly,

N M φ ( α 0 ? . . . , α J iff Nw3);3z^(};, z, ά0,..., αM)

So by (e), ^ ^ . . . ^ e * .
By (a), (h), (g), (b), (c), (d), we see that ίφ(Xo > X n ) e ̂  whenever φ is a quantifier

free formula of S£. Hence by (e), (f), ίφ(X 0 f ...,Xn) e ̂  for any if-formula φ.
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As the next step towards proving the lemma, for any / : Vn -» V we define
/ * : F->Fby

f*{u)=f"u\

We prove that if / is rudimentary, then / * e (€. The proof is by induction on a
rudimentary definition of /.

(a) Suppose that f(xι,..., xn) = xt. Then

f*(u)=f"un = u-(u-u)

and so f*e<g.

(b) Suppose f(x1,..., xn) = xt — xjm Then

f*{u)=f"un = {x-y\x,yeu}.

Let φ(z, y, x) be the formula z e(x — y). Let

F(u) = tφ{z,x,y){u u (\Ju)) n(\Jux u2)

= {(z, x, y) I x, y e u A Z = x - y}.

Since tφ{ZtXty) e Ή we have F e ^ . But then / * e #, since

= {{z}\x,yeu A z = x-y}

= {{x-y}\x,ye u)

= P{u).

(c) Let f(xί,..., xπ) = {xi9 xj}. Then

SO/

(d) Let f(xl9..., xn) = h{gγ ( x t , . . . , x j , . . . , ^ ( X i , . . . , x j ) , where h,gl9...,gk are

rudimentary and h*,gf,..., ^* e ^ . Let

G(iι) = flff(II) u ... u flff(ιι), fl(u) = Λ*(G(iι)), K(u) = u" u G(u) u

By our assumptions, G, H, Ke %>.
By 1.3 there is a Σ0-formula Φ(zγ,..., zk9 xx,..., xB) of LST such that

0(z1,...,z f c,x1,...,xπ) iff
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and a Σ0-formula Ψ(y, z x , . . . , zk) of LST such that

Ψ(y,zu...,zk) iff y = h(zu...,zk).

Let r exceed the number of quantifiers which occur in Θ and Ψ9 and define D by

D(u) = uv(\Ju)v(\J\Ju) u ... uflj'w).

Then D e %>, and moreover, by 1.9.15, if θ, ψ are the ££-analogues of (9, Ψ, then for
any set u and any y,zl9...,zk,xl9...,xneu,

Θ ( z 1 , . . . , z f c , x 1 , . . . , x n ) iff tD{u)θ(zl9...9zk9xί9...9xJ
a n d

Ψ(y,zu...,zk) iff tDiu)ψ(y,zu...,zk).

(Strictly speaking, 1.9.15 is not adequate for the above, since this would require
D(u) to be transitive. However, as is easily seen, the choice of the integer r above
makes D(u) resemble a transitive set sufficiently for the proof of 1.9.15 to go
through for the formulas concerned here.) Let φ(y, x 1 ? . . . ,*„) be the if-formula

3 z 1 . . . z k [ θ ( z l 9 . . . 9 z k 9 x l 9 . . . 9 x n ) A ψ ( y 9 z l 9 . . . 9 z k ) ] .

Now, K(u) consists of un, together with all values of gx,..., gk on u and all values
of / on u. Thus by the definition of φ,

tφiy,Xu_,Xn)(DoK(u))n(f"unxun)

= { ( / ( χ i , . . . , χ J , X i , . . . , χ M ) | x i , . . . , x M e w } .
Thus

f*(u) = \jF8(tφ(y.Xι,...tXrd(D o K(u)) n (H(u) x un\ un).

This shows that / * e c€.

(e) Suppose that f(y, x1,..., xn) = (J g(v, xx,..., xM), where g is rudimentary and
vey

g* G (€. By 1.3 there is a Σ0-formula Φ(z, y,x1,...,xn) of LST such that

Φ(z, y , x u . . . , x n ) iff ( 3 υ e y) [z e g(v9 x l 9 . . . 9 x n ) l

Suppose that Φ has fewer than r quantifiers, and define D as in the above case (d).
Then, if φ is the if-analogue of Φ, we have, as above, for any z9y9xl9...9xneu9

Φ(z, y 9 x ί 9 . . . 9 x n ) iff \=D(U) φ ( z , p 9 x l 9 . . . 9 x n ) .
Then

tφ(z,y,xu...,Xn)(D(u)) = {(z, y9xί9...9xj\z9y9xl9...9xne D(u)

Λ(3vey){zeg(v,xu...,xn))}

= {(z, y,xί9...9xJ\z9y9xl9...9xne D(u)

A zef(y9xl9...9xn)}.
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So
Fs(tφ{z,y,Xu.^Xn)(D(u%un+ι)

= {{z}\y,xu...,xneu A zef(y9xl9...,xn)}.
Thus

/•(u) =

which shows that / * e ζβ.
We have proved that / * e <β for any rudimentary function /. We are now able

to complete the proof of the lemma. Let /: Vn -* V be a given rudimentary func-
tion. We prove that fe <g. Define /: K-> V by

7UΛ = f / ( z i > >zn)> i f * = ( zi,•••,*„)

(0, in all other cases.

By 1.1 (9), / is rudimentary. So by the above, / * e c€. Moreover, g e %>, where we
define #: Vn^V by

g(xu...,xn) = {(xu...,xn)}.

(By repeated use of Fo.) But

Thus / e ^, and we are done. D

As an immediate corollary of 1.8 and 1.11, we have:

1.12 Lemma (Extended Basis Lemma). Let A c V9 and define F9 by

F9(x, y) = A n x.

Then every A-rudimentary function may be expressed as a composition of some or
all of the A-rud functions F o , . . . , F9. D

Lemma 1.14 below provides an immediate application of the above basis
result. It concerns the semantics of the languages !£V{A). These languages (or
rather more general languages ^?

V(A1,..., Ak)) were defined in 1.9. As was men-
tioned there, the basic syntactics and semantics of these languages differs only in
a trivial way from that of the language 5£v, and so there is no need to spend any
time on such a development. Suffice it to say that, what comes out of it is the
following. There is a Σ x formula SatΛ(u, α, φ) of LST (in three variables, w, α, φ)
which says that:

"w is a non-empty set" Λ "α c u" Λ "φ is a sentence of J?U(A) which is
true in the structure <w, a) under the canonical interpretation".

Just as in 1.9.10, we get:
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1.13 Lemma. The LST formula SatA(u, a, φ) is Δf . D

As usual, we usually write N < u α > φ rather than SatA(u, α, φ). For any n e ω , w e
denote by N<2,fl> the restriction of the relation N<Mίl> to the Σ n sentences of Jίfu(A).

The following lemma will provide us with an analogue to Π.6.3 for the Jensen
hierarchy of constructible sets, defined in the next section.

1.14 Lemma, hfjfr A> is uniformly Σ[M'Ay for transitive, rud closed structures

<M , Ay.

Proof Consider the language ΓM which consists of the variables vn, n e ω, of J2?
(i.e. vn = (2, ή)\ the constant symbols x(= (3, x)), for each x e M , and the binary
function symbols Fo,..., F9. (More formally, for each i = 0,..., 9, F;(x, j;) denotes
the set (0, i, x, y).) The syntax of / ^ is particularly simple. Each variable and each
constant of S£M is a term of i ^ , and if tl9t2 are terms of ΓM, then
F 0 (ί ! , t2), .., F 9 (ίi, ί 2 ) a r e all terms of /^. Note that each term of ΓM is an element
of M. A constant term is one which contains no variables. Each constant term, ί,
of ΓM has an obvious interpretation in <M, ,4), where we let x interpret x for each
xeM and F̂  interpret Ft for each ι = 0,..., 9. Since <M, ̂ > is rud closed, the
interpretation, t<M'Λ> of each constant term t is an element of M. Clearly, for each
constant term t and each x e M, we have:

x = ί<".Ό iff

3/30[Finseq(/) Λ Finseq(#) Λ dom(/) = dom(g) A g(dom(g) - 1)

= x A (Vi G dom(/)) [ConstM(/(0) v (3j, fc e ί) [/(i)

= Fo(f(J)J(k)) v ... v/(0 = F9(fUlf(k))] Λ (Viedom(/))

[ConstM(/(i)) - g(ΐ) = (/(0)i] Λ (Vi e dom(/)) (Vj, k e i)

K/(0 = MfU), f(k)) - flf(0 = F0(g(j\ g(k))) A ... Λ (/(0

MUl f(k)) - g(i)

Now, if such /, g as above exist, they will certainly be elements of M. Moreover,
by 1.10, each of the functions Fθ9..., F9 is (uniformly) Σ\M'Ay. Hence the above
equivalence shows that the relation x = t<M'A> (as a relation of x, t) is (uniformly)
2<M,Λ> j j ^ j c j e a n o w j s t Q u t j j j s e tjύs fact by associating with each Σ o sentence

φ of <S^M(A) a constant term ίφ of ΓM so that:

(i) the map φ\-^tφ is Σ ^ M ' A > (uniformly);

(ϋ) N<

In fact, in order to do this, we need to define tφ for any formula φ, not just
sentences. (This is why we allow variables in the language ΓM.)

As our starting point we take 1.5. This tells us that if R(x) is a Σ o relation, there
is a rud function /(x) such that
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By 1.11, we know that the function / here may be expressed as a composition of
the basic functions Fo,..., F9. Now, the existence of the function / is established
by proceeding inductively on the logical structure of R, using 1.1(11), (12), (16),
(19), and the proof of 1.11 is (essentially) by induction on a rudimentary definition
of/. And by virtue of 1.8, we can extend all of this to allow for the unary predicate
A, introducing the extra basic function F9. So by examining the inductive proofs
of 1.5, 1.11, and 1.8, we obtain the required map φ\-^tφ.

We proceed inductively following the logical construction of the Σ o formula
φ, using the techniques of 1.1, 1.11, and 1.8. Now, if you have spent any time on
the proofs of these results, particularly 1.11, you will appreciate that it would be
pointless trying to write out explicitly the definition of the function φ\-*tφ. But it
should be clear that the following is the case.

From 1.9 (extended to the language ^M(A)) we know that there are Σ o for-
mulas F e, F=, FA, FA, F-,, F3 of LST such that (see, in particular, 1.9.3):

Fe(0, x, y) <-» θ is the SeM(A) formula (x e y);

F= (0, x,y)++θ is the &M(A) formula (x = y);

FA(Θ, x)^θ is the &M(A) formula A(x);

FA (0, φ,ψ)<-+θ is the i f M (^) formula (φ A ψ);

F-,(0, φ) <-* 0 is the &M(A) formula (~i φ);

F3(0, u,φ)<r^θ is the 3?M{A) formula (3 u φ).

These LST formulas simply describe the way in which the formulas of J£M{A) are
constructed. Implicit in the proofs of 1.1,1.11, and 1.8 is the fact that there are Σ o

formulas G6, G=, GA, G Λ , G n , G3 of LST such that:

G€(t9x,y)+->t = t{xey);

G=(t,x,y)++t = t(x=y);

G3(t,tφ)<r+t = t(3yex)φ,

where for each φ, tφ is a term of ΓM which satisfies (ii) above. These G-formulas
describe the way in which the terms tφ must be combined (together with specific
of the function symbols F o , . . . , F9) to make (ii) valid, and thus correspond to the
induction steps of the proofs of 1.1, 1.11, and 1.7 (all rolled into one).

It follows that there is a Σ x formula H of LST such that

H(t, φ)^"φ is a Σ o formula of i f M ( ^ ) " A t = tφ.

In essence (though not totally accurate), H(t, φ) is as follows (see 1.9, in particular
1.9.6):
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3f3g[Build(f φ) A Finseqfef) Λ dom(g) = dom(/)

Λ (Vi e dom(/))((F6(/(0, x, y) - GMΐ), x, V)))

A ... Λ (F3(/(0, u, /(/')) - G3(flf(0, w,

Notice that if i/(ί, φ) is true, it is always possible to find such /, g as above in M.
Consequently, if h(t, φ) denotes the if-analogue of the LST formula H(t, φ\ we
have, by 1.9.15, for any x,yeM,

This proves (i) and (ii) and thus completes the proof of the lemma. D

The following result, which will provide us with an analogue of Π.6.4 for the
Jensen hierarchy, is deduced from 1.14 in exactly the same way that II.6.4 was
deduced from II.6.3:

1.15 Lemma. For any n ^ 1, the relation ^M,A} ϊ 5 uniformly Σ^MfA> for all transi-
tive rud closed structures <M, A}. D

For any set [/, we define the set rud(U) to be the rudimentary closure of the
set U u {[/}, i.e. the smallest rud closed set that contains U as a subset and as an
element. Notice that by 1.7, we have:

1.16 Lemma. // U is transitive, then rud(C7) is transitive.

Proof Immediate, since if U is transitive, then U u {U} is transitive. D

We shall use the function md(U) in order to define the Jensen hierarchy. The
following lemmas will be of use to us in this connection. The first of them will
enable us to compare the rates of growth of the two constructible hierarchies. The
other two will help us to define well-orderings of the levels of the Jensen hierarchy.

1.17 Lemma7. Let U be a transitive set. Then

In fact

Σ0(rud(ί7)) n 0>(U) = Def(C7).

Proof We commence by proving that

(•) Σ0(U u {U}) n 9HJJ) = Def(l7).

First of all let A e Def(l/). Thus for some formula φ(x) of Ĵ V,

A = {xeU\\=uφ(x)}.

1 In the statement of this lemma we extend our notation a little by using ΣΠ(M) to mean the set
of all Σn(M) subsets of M. This notational extension will be used several times from now on.



1. Rudimentary Functions 245

Let φ(x) be the formula of J^u^m obtained from φ(x) by binding all unbounded
quantifiers by U. Clearly, for any x e U.

\=vφ(x) iff N ( 7 u {

Thus
A = {xeUu{U}\ ¥ϋκj{υ}x e U A ψ(x)} e Σ0(U u {I/}) n

Conversely, let A EΣ0(U U {U}) n g?(U). Thus for some Σ o formula φ(x) of

A = {xeU\tUu{U)φ(£)}..

To show that A e Def(£/), it suffices to show that for any Σ o formula φ(x) of
is a formula φ*(x) of S£v such that for any xeU

The proof of the above is by induction on φ. Suppose first that φ is primitive.
If φ does not involve ϋ, take φ* = φ, in which case the result is clear. Suppose that
φ involves U. If φ is of the form (a e U) where aeVblv Const^, take φ* to be
(a = a). If φ is of the form (ί? = I/), take φ* to be Vx(x = x). In all other cases, take
φ* to be 3 x(x + x). It is easily seen that φ* is as required. In case φ = ψ A θ now,
we take φ* = (ψ*) A (0*), and in case φ = —i ψ, we take φ* = —i (ι/̂ *). Suppose
next that φ is of the form (]χeα) ψ, where aeVblv Const^. In this case take φ*
to be (3 x G α) (ι/̂ *). Finally, suppose that φ is of the form (3xeϋ) ψ. Then we take
φ* to be 3x(ψ*). The result is clear now.

By (*), in order to prove the first part of the lemma, it suffices to show that

Σo(£7 u {£/}) n 9{JJ) = rud(IT) n

First of all, let ^ e Σ0(ί7 u {U}) n ^((7). Thus for some Σ o formula φ(x) of

^ = {xe(7|N [ / u { t / }φ(x)}.

By Σ0-absoluteness,

A = {xeU\\=rud(U)φ(x)}.

But rud((7) is amenable (by 1.6). Thus by definition of amenability, A e rud(C7).
For the converse, let A e md(U) CΛ£P(U). Then for some rudimentary function /
and some aeU, A =f{a, U). Now by 1.3 and 1.2 (or rather by localised versions
of them where Fis taken to be the transitive, rudimentary closed set rud(l/)), there
is a Σ o formula φ of $£ such that for any x e rud((7),

xef(a,U) iff h r u d (

Thus
A = {xeU\\=rud{U)φ{x,ά,U)}.
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By Σ0-absoluteness it follows that

Hence A e Σ0(U u {I/}).
For the second part of the lemma it suffices to prove that

Σ0(rud(C7)) n 0>{U) s rud(IT).

Let A e Σ0(rud(l/)) n 0>(U). Then for some Σ o formula φ(x) of J^ r u d ( ί 7 ),

So as rud((7) is amenable, A e rud (I/). The proof is complete. D

By tracing through the proof of the above lemma, we see that we have in fact
proved the following result:

1.18 Lemma. Let φ(y9 x) be a Σ o formula of ££. Then there is a formula φ(x) of
j£? such that for any transitive, rudimentary closed set U,

(Vί e U) [Nrud([7)<?(£/, x) iff ϊvψix)]. D

This lemma will be of use to us in dealing with successor levels of the Jensen
hierarchy of constructible sets. (See, for example, the proof of V.5.18.) The follow-
ing consequence of 1.18 will be required in Chapter VIII.

1.19 Lemma. Let M, N be transitive, rud closed sets, and let

σ\M<N.

Then there is a unique embedding

σ:md(M)<1md(N)

such that σ ^ σ.

Proof W e s h o w f i r s t t h a t if/, g a r e r u d i m e n t a r y f u n c t i o n s a n d x , y e M a r e s u c h
that f(M, x) = g(M, y), then f(N, σ(x)) = g(N, σ(y)).

By 1.3 (and Σ o absoluteness), let φ be a Σ o formula of !£ such that for any
transitive, rud closed set U and any a,b,ceU.

f(a, b) = g{a, c)+-+\=v3zφ(z, a, h, c).

Then we have

z, M, x,y).
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So for some z e rud(M),

For some rudimentary function h and some w e M, we have z = h(M, w). So

(1) t=rud(M)φ(Λ(M, w)°, M, x, ]?).

Since h is rudimentary, hence simple, the formula φ(h(M, w), M, x, y) is in fact Σ o

in the variables M, w, x, y. So by 1.18 there is an J^f-formula φ, which depends
upon φ but not upon M, such that (1) is equivalent to

(2) tMΨ(*,i,P)

(for any such M). Applying σ to (2) we get

(3) ϊNφ(σlw\σ(xlσ(y)).

But the equivalence of (1) and (2) holds for N as well as M. Hence by (3), we get

(4) Kud(*)φ{h{N, σ(w))°, iV, σ (x), σ (y)).

Hence

(5) N r u d ( N )3zφ(z, iV, σ (°x), σ (y)).

So by choice of φ, we conclude that /(JV, σ(x)) = g(N, σ(y)\ as required.

By the above result we may define a function σ: rud(M) -» rud(AΓ) by setting

for all rudimentary functions / and all x e M . We show that σ is Σ x elementary.
(Uniqueness of σ will then be immediate, of course, since any Σί elementary
embedding which extends σ must satisfy the above defining equation.)

Let φ(x, y) be a Σ o formula of <£. Suppose first that for some x e rud(M),

Pick )/ e rud(M) such that

T h e r e a r e r u d i m e n t a r y f u n c t i o n s /, g a n d e l e m e n t s x , y e M s u c h t h a t x = / ( M , x),
y = g{M, y). Thus

, x)°, g(M, y)°).
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Since /, g are simple the formula φ(f(M, x\ g(M, y)) is Σ o in variables Af, x, y. So
there is an if-formula ψ, independent of M, such that (*) is equivalent to

(**) ^MΨ&y).

Applying σ to (**), we get

Since the equivalence of (*) and (**) is valid for N in place of M, we get

i.e.

Thus

This is what we set out to prove.
Conversely, suppose that x e rud(M) is such that

Let x =/(M, x), where / is rudimentary and iϊeM. Pick y e rud(ΛΓ) so that

Let y = g(N, y) where g is rudimentary and y e N. Then

As above, let i/r be an if-formula such that (+) is equivalent to

for any such N. We have (since (+) is valid)

So, as σ:M-<iV,

So for some y' e M,
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By the equivalence of ( + ) and ( + + ) applied to M, we get

^rud(M)<p(/W, x)° g(M, y')°)

Thus

and the proof is complete. D

The following lemma provides us with a useful hierarchy for the construction
ofrud(£/)from U.

1.20 Lemma. There is a rudimentary function S such that whenever U is transitive,

l/u{[/}cS(ί/) and rud(ϋ) = U S"(£7).
n<ω

Proof. Set

S(l/) = p u {17}] u ^ U F("(U u

The result follows from 1.11. D

1.21 Lemma. There is a rudimentary function Wo such that whenever u is transi-
tive and risa well-ordering of u, Wo(w, r) is an end-extension of r which well-orders
S(u).

Proof The idea is roughly the same as in Π.4.4. Since

r induces, via the functions F o , . . . , F 8 , a well-ordering of S(w). The function Wo
will be rudimentary because of 1.1(14) and 1.5, since we shall obtain Wo by the
definition

Wo(u, r) = S(u)2 n {(x, y) \ Φ(u, r, x, y)},

where Φ is a Σ o formula of LST (see below).
Before we formulate Φ precisely, let us indicate what this formula is intended

to say. Let f denote the ordering r with u added as a greatest element. To see if
Φ(w, r, x, y), we first check if x, y e u u {w}, in which case we order x, y according
to r, i.e. Φ(w, r, x, y) iff xfy. If x e u u {w} and y φ u u {w}, then Φ(w, r, x, y) un-
conditionally holds. If x φ u u {M} and y e w u {w}, then —i Φ(w, r, x, y). Now sup-
pose that x, y φ u u {w}. First we see if the least z for which x e F/f(u u {u})2 is
smaller than the least i for which y e F/'(u u {w})2, in which case Φ(w, r, x, y). If the
two indices here are ordered in the opposite way, then —i Φ(w, r, x, y). Otherwise,
let i be the common least index here, and proceed as follows. Let xx be the f-least
element of u u {u} for which x e ^ " ( { x j x (u u {w})), and let y t be defined analo-
gously for y.lϊxί ryλ, then Φ(w, r, x, y), and if yi r x x , then —ι Φ(w, r, x, y). Other-
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wise, xx = yl9 and we define x2 to be the f-least member of u u {u} such that
x = Fi(x1,x2) and define y2 for y9 yx analogously, and set Φ(u, r, x, y) iff x2fy2.

Precisely, Φ(u, r, x, y) is the following Σ o formula of LST (which we write in an
abbreviated form for clarity):

[(x e u) A (y e u) A (xry)] v [(x e u) A (y φ u)]
8

v [{x = u) A (y φ u) A (y φ u)] v V [(x φ u) A (X φ u) A (y φ ύ)
i = 0

Λ H « ) Λ Λ N F!\U U {U})2 A y φ Fj"(u u {w})2)

Λ [(x E F/Xu u {w})2 Λ y φ F/'ίii u {w})2) v (3x l 5 x2 e u u {w})

[x - F i(x1,x2) Λ (Vyl5};26w u {wDiy^Xi v yγ = xx

^Gw u {w})

[x = Fi(xί,yί) A y = Fi(xuy2) A (\/z1,z2euv {u})(z1rxί

v ( z 1 e M Λ x 1 = t i ) - > x + Fi(zuz2) A y + ^ ( z ^ z2))

Λ (Ji ry2 v (yi G M Λ y2 φ w))]].

8

In connection with the above formula, the following points should be noted. V
i = 0

denotes the disjunction of nine formulas for ί = 0,..., 8, and /\ is the conjunction

of ί formulas for j = 0,..., ί — 1. In the case i = 0, the conjunction /\ should be
dropped, whereas for i = 1 the conjunction is a degenerate one consisting of a
single formula only. Expressions such as x e F/f(u u {u})2 should be written as

(3yeuv {u}) (3zeuu {u}) (x = Ft{y9 z)).

Since the function u u {u} is simple, quantifiers of the forms (3 x e u u {w}) and
(VXGUU {w}) are allowed in a Σ o formula of course.

An examination of the above formula Φ(u, r, x, y) should complete the proof
of the lemma now. D

To complete this section we prove a result which we shall need in order to
prove the Condensation Lemma for the Jensen hierarchy.

1.22 Lemma. Let Mbea transitive, rudimentary closed set, and let X -< x M. Then
X is rudimentary closed and <X, e> satisfies the Axiom of Extensionality. Let
π: <X, e> = (W, e>, where W is transitive. If f: M"-> M is rudimentary, then for
allxeX,π(f(x))=f(π(x)).

Proof Since M is transitive, <M, e> satisfies the Axiom of Extensionality. So for
any x, y e X,

Thus if x φ y, then since X -< x M, we have
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Hence

and so <X, G> satisfies the Axiom of Extensionality. And by 1.3, X is, of course,
rudimentary closed, so in particular, if /: M" -• M is rudimentary, then f(x) e X
whenever x G X. We shall prove by means of an induction on a rudimentary
definition of / that π(f(x)) =f(π(x)) for all x e X. Cases (i) through (iv) of the
rudimentary function schemata cause no problems in this induction, as is easily
seen. For case (v), suppose that f(y, x) = (J g(z, x), where g is rudimentary and

zey

for z, x e X, it is the case that π(g(z, x)) = g(π(z), π(x)). Let y , i e l . We show that
π(/(y,S))=/(π(y),π(i)).

By definition of π,

And by definition of /,

f(π(y), π(x)) = [j {g(z, π(x))\ z e π(y)}

= [j{g(z,π(x))\zeπ"(ynX)}

= {J{g(π(z),π(x))\zeynX}

= {J{π(g(z,x))\zeynX}.

So it suffices to show that

π" [f(y, x ) n I ] = U {π(g(z, x))\zeynX}.

Suppose first that v e π"[f(y, x) n X], say v = π(u) where u ef(y, x) n X.
Since u e/(y, x), we have (3zey)(uε g(z, x)). But this sentence is Σ f ({w, y, x})
and w, y, x G X -<! M, so (3z G y n X) (M G ̂ f(z, x)). Hence i; = π(w) e (J {π(#(z, jc)) |
zey n X}.

Now suppose that u G (J {π(gf(z, x)) \ z G 3; n X}. Pick z e y n l such that
veπ(g(z, x)). Then u e π " [ g ( z , x ) n l ] , so for some ue g(z,x) n X, we have
v = π(u). But then u e (J {#(z, x) \ z G y} and M G X, so u ef(y, x) n X, which gives
1; = π(w) G π"[/(y, x) n X]. The proof is complete. D

2. The Jensen Hierarchy of Constructible Sets

The Jensen hierarchy, (Jα | α G On), is defined by the following recursion:

Jo = 0;

J α + 1 =rud(J α ) ;

Jλ = U Λ, if li
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2.1 Lemma.

(i) Each Ja is transitive.

(ii) α ̂  β implies Jα ^ Jβ.

(iii) rank(Ja) = Jα n On = ωcc.

Proof, (i) By 1.16.

(ii) Immediate.

(iii) By induction on α. For α = 0 the result is trivial. Limit stages in the
induction are immediate. For successor steps, we use the finite rank property of
rudimentary functions (1.4) to show that

rank(J α + 1 ) = rank(rud(Jα)) = rank(Jα) + ω.

The details are left to the reader. D

Note in particular that in passing from Jα to Ja+1, exactly ω new ordinals
appear: ωα, ωα -f 1, ωα + 2,..., ωα 4- n,..., (n e ω), whereas by 1.17,

Thus, although J α + x only contains those subsets of Jα which are ./^definable, these
sets appear in a hierarchy which is "stretched" from one level of rank, as is the case
with the usual constructible hierarchy, to ω levels of rank. Moreover, this
stretched hierarchy is closed under many simple set-theoretic functions such as
ordered pairs, union, cartesian product, etc.

To facilitate our handling of the Jensen hierarchy, we define a sub-hierarchy
as follows.

Sλ = U S*> i f U
OL<λ

Clearly, the sets Jα are just the limit levels of this new hierarchy. In fact:

2.2 Lemma.

(i) α ^ β implies Sa ^ Sβ;

(ii) j α = u Sv = s ω α .
v<ωα

Proof, (i) Immediate.

(ii) By induction. The only non-trivial step is the successor step. Here we
have:

J α + 1 = rud(Jα) = U S-(JJ = U S"(SωJ = U Sωα+W = Sωa+ω
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We shall use the S-hierarchy in order to assist our detailed study of the Jensen
hierarchy. But before we commence this study, let us digress for a moment to
examine the relationship between the Jensen hierarchy and the usual constructible
hierarchy. (In particular, we have not yet proved that the Jensen hierarchy does
consist only of constructible sets, and that all constructible sets do appear in the
Jensen hierarchy.)

Will, we have Jo = Lo = 0, of course. And it is easily seen that J1 = Hω = L ω .
In view of these two facts, and our knowledge that Jα n On = ωoc and
Lα n On = α for all α, one might be tempted into thinking that Ja = L ω α for all
α. This is not the case, however. (The proof that the above equality is false makes
a good little exercise for the reader.) Nevertheless, we do have Jα = Lα whenever
ωα = α . As a first step towards proving this, we have:

2.3 Lemma. For all α, La c Jα and Lα, (Lβ | β < α) e Ja+1.

Proof. We first of all prove that:

For α = 0 there is nothing to prove, and for α = 1 the result is trivial, since
J x = Hω, so we shall assume that α > 1 from now on. During the proof of 1.11, we
showed that for any representation φ(x0,..., xn) of an if-formula φ, the function
tφ(Xo,...,xn) is rudimentary, where

tφ(X0 *„>(") = {(xo,...,xJ\xo,...,xnGu A tuφ(xθ9...,xn)}.

It follows that the functions dφ{XQtmmmtXn) are rudimentary, where we define

eu\tuφ{xo,...,xj}, if x 1 } . . . , x B 6 M
x J " l 0 , otherwise.

Since Ja is rudimentary closed, for each φ(xo,...9xn) we have

W, X t , . . . , Xn E Ja —• Uφ ( X o > . . . t X n ) (W, X l j , X « ) 6 J α .

But for any set u,

Def(w) = {dφiX0t...ίXn)(u,x1,...,xn)\φ(x0,...,xn) is a representation

of an if-formula φ and x l 5 . . . , x B ε u } .

Thus u e Ja implies Def(w) c Jα 5 which proves (*).
We prove the lemma by induction now. For α = 0 there is nothing to prove.

For the successor case, suppose we know that La^J(X, LaeJa+1, and
(Lβ\β ^ α) G J α +i Since L^EJ^^^, (*) tells us at once that L α + 1 =
Def(Lα) c J α + 1 . We show next that L α + 1 eDef(J α + 1 ), whence L α + 1 e J α + 2 , of
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course. Well, we have

L α + 1 = {x^L α | (3φ)(3(α))[Fml 0 (φ) Λ a G Lα

- {x G J α + ! I x e Lα Λ (3φ) (3(5)) [Fml0(φ) ΛaeLa

(3(3)) [Fml0(φ) Λ 3 e Lα

Λ (Vz e L J ( z e x ^ S a t ( L α , Sub(φ, δ, z, J)))]},

where for clarity we have abused slightly the notation developed in II.2, using Sub
as a function rather than as a relation. Now, for amenable sets M, the predicate
Fml0(-) is Δf (by Π.2.4), the function Sub is Δf (by Π.2.7), and the predicate Sat
is Δf (by Π.2.8). But J α + 1 is rudimentary closed, and hence amenable. Moreover,
the set Fml0 is a subset of J α + 1 . Hence by Δx-absoluteness,

L α + ! = {x e J α + ! NJα+ /'(x c LJ Λ (3φ) (3(3)) [Fml0(φ) ΛaeLa

A (Vz G Lα) (z G x ^ Sat(Lα, Sub(φ, v, z, a)))]"}.

Hence L α + 1 e Def(Jα+1), giving L α + 1 e i α + 2 ί as required. Finally, we have

(L l̂jS ^ α + 1) = (Lβ\β < α) u {(Lα+1, α + 1)},

so by induction hypothesis and the fact that La+1e JΛ+2, since J α + 2 is rudimen-
tary closed, we see that (Lβ \ β *ζ α + 1) e J α + 2 .

There remains the limit case of the induction. Suppose that α > 0 is a limit
ordinal, and that for all β < α, Lβ c Jβ and Lβ9 (Ly \γ ^ β) e Jβ + ί. So, as Jα is
transitive, Lβ c Jα for all /? < α. Hence Lα = (J Lβ^Ja. Again,

Lβ = {xeJ β | (3v<α)(xeL v )},

so we have

Lα = {x € /„, I (3/) [/ is a function Λ dom(/) e a Λ /(O) = 0

Λ (Vv e dom(/)) [(lim(v) -»/(v) = (J /(τ)) Λ (SUCC(V)
τ<v

-*/(v) = Def(/(v - 1)))] Λ x G ran(/)]}.

But by induction hypothesis, (Lγ \ y ^ β) e Ja for all β < α, so the quantifier (3/)
in the above can be restricted to Ja (without affecting the meaning). Moreover, the
unbounded quantifiers involved in the definition of the function Def can also be
restricted to Jα, since they only refer to elements of ( J r a n ( / ) (see the proof of
II.2.12). Hence, if φ is the J^-formula which we have just been (implicitly) discus-
sing, we have

Lα = { x G J α | h J α φ ( x ) } .
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Thus LαeDef(Jα) c J α + 1 . Similar considerations lead to the conclusion that
(L, I β < α) e Def (Jα), and so

(L, |)8 < α) = (Lβ\β < α) u {(Lα, α)} e J β + 1 .

The lemma is proved. D

Using 2.3, we may now show that

L = U Λ
αeOn

In fact we show that the sets Jα and Lα are equal for many ordinals α.

2.4 Lemma.

(i) L α c : J α ^ L ω α .

(ii) Jα = Lα #f ωα = α.

(iii) L= U 4
αeOn

Proof. Clearly, (i) -• (ii) -> (iii). We prove (i). By 2.3, we know already that La^ JΛ.
We show that Jα c L ω α . As a first step we prove that

(*) for all α: u eLα->S(w) e L α + 5 .

It is easily seen that for each ί = 0,..., 8,

Thus if w G Lα, we have S(u) c L α + 4 . So, by Σ0-absoluteness,

S(M) = {xe L α + 4 1 NLα + 4"(x e w) Λ (3U, W G U U {M})

[x = F 0(^w) v . . . v x

Hence S(M) e Def(Lα + 4) = L α + 5 , which proves (*).
In order to prove that Ja c L ω α , since Lωa is transitive and Jα = \J Sv, it

v<ωα

suffices to show that 5V e L ω α for all v < ωα. By (*), S'/Lωα c L ω α . In particular,
L ω α is rudimentary closed and (by 1.3) there is a Σ o formula φ(uo>^i) of Jίf,
independent of α, such that for x, y e L ω α ,

y = S(x) iff N L α

By induction on α we prove the following result:

P(α): if v < ωα, then Sv, (Sτ | τ ^ v) e L ω α and the sequence (Sv | v < ωα)

is uniformly Σ [ ω α .
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This, of course, will complete the proof of the lemma.
Let θ(f) be the following Σ o formula of <£ (to define the hierarchy

(SJveOn)):

"/ is a function" Λ "dom(/) is an ordinal" Λ/(0) = 0

Λ (Vv G dom(/)) [(succ(v) - φ(/(v), f(v - 1)))

By our above remarks, it is clear that for any α and any v < ωα, if

then y = Sv. We prove the part of P(α) concerning Σx definability by showing that,
in fact, for any α and any v < ωα,

y = Sv iff NL

Now for the proof of P(α). For α = 0 there is nothing to prove. Now assume
P(α). Then, in particular, (Sτ\τ < ωa) is Σ^ω α, and hence is an element oϊLω<x+ί.
Thus Jα = (J Sτ G Lωa+2 £ L ω ( α + 1 ) . For any n < ω, since L ω α is rudimentary

τ<ωα

closed, we have Sωa+n = S"(Jα) e L ω ( α + υ . Thus Sv e L ω ( α + 1 } for all v < ω(α + 1).
Again, for any n < ω, (Sτ | τ ^ ωα + n) = (Sτ | τ < ωα) u {(Sωα+W, ωα + m) |
m < n}, so as L ω ( α + 1 ) is rudimentary closed, (S τ |τ < ωα + ή) e L ω ( α + 1 ) , and
so (Sτ\τ < v) 6 L ω ( α + 1 ) for all v < ω(α + 1). Finally, to show that for any
v < ω(α + 1),

y = Sv ifiFNL

it clearly suffices to show that whenever v < ω(α + 1) and y = Sv, then there is an
/ e L ω ( α + 1 ) such that

But (Sτ I τ ζ v) G L ω ( α + 1 } is such an /, so we are done.
Finally, assume δ > 0 is a limit ordinal and that P(α) holds for all α < δ. It is

then trivial that Sv, (Sτ | τ < v) G Lωδ for all v < ωδ. And since (Sτ | τ ^ v) e Lω ( 5 for
all v < ωδ, the same argument as above shows that for v < ω<5,

x = Sv iff NL

The proof is complete. D

Returning now to our study of the Jensen hierarchy itself, the same argument
as in 2.4 above shows that

2.5 Lemma. The sequence (Sv | v < ωα) is uniformly Σία for all α. D
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2.6 Corollary. The sequence (Jv | v < α) is uniformly Σ{* for all α.

Proof Clearly, the sequence (ωv | v < α) is uniformly Σία for all α, so the result
follows easily from 2.5. D

2.7 Lemma. There are well-orderings <s

x of the sets Sv such that:

(i) V! < v2 implies <s

Vl c <* 2;

(ii) < f + i is βft end-extension of <^;

(iii) ί/ie sequence (<f I v < ωα) is uniformly Σχα /or α// α.

Proof. We use 1.21. Set <o = 0, and, by recursion, let

<ξ+1=V/o(Sv, <*),

<s

λ= U < v ? if lim(A).
v<λ

Then (i) and (ii) are immediate, whilst (iii) is proved by an argument as in 2.4 and
2.5. D

2.8 Lemma. There are well-orderings <aof the sets Jα such that:

(i) α! < α2 ϊm/?/ies < α i c < α 2 ;

(ii) < α + 1 is an end-extension of < a ;

(iii) ί/ίe sequence (<β\β < a) is uniformly Σ ί a /or a// a;

(iv) < a is uniformly Σί a /or a// a;

(v) ί/ie function pra(x) = {z |z < a x } is uniformly Σί β /or a// a.

Proo/ Set < a = < ^ a for all α. Then (i)-(iii) are immediate by 2.7. For (iv), note
simply that x <ay iff (3v e Jα) (x < Jy). For (v), note that

y = p r α ( x ) iff (3 v e J a ) ( x e Sv A y = {z\z <ξx})

and that v < ωα implies <f e Jα, and use 2.5 and 2.7. D

By 2.4 we can define a well-ordering < j of L by setting

< J = u <-•
αeOn

Then, as was the case with the well-ordering < L , < 3 is a Σ x well-ordering of L.

2.9 Lemma (Condensation Lemma). Lei α be any ordinal. Let X < x Jα. T/ien ί/ϊ̂ re
is α unique ordinal β and a unique isomorphism π such that:

(i) π:X ^ Jβ\

(ii) π(v) ̂  v for all v e X n ω α ;

(iii) π(x) =ξjX for all x e l ;

(iv) if 7 ς l is transitive, then π\Y=id\Y.
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Proof. By 1.22 there are unique π, W such that π: X = W, where W is transitive.
Let β = π"(X n ωα). We show that W= Jβ, which proves (i). First we establish a
simple claim.

Claim, y e X n ωoί-^[Sγe X A π(Sγ) = Sπ(y)].

We prove the claim by induction on y. Clearly, 0 G X n ωα, So = 0 G X, and
π(S0) = π(0) = 0 = So = Sπ(0). Suppose now that γ = δ + 1 and we have proved
the claim below y. Since y e l , w e have δeX also. And by 2.5, we have Sy, Ŝ  G X.
Using 1.22 now, together with the induction hypothesis,

π(Sγ) = π ( S , + 1 ) = π(S(Sδ)) = S(π(Sδ)) = S(Sπ(δ)) = Sπ (, ) + 1 = S π ( y ) .

Finally, suppose that y > 0 is a limit ordinal and we have proved the claim below
y. Notice that t=Jαlim(y), so lim(otp(X n y)), so lim(π(y)). Now, Sγ = (J S ί9

<5<y

so π(Sy) = π"(Sy n X) = π"( (J (S* n X)), so it suffices to show that Sπ(γ) =
δ<γ

π "( U ($δ n X))- First of all, let x e Sπ(y). Thus for some ξ < π(γ), x e Sξ. But ran(π)
δ<γ

is transitive, so ξ = π(ζ) for some ( e l n y . Thus by induction hypothesis,
x e Sπiζ) = π(Sζ) = π"(SζnX) c= π"( [j (SδnX)). Conversely, let x e π" ((J (SΛn JSQ).

Thus x = π(y\ where 3; G | J (S^ n X). Now, NJα(3(5 < 7) (y G Ŝ ), SO as y, y e X
δ<y

<! Jα, we have Nx(3 (5 < 7) (y e Sδ\ so we can pick δeX ny with y e Sδ. Then by
induction hypothesis, x = π(y) e π(Sδ) = Sπ{δ). But π(^) < π(y). Hence x e Sπ{γ).
This proves the claim.

Using the claim, it is now easy to prove that W= Sωβ = Jβ. Suppose first that
weW. Thus w = π(x) for some xeX. Now NJα(3y) (x e Sy% so as x e X < x Jα, we
have Nx(3y) (x e Sy). So pick y e l n ω α with x G Sy. Then w = π(x) G π(5y) =
Sπ(y) ^ Sωβ = Jβ. Conversely, suppose that yeJβ. Then y e Sγ for some y < ωβ.
But 7 = π(δ) for some <5 G X n ωα. Thus y e Sπ{δ) = π(Sδ) = π"(Sδ n X), whence
yGran(π) = W.

That proves part (i) of the lemma. Part (iv) holds by definition of π. And (ii)
follows from (iii). So we need to prove (iii). Notice that as < α is uniformly Σ{α, we
have

x <ay iff π{x)<βπ(y).

Suppose that x < j π(x) for some x G X. Let x be the < j-least such. Since π(x) G Jβ,
we must have x G Jβ here, so x = π(x') for some x' e X. But π(x') = x < 7π(x) so
x' < jX. Thus by choice of x, π(xr) ^ 3 x ' . But this means that x ^ jx', which is
absurd. The lemma is proved. D

3. The Σx Skolem Function

The general notion of a Σn skolem function was already introduced in II.6. Recall
that if M =<M, (Ai)i<ω}, where M is an amenable set and A{ c M, then by a
Σn-skolem function for M we mean a Σ f ({/?}) function /* (for some p e M) with
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dom(d) g to x M, such that whenever peΣ^({x,p}) for some xeM, then
3yP(y) -+{3ie ω) P(h(ί, x)). (In which case we say that p is a good parameter
for ft.)

In this section we shall be concerned with structures of the form <M, A},
where A c M. Notice that if M is rudimentary closed, it is amenable. Hence we
may reformulate II.6.1 through II.6.3 as follows.

If h is a function with dom(h) ^ ω x M, and if X c M, then we shall denote
by ft*(X) the set h"(ω x X). In what follows we assume n ^ 1.

3.1 Lemma. Let <M, ,4) foe transitive and rudimentary closed. Let hbeaΣn skolem
function for (M,A}. If xeM, then xe/i*({x})<(n(M,i). (More precisely,
<h*({x}\Anh*({x})y<n(M9A}.) D

3.2 Lemma. Lei <M, A},hbe as above. Let qe M, αra/ let X ^ M be closed under
ordered pairs. Then X u {<?} <Ξ ft*(X x {<?}) -<n<M, A>. D

3.3 Lemma. Let <M, Ay, h be as above. Let X c M, and suppose that h*(X) is
closed under ordered pairs. Then X c /z*(X) -<n<M, A>. D

Now, in Π.6.6 we showed that each limit Lα(α > ω) has a Σ1 skolem function.
And an entirely parallel proof will show that each Jα(α > 1) has a Σ t skolem
function. But as our discussion in section 1 indicate, we require slightly more than
this. We need to know that each amenable structure <Jα, A} has a (uniform) Σt

skolem function, and that even in the absence of amenability, the definition of this
skolem function still defines a function having "skolem-like" properties. This is
where 1.15 comes in. By 1.15 (together with 1.9) we have:

3.4 Lemma. Let n ^ 1. // α > 1 and <Jα, Ay is amenable, then N<}α Ay is (uniform-
ly) Σ<J">Λ\ •

We now fix, once and for all, some simple enumeration (φt \i < ω) of all the
formulas of S£ (A) of the form

φt = ψi(v0, vγ) = 3v2φi(v0, vl9υ2),

where φt is Σ o . The exact definition of this enumeration is not important. All we
need to know is that it is Δ^1, which will be the case for any "effective" enumer-
ation. We leave it to the reader to supply any details felt neccessary.

Fix <Jα, Ay now. For i e ω and x e Ja, set:

ra,A(U x) - the <,-least z e Jα such that t<Ja,Λ>φi((z)θ9 x, (z)^

Thus, for ί e ω and x,ye Jα:

= K,A(Ϊ> X ) ̂  th^ re is a z G Jα such that (z)0 = y and z is the

< j-least z in Jα such that £<Joc,A>φi((z)o, x, (z)^
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In other words:

y = KfA(Ux)^3z3w [(z)o = y ΛW = {v\v<jz}

A tvnAϊlΦiifflo* x, (z)i) Λ (Vv e w)-iφi((t;)o, x, (v)^]].

Let θ be the canonical Σ o formula such that for all α > 1 and all z e Ja9

(See 2.8 (v).)
Then we have:

= y A h<Jα,α>[0(w, i, ί) Λ <p,((i)0, x,

Let 0t(w, y, x) be the Σ o if-formula:

K(")θ)θ = y A Θ((W)1? (W)o, (W)2) Λ <Pi(((")o)o, X,

(More precisely, let θt be the canonical rendering of this formula in true Σ o form.)
Then θi is independent of the choice of α, A. But clearly, for any <Jα, ̂ 4>,

y = KA(U χ)~(iu E Ja) [N<Jα^>θί(ό, i x)i

We establish several important facts concerning the functions ha A.

3.5 Lemma. The sequence (θi \ i < ω) is A{1.

Proof. Since the sequence (φi \ ί < ω) is Δί1. D

3.6 Lemma. Let 1 < α < α, A c Jα . // 3; = hd,AnJl.(U x), ίΛen y = ftα>i4(i, x).

/ By Σ0-absoluteness (1.9.14). D

Notice that we have not so far required that the structure <Jα, A} is amenable.
As we shall show presently, in the case where we do have amenability, the function
h^A is Σt-definable over <Jα, A}. In such cases, it is possible to deduce our next
three lemmas from II.6.1 —II.6.3. We do not do it this way because we shall need
these results in cases where amenability is not available.

3.7 Lemma. Let A^Ja,xeJa. Then

Proof. Set h = hatA, N = fc*({x}). Let P e Σ{J^A>(N) n ^ ( J α ) . We show that if
P Φ 0 then P n N φ 0.

L e t P b e Σ i J « * A > ( { x ί 9 . . . , x j ) , w h e r e x ί 9 . . . , x n e N . P i c k iί9...9ineωso t h a t
χi = Hh 9 x), - 5

 χ

n — h{in-> x)- F ° r e a c h fe = 1,..., n, xfc is the unique y in Jα such
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that h< J α M >3z0 i k(z, y, x). Hence for each such fc, xk is Σ^defϊnable from x in
<Jα, A}. Hence P is in fact Σ[Joc'Λy({x}). Thus for some i e ω,

Since P Φ 0, let 3; be the < j-least element of P. Then clearly, 3; = h(i, x). Hence
yeN, proving that P n N φ 0. D

By modifying the proof of the above lemma along the lines of Π.6.2 and II.6.3,
we obtain:

3.8 Lemma. Let A c J^p e Jα, X ^ Jα. // X is closed under ordered pairs, then

Xu{p}ςΞ:hZA(Xx{p})<i<J«,Ay. D

3.9 Lemma. Let A^Ja,X^JΛ.If h*A(X) is closed under ordered pairs, then

Xch*A(x)<i<JΛ,A>. •

3.10 Lemma. // <Jα, Ay is amenable, the function h^A is (uniformly) Σ[J*'Λ>>.

Proof We have

y = KtA(i9 x)^\=<JoifAy3uθi(u, y, x).

By 3.5 and 3.4, the result follows immediately. D

Let Ha A denote the uniformly Xtf°"Ay predicate such that for amenable

<Ja,A>,
y = K,Λ(U X ) ^ ( 3 Z G Jα) # α ^(z, y, i, x).

As an immediate corollary to the above result we have:

3.11 Lemma.

(i) The function h^A is a (uniformly Σx) Σ x skolem function for amenable

<Jα, Ay with α > 1.

(ii) The function ha 0 is a (uniformly Σί)Σ1 skolem function for Jα for each

α > l . •

We often write ha for haj. The notation h^A, ha, θh EaA Ha( = Haj) is fixed
for the rest of this book.

As an illustration of the use of the skolem functions ha, we shall prove an
analogue of II.6.8 for the Jensen hierarchy, showing that for any ordinal α there
is a Σ1(Ja) map from ωα onto Jα. This will require some preliminary lemmas, but
before we give them we introduce an important notion which should throw some
light upon our construction of the Σ x skolem function.

A function r is said to uniformise a relation R iff dom(r) = dom(i^) and for
all x,

3yR(y,x)^R(r(x),x).
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We say a structure of the form M = <M, {Ai)i<ωy is Σn-uniformisable iff every
ΣB(M) relation on M is uniformised by a ΣB(M) function.

In general, Σn-uniformisability is a very strong condition to demand of a
structure. Indeed, the existence of any uniformising function definable over the
structure concerned is quite a strong property, let alone the existence of one whose
definition is no more complex than that of the relation it is uniformising. It is thus
perhaps rather surprising to learn that for all α > 1 and all n ^ 1, Jα is
Σπ-uniformisable. In the general case the proof is rather tricky, and will be given
in the next section, where Σπ-uniformisation will play an important role in our
study of the ΣM-ρrojectum. But the case n = 1 is quite straightforward, and we
shall consider this case here, using it to obtain an analogue of Π.6.7 for the Jensen
hierarchy. (In the proof of II.6.7 we did in fact make implicit use of the fact that
for limit α > ω, Lα is Σ^uniformisable, but we did not dwell upon this point there.)

First let us see how Σn-uniformisability affects the existence of ΣM-skolem
functions.

3.12 Lemma. Let n ^ 1, α > 1. // Ja is Σn-uniformisable, then it has a Σn-skolem
function.

Proof. Let (φf | z < ω) be a Δ^1 enumeration of all Σπ-formulas of 5£ with free
variables vθ9 υt. By 3.4, the relation

is ΣJ

n". Let r be a Σn(Ja) function uniformising this relation. Pick/? e Jα so that r is

Σί-({p}). Set

h(i,x)~r(i,(x,p)) (xeJα).

It is easily seen that h is a ΣM skolem function for Jα and that p is a good parameter
for h. D

We note that the converse to the above lemma is trivially true.
For the case n = l w e now prove:

3.13 Lemma. Let α > 1. Then Jα is Σ^-uniformisable.

Proof Let R(y, x) be a Σ ^ J J relation on Jα. Let S be a Σ0(Ja) relation such that

Define g on Jα by

g(x) ~ the < j-least w such that S((w)0, (w)1? x).

The function g is Σ ^ J J . For it has the definition

w = g(x)^S((w)0,(w)ux)

A 3u[u = {w' I w'<jw} A (VW'G u)-\ S((w%, (wθi, *)],
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which is Σ ^ J J by 2.8(v). Now set

rW^igix))^

Then r is Σ ^ J J , and r clearly uniformises R. D

At this point the reader might like to see what goes wrong when we try to
generalise the above argument to the case n > 1. (As we shall see in the next
section, proving ΣM-uniformisability of Jα for n > 1 is by no means a simple matter,
though it is achieved by somehow pushing through an argument such as the
above.)

Now for our analogue of II.6.8. As in II.6.6, let

Φ: On x On <-• On

be GδdePs pairing function. By the same argument as in Π.6.6, we have:

3.14 Lemma. Φ " 1 \ ωα is uniformly Σ"ία for all α. D

Analogous to Π.6.7 we have:

3.15 Lemma. There is a Σ ^ J J map from ωα onto ωα x ωα.

Proof Set

Q = {a\Φ: α x α«->α},

a closed unbounded class of ordinals. It is easily seen that ωα = α for any ordinal
α such that ωα e Q. Moreover,

We prove the lemma by induction on α. For α = 0 the result is trivial, so we
assume α > 0 now and that the lemma holds for all β < α. There are three cases
to consider.

Case i. ωα e Q.
In this case, Φ " 1 f ωα suffices.

Case 2. α = β + 1.
If β = 0 here, then ωα = ω e Q and we are done by Case 1. So we may assume

that β > 0. Define j : ω α ^ ω β by

(2ξ9 iϊξ<ω

j(ξ) = \ξ, if ω ^ ξ < ωβ

[in + 1, if ωβ + n.

Clearly,; is Σία({ω, ωβ}).
By induction hypothesis, there is a Σ^Jβ) map g from ωβ onto ωβ x ωβ. Let
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a Σ^Jβ) relation on Jβ. Let g be a Σ1 (Jβ) function uniformising G. Clearly, g maps
ωβ x ωβ one-one into ωβ. Now, g emd(Jβ) = Jα (since rud(J^) n ^(J^) =
Def{Jβ)), so / is a Σ^JJ map from ωα x ωα one-one into ωβ, where we define /
by

Now,; is onto ωβ, so ran(/) = ran(g) e Jα. Hence h is a Σ x (Jα) map from ωot onto
ωα x ωα, where we define /i by

( / - > ) , i fveran(/)
v ; ((0,0), otherwise.

The map h is as required.

Case 3. ωα φ Q and lim(α).
Set (v, τ) = Φ~1(ωα). Since ωα φ Q, we have v, τ < ωα. Let <* be the well-

ordering of On x On used to define Φ (see II.6.6), and set

c = {z\z <*(v,τ)}.

Then c e Jα, and moreover, Φ \ c is a Σx(Jα) bijection from c onto ωα. Pick γ < α
such that v, τ < ωγ. (Possible since lim(α).) Then Φ " 1 \ ωy is a Σx(Jα) map from
ωα one-one into ωy. Also, arguing as in Case 2, the induction hypothesis implies
the existence of a map g e Ja one-one from ωy x ωy into ωy. Then / is a Σ ^ J J
bijection from ωα x ωα onto d = g"\g"c x ί/"c], where we define / by

But d e Jα, so h is a Σ1(Ja) map from ωα onto ωα x ωα, where we define h by

" ' ( a if ξed,
(0,0), otherwise.

Then h is as required. The proof is complete. D

We may now prove our analogue of Π.6.8.

3.16 Lemma. Let α > 1. There is a Σ1(Ja) map from ωα onto Ja.

Proof Let / be a Σ^dp}) map from ωα onto ωα x ωα, where pe Jα is the
< j-least for which such an / exists. Define /°, f1 by

/(v) = (/°(v),/1(v)) (veωα).

By induction, define fn from ωα onto (ωα)" by:

fx = id \ ωoc,
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Notice that each /„ is Σ{a ({/?}).
Let h = h(χ,H = Ha, and set X = /ι*(ωα x {/?}).

Claim 1. X is closed under ordered pairs.
To see this, let X X , X 2 G X , say xt = h(jh(vhp)). Let (v l5 v2) =/ 2 (τ). Then

{(x1? x2)} is a ^{"({τ,^}) predicate on Jα. So by definition of h, (x l 5 x2) G X, as
claimed.

By claim 1 and 3.9, X -< x Jα. Let π: X ^ Jβ, where jS ̂  α, by the Condensation
Lemma. Clearly, ωα ς I , so we must have β = α here.

C/αim 2. For all i e ω, x e X,

Let i e ω , x e l . Suppose first that y = h(ί, x) is defined. Note that as
x G X -< x Jα, we have y e X. Now (with (0f | i < ω) as defined in the definition of
the Σ1 skolem function),

z,y, x).

So as x, y e X < i Jα,

\=x3zθt(zJ,x).

Pick z G X such that

txθi{z,y,x).

Applying π\ X ^ Jα,

Thus

(y) = /z(z,π(x)).
Conversely, suppose h(ί, π(x)) is defined. Then /i(i, π(x)) G Jα = π"X, so for

some y e X, h(i, π(x)) = π(y), and we can reverse the above steps to obtain
y = h(ί, x). This proves claim 2.

Now, /: ω α - > ω α x ωα, so as π \ ωoc = id \ ωα, π"f = f. And by isomorphism,
π"f is Σ"{α({π(/?)}). So by choice of/?,/? ^ 7π(/?). But by 2.9(iii), π(/?) ^ 7 /?. Hence
π(p) = p.

By claim 2 now, for i G ω, v G ωα, we have

Thus π [" X = id ί X. Thus X = Ja. It follows at once that if we set
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then r is a Σ1(Ja) map such that r"ωα = Jα. However, we are not yet done,
since the map r just defined is not total on ωα. To achieve this, define
g: ωα x ωα x ωα -• Jα by:

otherwise.

Then g is Σ1(Ja). And clearly,

g"(ωoί x ωα x ωα) = /i*(ωα x {/?}) = X = Ja.

Thus g o/3 satisfies the lemma. D

By examining the proofs of 3.15 and 3.16, we see that in the case where α e Q,
no parameters are required in the functions we defined. Hence, noting that ωα = α
whenever α e β, we have:

3.17 Lemma. // α is c/αsed under the Gδdel pairing function, there is a (uniform)
Σ{" map from ωα onto Jα. D

4. The Σn-Projectum

As we indicated in IV.4, the Σπ-projectum of an ordinal plays an important role
in the reduction of Σn predicates to Σ x predicates, the main idea behind the fine
structure theory. Indeed, if ρ is the Σπ-projectum of α, then it is as a Σ x predicate
on <Jρ, A} for some set A that we shall code a given Σ n predicate on Jα.

Let n > 0, α > 0. The Σn-projectum of α, ρ", is the least ordinal ρ < α such that
there is a Σπ(Jα) function / over Jα such that f"Jρ = Ja.

By 3.16, it is easily seen that ρ" is the least ρ ^ α such that there is a Σn(Ja) map
/ for which / " ω ρ = ωα.

Clearly, 0 < m < n -• ρ" ^ ρ™. So it is natural to define ρ£ = α for each
ordinal α.

4.1 Lemma. // ρ£ > 1, ί/zen lim(ρ").

Proo/. Suppose that ρ = ρ" = y + 1, where γ > 0. Let / be a Σπ(Jα) function such
that / " ω ρ = ωα. Define g: ωy -• ωρ by

I m, if v = 2m < ω,

ωy + m, if v = 2m + 1 < ω,

v, if ω ^ v < ωy.
Clearly, g is Σ ^ J J . Thus /° 0 is Σn(Jα). But (/° #)"ωy = ωα, so this contradicts
the choice of ρ. D
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In order to obtain more information about the Σπ-projectum we shall prove
that for all α > 1 and all n > 0, Jα is Σπ-uniformisable. The proof is fairly intricate,
and requires several preliminary lemmas. Before we begin, we outline the general
strategy.

We begin by examining the proof of Σx-uniformisation given in 3.13. This
reduced to proving that every Σ o relation is uniformised by a Σ x function. (In 3.13,
what we really did was to uniformise the Σ o relation S, obtaining the uniformi-
sation of the Σ x relation R as a simple consequence.) This worked in the case n = 1
because, if <S(y, x) is Σ o , then so too is (Vz e y ) π S(z9 x). But consider now the
analogous situation for n > 1. We seek a Σn uniformisation of a Ππ_ ι relation S.
Now, if S(y, x) is ΠM_ 1, then (Vz e y)—\ S(z, x) is in general Σn+ί, not Σn. Roughly
speaking, we overcome this difficulty as follows. We reduce the predicate S on Jα

to a predicate on J ρ g - i . The structure Jρ g-i is sufficiently suited to handling
Σ n -i(Λ) predicates on it that the canonical uniformisation procedure applied to
the reduced predicate turns out to be Σn(Jα), thereby providing us with the desired
Σπ uniformisation of S. The precise property of the projectum which we need in
order to make this work is described below.

Let P(y, x) be any predicate on Jα. For ρ ^ α, we say that P(y, x) is Σn(Ja) on
JQ iff there is a Σn formula φ(y, x) of JS?Jβ such that

(Vy e JQ) (VXG Jα) [P(y, x) ~ NJαφ(j?, f)].

Similarly for Πw(Jα) on Jρ.
For any predicate R(y, x), we denote by R*(y, x) the predicate

and by -R3(y, x) the predicate

Let α > l , n > 0 , 0 < ρ < α . We denote by Γ(α, w, ρ) the following property:
whenever R(y, x) is Σπ(Jα), then R*(y, x) is Σn+ x(Jα) on Jρ.

We shall prove that for any α > 1, rc > 0, Γ(α, rc, ρ") is valid. Using Γ(α, π, ρ")
we shall be able to prove that Jα is Σ M + i-uniformisable, the proof being a variation
of the proof for the Σ x case (3.13) as outlined above. (In fact the proof of Γ(α, n, ρ")
and that of Σn+ i-uniformisability proceeds by a simultaneous induction on n) But
first we need some preliminary results.

4.2 Lemma. Let α > l , M > 0 , ρ > 0 . Assume Γ(α, n, ρ). Then:

(i) if Λ(y, x) is ΠM(Jα), ί/zen ^ ( y , x) is Π π + 1 (J α ) on Jρ;

(ii) if R(y, x) is ΣB(JJ, then Q(y, x) is Σ π + 1 (J α ) on JQ9 where

Proof, (i) This follows from Γ(α, n, ρ) by taking negations,

(ii) For y, x e Jρ, we have

Q(y, x)<-+(3u, w,veJβ)\yeSvΛw= <s

v Λ (VZ) (Z e u<-+(z, y) e w)

Λ (Vz e u) i?(z, x)].
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Using Γ(α, n, ρ), this is easily seen to be Σn+ί(JJ. (In case ρ < α, we must use Jρ

as a parameter to ensure that u e JQ. If ρ = α there is no need to mention ρ at all,
of course.) •

4.3 Lemma. Let a > 1, n > 0, and set ρ = ρ". Suppose that Jα is Σn-uniformίsable.
Then <Jρ, 4> is amenable for all A e Σπ(Jα) n ^(J ρ ) .

Proo/ Let A e Σπ(Jα) n 0>(Jρ). We show that <Jρ, 4> is amenable. If ρ = 1, then
Jρ = Hω, so this is immediate. Now assume ρ > 1. Thus by 4.1, lim(ρ). So it suffices
to show that y < ρ implies A n JγeJρ.

Letγ <ρ be given. Set B = A n Jy. Thus B is Σπ(Jα). Let B be Σj[β({/?}). Let
φ(v0, v^) be a Σπ-formula such that

(*) x e β iff ¥Juφ(x9p).

By assumption, Jα is Σπ-uniformisable, so by 3.12, Jα has a Σπ skolem function, h.
Set X - /z*(Jγ x {/?}). By 3.2, X < π J α . Let π:X^J,. Set p = π{p), h =
π"{h n(X x ω x X)). Since B<^Jγ,π"B = B. So by (*)

(**) x e β iff ¥Juφ(i9p).

Thus β is Σ^α({^}). Hence B e J s + x . If ά < ρ then this means that B e Jρ and we
are done. So we are reduced to proving that α < ρ.

Suppose, on the contary, that α ̂  ρ. By definition of X, Jα- = /ϊ*(Jy x {p}). So,
as h is ΣΠ(JS), there is a Σ , ^ ) function / such that f"Jy = Ja. Let # be a ΣM(J^) map
such that g" Jρ = Ja. Since ρ ̂  α, gf °/ is a Σn(Jα) map such that g °f"Jy = Jα,
contrary to y < ρ. The lemma is proved. D

Our proof of Σn uniformisability will be by induction on n. The key to the
induction is provided by the following lemma.

4.4 Lemma. Let α > 1, n > 0, and assume Γ(α, rc, ρ"). // Jα is Σn-unίformisable, then
it is Σn+ γ-uniformisable.

Proof. The procedure is not unlike that adopted in proving Σί -uniformisability,
except that we reduce the predicate to one on J ρ g before we commence.

Let R(y, x) be ΣM + 1(Jα), and let S be Πn(Jα) such that

Let ρ = ρ", and let / be a Σn(Ja) function such that f" Jρ = Ja. We shall consider
the case where ρ < α. The case where ρ = α is a little simpler, since there is no need
to mention ρ at all. Set

r(x) ~ the <,,-least z such that S((/(z))0, {f{z))l9X)9

Clearly, r uniformises R. If r is Σn+ x (Jα), so too is r, so what we must do is prove
that r is indeed Σ π + 1 (J α ) . We have, by definition,
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y = r(i)<->[y e dom(/)] Λ [VZ(Z =f(y) -> S((z)θ9 (z)l9*)]

e dom(/) ->

The first conjunct here is Σπ(Jα) and the second is ΠM(Jα). Also, dom(/) is Σn(Jα),
and for y e Jρ, {/ | y' <3y) e Jρ, so by 4.3,

dom(/)n { / | / < j y } e J β

for each y e Jρ. Hence the third conjunct reduces to

(3ueJβ)[0/y'eu)(yf<JyΛy'edom(f))

Λ ( V / ) ( / < J J > Λ

Λ (V/G ύ) (3z) (Z = / ( / ) Λ I S((Z)O, (Z)l5 X))l

This is of the form

(3u e JQ) [(V/ G iι) (Σn(JJ) Λ (Vy') (Πn(Jα)) Λ (V/ e u) (ΣM(Jα))].

Using Γ(α, n, ρ), we see that it is in fact of the form

(3ueJρ)[Σn+1(JΛ) A ΠM(Jα) Λ Σ n + 1 (J α ) ] .

Hence r is ΣM + 1(Jα), as required. D

4.5 Theorem (Uniformisation Theorem). Let α > 1, n > 0. Then Jα is Σn-unί-
formίsable.

Proof. By 3.13 we are done if n = 1. By 4.4, the result follows by induction if we
can establish Γ(α, n, ρ") for all n > 0. We do this by induction on n as well.

Let n ̂  1, and in case rc > 1 assume Γ(α, 1, ρ^),..., Γ(α, n— 1, ρ"~x). We prove
that Γ(α, ft, ρ"). Note that by 4.4, Jα is Σm-uniformisable for all m ̂  n, m ̂  1.

Set ρ = ρ", yy = ρ"" 1 . Notice that ρ ̂  η ̂  α. There are two cases to consider.

Case 1. There is no Σπ(Jα) map from any y < ωρ cofinally into ωη.
In this case we commence by proving a sort of Σw-Collection Axiom.

Claim. If R(y, x) is Σn(Ja) and w e Jρ, then

(Vx G u) (3y e Jη) R(y, x) - (3ϋ G J,) (VX G II) (3y G ι;) Λ(y, x).

Proo/ o/ claim. If ρ = 1 the claim is trivial, so assume ρ > 1. Hence lim(ρ), and we

can pick γ < ρ so that ueJy. Let): ωy^>Jy be Σ1(Jγ). Let r be a Σn{Ja) function

uniformising R. Define /: ωy -+ ωη by

the least τ < ωη such that r °;(v) e Sτ, if ;(v) e w,

0, otherwise.
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Thus:
τ =/(v)~N, e[(/'(v)en) Λ 3z3f[z = roj(v) Λ / = (Sξ\ξ^ τ)

Λ z ef(τ) Λ (Vξ G τ) (z φ/(ξ))]] v [(/(v) φ u) Λ (τ = 0)].

Thus / is Σπ(Jα). So, by assumption there is SL δ < ωη such that f'ωy <^δ. Then

which proves the claim.
We must now consider two subcases.

Case ί.ί. n = 1.
Let R(y, x) be Σ J J J . Let 5 be Σ0(Jα) with

Let j ; e J e , x e J α . Since η = ρ° = α, the claim gives

(Vz G 30 R(z, x) ̂ (Vz G y) (3 ί e Jη) S(t9 z, i)

~(3υ G J,)(Vz G y)(βt ev) S(ί, z, x),

which is ΣiίJJ. Thus Kv is Σ^JJ on Jρ, proving Γ(α, 1, ρ).

y.2. n > 1.
Let #();, x) be ΣΠ(JJ, and let S be Πw_i(Jα) with

Let / be a Σπ_!(Jα) function such that fr'Jη = Ja> Let y e Jρ, x G Jα. By the claim,

(Vz G JO R(Z, X) ̂  (Vz G y) (3 ί G J,) S(/(ί), ̂ , ί)

^(3t; G J,) (Vz G y) (3ί e i;) S(/(ί), z, x).

Now, Jα is Σ^-i-uniformisable and dom(/) is Σn_1(Jα), so by 4.3,

ve Jη-> dom(/) n v e Jη.
Hence

i^v(y, i)<-(3ϋ G J,) [(Vx eι;)(xe dom(/))

Λ (Vz ey)(3teυ) (Vw) [w =/(ί) - S(w, z, x)]].
This is of the form

(31? G Jη) [Πn(Jα) Λ (Vz G JO (3ί G i;) (Π^^JJ)] .

Using Γ(α, n — 1,77), together with 4.2 (i), this is in fact of the form

(3i?eJl |)[Πll(Jβ)Λ(Vzey)(Πll(Jβ))],
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which is the same as

(3veJη)(Un(JΛ)h

which is Σ n + 1 (J α ) , as required.

Case 2. Otherwise.
Let γ < ωρ be least such that there is a ΣM(Jα) map g from γ cofinally into ωη.

Let R(y, x) be Σw(Jα). We commence by proving:

Claim. There is a Δπ(Jα) predicate Q(v, 3;, x) such that for any y e Jρ, x e Jα,

Proof of claim. Let / be a Σπ_ x (Jα) function such that f" Jη = Ja. (If n = 1, then
f/ = α, so take / = id \ Ja.) Let S be Π ^ - ^ J J with

Define β by

β(v, y, x ) ^ ( v e 7) Λ (3ί e 5,(v)) S(/(ί), y, x).

Since gf is cofinal in ωf/ and f"Jη = Ja, we have

We show that Q is Δn(Jα). It is clearly Σπ(Jα).
Define β by

G(u9y9x)~(3teu)S(f(t),y,i).
T h u s :

Q(v, y, x) <r+ (v e 7) Λ £ ( S e ( v ) , y, x)

<->(vey) Λ VwVτ[τ = g(v) ΛW = Sτ^> Q(w,y,x)].

So it suffices to show that Q is ΠM(Jα).
Well, if n = 1, then / = id f Jα, so

Q{u,y,x)++{3teu)S{t9y9x)9

which is in fact Σ0(Jα). So suppose π > 1. Then

β(u, y, S ) ^ ( 3 ί e u n dom(/)) (Vw) [w =/(ί) -^ S(w, y, i)].

Define Γ by

Γ(t, y, i )^(Vw) [w =/( ί) - S(w, y, x)].
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Then T is Π ^ ^ J J , and by the above

Q(u, y,x)<r+(3teun dom(/)) T(t, y, x).

Now, Jα is Σ^-i-uniformisable and dom(/) is Σn_1(Jα), so by 4.3,

ue Jη^u n dom(/) e Jη.

Thus

Q(u, y, x) <-> (Vt; G J,) [ϋ = u n dom(/) -> (3ί e ϋ) T(ί, y, x)].

But we have

t; = w n dom(/) <->(Vxeι;)(xGM Λ x e dom(/))

Λ (Vx e u) (x G dom(/) ->xeι;).

This is of the form

€ V) (ΣB_ , (JJ) A (VX € U) (Ππ_ t (JJ).

Using Γ(α, π — 1, f/), as we may since VE Jη,we see that this is of the form

ΣΛJJΛIVΛJJ,

and is thus ΣM(Jα). Hence Q(u, y, x) is of the form

Q(u, y,x)~(Vve Jη) [Σn(Ja) - (31 e υ) (Ππ_ 1 (JJ)].

Using Γ(α, w — 1, ̂ 7) again, this is of the form

which is Hn(Ja). That completes the proof of the claim.

By the claim, we have, for y e Jρ, x e Jα,

For each x e Jα, we define

G(x) = {(v, z) I v G y Λ z G Jρ Λ ρ(v, z, 5)}.

Thus,

R*(y, x) ++ (Vz G y) (3 v e 7) [(v, z) G G(X)]

where φ is the Σ o formula

φ(v0, vj: (Vϋ2 G ϋ0) (3ϋ3 G t J i ( ( ϋ 3 , v2))9

in the language i f {A).
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Now, lim(ρ), so as φ is Σ o , by Σ o absoluteness we have (cf. the proof of Π.6.3)

# v(y, x) <-» (3 w G Jρ) [(w is transitive) Λ (y, y e w)

( ] w e Jρ) [(V w ew)(Vι;eM)(i;6w) Λ (3;, yew)

Λ SαrV, G(x) n w, φ(& f))].

Now, Q is ΣM(Jα), so for each x e Jα, G(x) is a Σπ(Jα) subset of Jρ. Moreover, Jα is
ΣM-uniformisable. So by 4.3, for each x G Jα we have

w G Jρ -» G(x) n w e J e .
Hence,

£v(j/, x ) ^ ( 3 w G Jρ) (3a e Jρ) [(V11 e w) (Vi? G 11) (1; e w) Λ (y, 7 e w)

Λ (α = G(x) n w) Λ Sαί^(w, a, φ(y, γ))].

So in order to show that R*(y9 x) is Σ π + 1 (J α ) on Jρ it suffices to show that the
function a(w, x) = G(x) π w is Σ π + 1 (J α ) .

Well, we have

a = α(w, x)^Vz[z G α ^ z G W Λ (Z) 0 e y Λ (z)i e J e Λ β((z)0, (z)1? x)].

So, as Q is ΔM(Jα), the function a(w, x) is in fact Ππ(Jα). The proof is complete. D

With the aid of the Uniformisation Theorem, we are now able to provide some
useful information about the Σn projectum.

4.6 Theorem. Let oc > 1, n > 0. Then ρ" is equal to the largest ordinal δ such that
(Jδ9Λ} is amenable for all A e ΣM(Jα) n

Proof. By 4.5 and 4.3, <Jρ, A} is amenable for all A e Σn(Ja) n ^(J ρ ) , where we
have set ρ = ρ" for convenience. Suppose δ were a larger ordinal with this proper-
ty. Let / be a Σπ(Jα) function such that f"JQ = Jα. Set

A = {uεJβ\u$f{ύ)}.

A is ΣM(Jα) and A ^ Jρ, so <J5, ,4) is amenable. But then

A = A nJρeJδ^Ja,

so for some u G J ρ, we have A ^/(w), which leads to the contradiction

uef(u)<r+u G

This proves the theorem. D

4.7 Theorem. Lei α > 1, n > 0. Then ρ" is egwα/ to the smallest ordinal η such that

n Σn(Jα) φ Jα.
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Proof. Let ρ = ρ", and let / be a ΣM(Jα) function such that f"Jρ = JaL. Let ; be a
Σ x(Jρ) map from ωρ onto Jρ. Set

4̂ = {v e ω ρ | v φ/°7'(v)}.

4̂ is a Σπ(Jα) subset of ωρ. If A e Jα, then A =f°j(v) for some v < ωρ, and we get
the contradiction

v ε A<-*v φ/oj(v)<->v φ A.

Hence 0>(ωρ) n ΣM(Jα) $ Jα. But if η < ρ and B e 0>(ωη) n ΣM(Jα), then by 4.6,
<Jρ, B} is amenable, so B = B n Jηe Jρ^ Ja. Thus ^(ωη) n ΣM(Jα) c j α . The
theorem is proved. D

To complete this section, we state the following key fact that was used in our
proof of the Uniformisation Theorem.

4.8 Lemma. Let α > 1, n > 0, ρ = ρn

a. If R(y, x) is Σn(Jα), then R*(y, x) is Σn+ί(Jα)
on Jρ. That is, there is a Σ n + 1 (J α ) predicate Q(y, x) such that

(YV 6 Jβ) (Vx 6 J J [(Vz G y) Λ(z, x) ̂  β(y, *)]. D

5. Standard Codes

Let α > 0 , π > 0 . A Σ w cod^ for Jα is a set ̂ 4 ̂  Jρn. A e Σn(Jα), such that for any

In this section we show that not only does each Jα have a Σ n code for each n, but
there are particularly nice codes which are preserved under condensation argu-
ments.

We begin by recalling the following result (V.5.9).

5.1 Lemma. Let π: Jα-<oΛ Then for any v < ωα, π(Sv) = <Sπ(v). •

Using 5.1, we prove:

5.2 Lemma. Let π: <JS, A} -<0Cα> ^ ) an^ suppose that π"ωά is cofinal in ωα.
Then in fact π: <Jδ, A} <1(Joι, A}.

Proof Let φ be a Σ o formula of i f such that

Since π"ωα is cofinal in ωα, we can find a v < ωα such that
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By 5.1, this can be written as

h < J α M > (3zeπ(S v ))φ(z,π(x)).

So as π is Σ0-elementary, this gives,

N<jδ,,4>(3zeSv)φ(z, x).

So, as required,

x). D

Let α > 0. The standard codes, A", and the standard parameters, p", are defined
by recursion on n.

To commence, set

Λ°a = 0 , p°a = 0 .

Now let n ^ 0 and assume that An

a and p" are defined, and that if n ^ 1, An

a is
a ΣΛ code for Jα. We define A\+1 and pn

a

 + *. By definition oϊρn

a

 + 1 there is a ΣΠ + x (Jα)
map / c Jα x J ρ 2 + 1 such that f"JQn+i = Jα. Let f = fn (JQn x Jρn+i). Then / is

also a ΣM + 1(Jα) map, and f"Je»+i = JQZ- ^ u t / ^ Λs' s o a s ^« ^s a°^" c o c * e ^ o r J*>
f is in fact Σ^Jρn, A"}). Hence we may define

p" +1 = the < j-least p e Jρn such that every x e Jρn is Σί -definable in

(Jρn, A"} from parameters in Jρn+i u {p}.

As in section 3, (φf | i < ω) is a fixed Δ1}1 enumeration of all the Σ x formulas of
if(yl)oftheform

Ψi(vo^i) = 3v2φi(vo,vι,v2),

where φ f is Σ o . Set

5.3 Lemma. A"+1 is α Σ n + 1 code /or Jα.

Proo/. By assumption, AJ is a ΣM(Jα) set. So by 4.6, <Jρ*, A;> is amenable. So by
3.4, ^ + 1 is Σ i K ^ n , AJ». Hence as ^ is a ΣM code for Jβ, An

a

+ί is Σ n + 1 (J α ) . We
must show that for m ^ 1,

n ^ ( J ρ S + 1 ) = Σ m « J ρ S + i ,

Suppose first that R e Σ o «J ρ n + i,A"+1}). Let φ be a Σ o formula of S£ and <? an
element from Jon+i such that
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Since <Jβ»+i, A" + ι} is amenable, we have, by Σ 0 -absoluteness:

R(x)<-+(3u e Jρn+i) (3a e Jρn+i) [u is transitive A xeu A qeu

A a = 4 " + 1 n u Λ N < M f β > φ(x, 4)].

Consider the function a = A" + x nu. Since A"+1 is Jα-definable, so is this function
(as a function on Jρn+i). Indeed, it has the definition

a = Aϊ+1 nu++(Vυea)(υeu A veΛn

a

 + 1) A (\fv e u) (v e Λn

a

 + 1 -> v e a).

This is of the form

a = An

a

 + ' nu^Vvea) (Σw + 1(Jα)) Λ (VI; e u) (Π n + 1 (J α )).

By 4.8, for α e J ^ + i , this is of the form

Σ π + 2 ( J α ) Λ Π M + 1 ( J α ) ,

and hence is Σn+2(Ja).

It follows at once from our above definition that R is ΣΠ + 2(Λ) Hence

Σ 0 « J ρ S + 1 , ^ + 1 » ^ Σ π + 2 ( J α ) .

It follows immediately that

By a simple induction on m, we get, for m ^ 1,

Σ m « J ρ 2 + 1 , ^ + 1 » ^ Σ n + 1 + m(Jα).

It remains to prove that for every m ^ 1,

Σ π + 1 + m ( Λ ) n ^ ( J ρ , + 1) s Σ M « J ρ S + t , ^ + 1 » .

Since ^4" is a Σn code for Jα, it suffices to prove that

Let / be a Σ π + 1 (J α ) function such that f"Jρn+i = Jα. Set J = / n (Jρn x Jρ S +i).
Then / is Σ π + 1 (J α ) and fffJρn+i = Jρn. Moreover, J c Jρ«, so / is Σi(<Jρn, / ;>) .

Let # e Σ w + i(<Jβn, A"}) n ^(J^+i). Assume for the sake of argumenAhat m
is even. Let P be a Σ ^ J g n , 4̂JJ» relation such that for x e Jρ S+i,

R(x) ^(3y,G Jρn) (Vy2 e J ρ n ) . . . (3y w _ x e J ρ S) (Vyw e JQn) P(y, x).
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Define a relation P by

P(z, x)<-> [(z, x e Jρs+1) Λ 3y[y = /(z) Λ P{y, x)]].

Now, there are p,qe JQn such that / is Σ[J <&> A«y ({p}) and P is ΣίJβS ^({g}). By
choice of/?" + 1, the pair"(/?, g) is Σx-definable from elements of Jρn+i u {p" + 1} in
<JρS, AJ>. Hence both / and P are ΣiJQϊ Aϊ>{{u,p'ϊ+1}) for some°w e J ρ S + i . Thus
P is Σ^Jβs i4S>({u9^j|+1}). (in case ρ" + 1 <ρα> w e m ^ y assume that ρ£ + 1 is
Σi-definable from u and />" + 1 in <Jρn, A"} as well.) So for some ί G ω,

(*) P(z,x)<->[(z,xe Jρ.) Λ N < J ρ S ,^ > φ ι . ( (z ,x , W ) o ,^ + 1)]

^ [(z, x G Jρn) Λ (i, (z, x, iι)) e ^ + x ] .

Similarly, if we define D by

D(z)^z e d o m ( J ) ,

then D is Σ 1 «J ρ n, A%)) and there is a i? e Jρn+1 and a7 G ω such that

(**) D(z) ̂  [(z G Jρ.) Λ a, (z, Ό)) EA: + 1].

Now, by definition of P we have, for x G Jρn+1,

R(X) ^(IZ^ Jρn+ l) (VZ2 G Jρn+ l) . . . (3Z W _ ! G Jρn+ l) (VZm G Jρn+ l)

Λ D(Z3) Λ ... Λ Dίz,,,-!)) Λ (D(Z2) Λ D(z4) Λ ..

By (*) and (**), this is Σ m « J β S + i , An

a

+ί)), as required. D

Let <Jα, A} be amenable. The Σn-projectum of the structure <Jα, A} is defined
to be the largest ordinal ρ ^ α such that <Jρ, β> is amenable for all
£ G Σ π « J α , A » n ^(J ρ ) , and is denoted by ρn^A. Note that this definition is not
just a generalisation of the definition of the ΣM-projectum of an ordinal. Though
by 4.6, the notion is a generalisation of that of a Σπ-projectum of an ordinal.
Indeed, we can say more, as the next lemma indicates:

5.4 Lemma. Let α > 1, n ^ 0. Then ρ" + 1 = ρ\^An.

Proof. By 4.6, ρ" + 1 is the largest ρ ^ α such that <Jρ, ^> is amenable for all
A G Σ n + 1 (J α ) n ^(J β ) . Set η = ρ ^ κ .

Suppose that A G ^X{{JQV An

a}) n ^(Jρ»+i). Then, as ^ + 1 is a Σ π + 1 code for
Jα, yl G ΣM + 1(Jα) n ^(Jρn+i). Thus by our above remark <Jρn+i, 4̂> is amenable.
Thus by definition of η, ρ" + 1 ^ 7̂.

Now let A G Σ κ + x (Jα) n ^(J^). By choice of η9 we have (trivially) 77 ̂  ρ". Thus
yl G Σn+ i(Jα) n ^(Jρn). Hence ^ G Σ!«J ρ n, A;». Thus <</„, ̂ > is amenable. So, by
definition, η ^ ρ" + 1.α D
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Again, let <Jα, A} be amenable, and set ρ = ρltA. Suppose that every x e Jα is
Σ1 -definable in <Jα, A} from parameters in Jρ u {p} for some p e Jα. Then we
define /?* ̂  to be the < j-least such p, and set

K,A = {(U x)\ieω AxeJρ A N

5.5 Lemma. Let α > 1, n > 0 . Then:

(i) p: + ί=plz,A»J

(ii) ^ + 1 = 4 ^ .
Proo/. (i) By definition,

/>" + 1 = the < j-least p e JQn such that every x e JQn is Σ1 -definable in

<Jρn, A"} from parameters in Jρn+i u {^}.

By 5.4, Q: = ρ*ntAn. So by definition,p\^ κ =pn

a

 + 1.

(ii) Likewise, by virtue of 5.4 and (i) above, the definitions of An

a

+x and A^ t An

coincide. D

It is the following result which will enable us to carry out condensation type
arguments with structures of the form <Jρn, A"}, thereby enabling us to handle Σn

predicates on the Jα's as coded Σx predicates.

5.6 Theorem ("Condensation Lemma"). Let α > l , r c ^ 0 , m^O. Let <Jρ-, A} be
amenable, and let

S

Then:

(I) There is a unique α ^ ρ such that ρ = ρ", A = A\.

(II) There is a unique %Ώ.π such that:

(i) π:J&<m+nJa9and

(ii) for ί = 1,..., n, π(p$ = p\.

(Ill) For ί= l , . . . , n ,

(π \Jat): <J ρ i , 4 > ^ m + « - ί < ^ ' ^ > D

The proof of 5.6 is quite long. Before we commence we make a few remarks.
Firstly, notice that the result is indeed a condensation lemma. In many applica-
tions, the embedding π will simply be the inverse of the collapsing map obtained
from some Σ x elementary submodel of (Jρn, A"}. Secondly, note that we allow for
the case where m = 0. We will require this case in applications. Notice that this
is the only case where we need to explicitly demand that <Jρ, A} be amenable. In
all other cases this is automatic by the elementarity of π. Finally, some nomen-
clature. The embedding π:J6i^J0l is called the canonical extension of
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Now for the proof of 5.6. This proceeds by induction on n. For n = 0 the
theorem reduces to a triviality, so we are at once left with the proof that if the
theorem holds for n — 1, then it holds for n, where n > 0. To simplify the notation,
let us write ρ = ρ", A = A". So we are given an amenable structure <Jρ, A} and
an embedding

We shall show that there is a unique structure <Jp, B} such that ρ = ρjE and
A = AjE, and a unique π Ώ. π such that, setting β = ρjp1, B = An

a~
ι, p = p":

(i) π:(Jβ,By<m+1(Jβ,By;

(ii) π

The induction step, and hence the theorem, follow directly from this. For by
induction hypothesis there is a unique α such that β = ρ"~x, B = Anf1, etc., and
we have, by 5.4 and 5.5, p = pι

βtBi ρ = ρfcB = ρn

d, A = Afcs = A\.

The function π will be the inverse to a certain collapsing isomorphism. The set
which π " 1 collapses is defined thus:

X = {x e Jβ I x is Σx-definable in <J^, B}

from parameters in ran(π) u {/?}}.

Since X -<x (Jβ, B}, there is an isomorphism

for some unique β, B. Thus

Define ρ ^ ρ by

ωρ = sup(π"ωρ).
Set

l = i n Jρ~.
Then

But π"ωρ is cofinal in ωρ. So by 5.2,

5.7 Lemma, ran(π) = X n Jρ.

Proo/. Clearly, ran(π) ^ X n Jρ. To prove the opposite inclusion, let y e X n Jρ~.
Then for some i e ω and some x e ran(π),

y = the unique xεJβ such that N<J/lfB>φi((y, x),/).
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Thus by definition of A = An

a,

y = the unique y eJβ such that A(ί, (y9 x)).

But x e ran(π) and π: <J ,̂ A} <i(Ju9 A}, so we conclude that y e ran(π). That
proves the lemma. D

By 5.7, π~x is the unique collapsing isomorphism for X n J~. But I n J ^ i s an
e-initial segment of X and π " 1 is the unique collapsing isomorphism for X,
so π~1\(XnJ§) is the unique collapsing isomorphism for Xc\J$. Thus
π " 1 \(X n Jρ~) = π " 1 . Thus π = π ί Jρ and π c π. (Fig. 1 sums up the situation
now.)

<Jβ,B>

<Jβ,B>

<JΦA>

X= ran (π)

$= mn(π)\

<JQ, A>

= <Jρn,A"a>

<JQ,Ά>

(ωρ = sup π"ωQ)

Shaded part = X = {x e Jβ\x is Σ1-definable in (Jβ, B} from parameters in
ran(π) u {/?}}.

Fig. 1

5.8 Lemma, π: <J^, J5> - < m + 1 <Jβ, B}.

Proof. If m = 0 there is nothing to prove. So assume m > 0.
Let y be Σ w + i-definable in <J^, JB> from parameters in ran(π). We must show

that y eran(π). Now, by the definition of ran(π) = X, y is Σm+1-definable in
(Jβ, B} from parameters in ran(π) u {/?}. Let φ be a Σ m + x-formula of i f (2?) such
that y is the unique yeJβ for which N<J/Ϊ>B> φ(y, x, /) , where x e ran(π). Then we
have

φ(u, v, w) = 3z1Vz23z3 ... - zmι^(z, w, £, w),

where ^ is Σ x if m is even and Γ^ if m is odd.
Suppose first that ρ = β. Now, y is the unique y such that

(•) j) (Vz 2 eJβ)...{-zm
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But β = ρ = ρn

a = ρlB,p = pn

a = p\tB9 and A = An

a = A\tB. So as φ is Σ1 or Uu (*)

is a Σ^p'Λy({x}) predicate of y. But x e ran(π) < w < J ρ , 4>. Thus yeran(π) c
ran(π), and we are done.

Now suppose that ρ < β. Let h = hβtB, and set

Let D = dom(/iί) n J ρ . For w e D, /ί(w) is Σi-definable in <J^, 5> from w,/>, so if
M e l , then since /? e X < λ < Jβ, β>, we have /i(w) e X. Thus in order to show that
y G X it suffices to show that for some w e D n I , w e have

(For then by uniqueness, y = lί(u) e X) Now, ρ = ρ", so by definition of p = p",
every x e Jβ is Σx-definable in <J^, £> from parameters in JQ u {/?}. So in particu-
lar, %!' JQ = Jβ, i.e. h"D = J^. Thus it suffices to show that for some w e D n l w e
have

(**) (3zιeD)(yz2eD)...(-zmeD)[\=<JβiByφ(h(zίl...J(zjX(u)Jj)].

If we can show that (**) is a Σ$fptΛ>({x}) predicate of u we shall be done, since
x e ran(π) < m < J ρ , A} and ran(π) c X.

Let us assume that m is even. (We deal with the similar case m odd later.) There
is an i0 < ω such that for any z e Jρ,

where the last equivalence follows from the definition of A = A". Similarly, as φ
is Σ1 (for m even) there is a j 0 < ω such that for any zι,..., zw, u e D,

Hence (**) is equivalent to the following (for any u e Jρ)

[(i0, u) G A] A (3z! e Jρ) (Vz2 e Jρ) (3z3 e Jρ) (Vz4 G JQ) . ..

(3z w _! G Jρ) (Vzw G Jρ) [((i'o,

Λ ... Λ(ΐo,zw_1)6i4) Λ ((io,z2)eA

A ( Ϊ O ,Z 4 )G^ Λ ... Λ (io,zJeA^{jo,(z1,...,zm9u9x))eA)].
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But this is Σ^ V^({:?}), so we are done.
The case m odd is fairly similar. The only difference is that we rewrite (**) as

(3zx GD)(Vz 2 e D ) . . . ( 3 z m e D ) - ι [ N < 7 / Ϊ , β > ^ tfrfc),.. , &°(U

h\u\x,p)\

so that (—i ψ) is Σ x . The rest of the proof is modified accordingly.
That completes the proof of the lemma. D

Now let p = π~1(p). We must prove that ρ = ρ | B , A = AjE, p = pj E.

5.9 Lemma. A = {(ί, x) \ i e ω A X e JQ A N < J ^ β > φ((x, p)}.

Proof. Since π: <J^, A> <mQρ, Ay, we have, for x e JQ,

Ά((ί,x))~A((Uπ(x))).

And since β = ρn

a~\ B = An

a~\ A = An

a, we have

A((i9 π(x))) ̂  N < 7 ^ β > φi(π°(x), / ) .

Finally, since π: <J^, 5> <\(κJβ, B} and π(x),/? e ran(π), we have

The above three equivalences yield the lemma. D

5.10 Lemma, ρ = ρj E.

Proof. Since Jβ is the collapse of X, every x e Jβ is Σi-definiable in (J^, 5> from
parameters in J^KJ {p}. Thus if 7i = hβ E, we have

Hence there is a Σ 1«J ig, B}) map / from a subset of ωρ onto Jjg. It follows that
Qp B^ Q' ̂ O Γ suppose, on the contary, that ρ < ρj B. Let E = {ξ eωρ\ξ φ/(ξ)}
Then £ is a Σi((Jp, B}) subset of ωρ. By definition of ρjE, (Jρι _, E} must be
amenable. Thus E = E n ωρ e Joι _ c j f f . So for some ξeωρ,E =f{ξ). But then
we get

a contradiction. Thus, as claimed, ρj B ^ ρ. We now prove the opposite inequality.
Let C e Σ 1 « J ^ , B}) n ^(Jρ). Since every member of J$ is ΣL-definable from

parameters in J-Q u {p} in <J^, 5>, C e Σ\J^'By(Jρ u {p}). So for some / e ω and
some }; e J^ we have, for xe JQ,

xeC iff N ^ g ^ i p , y),/).

So by 5.9, we have, for x e J^

xeC iff (i, (x, y)) e A.
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Let ue JQ, and set

υ = {(i,(x,y))\xeu}.

Note that ve Jρ. Since <J^, A} is amenable, A n v e Jρ. But look,

xe C r\u iff (i, (X, y))e A n u.

So as J^ is rud closed, C n we Jρ. Thus ^Jρ.Cy is amenable. Thus, by definition,

ί? < Qp,B> a n d the lemma is proved. D

5.11 Lemma, p = p\ E.

Proof. Since every x e Jβis Σx-definable from parameters in Jρ u {p} in (J^, £>
and ρ = ρj E, it suffices to show that p is < j-least with this property. Well suppose
not, and let p' <jp have the same property. For some i e ω and some x e J^, we
have p = h(i,p')). Since π: <J^, 5> <i(Jβ, B} and h = hβE, h = hβtB, setting
// = π(^') and applying ft gives ̂  = fc(i, (π(x),/?')). Now, π(x) = π(x) e ! n J ρ . S o ,
as every j ; e Jβ is Σi-definable from parameters in JQ u {/?} in (Jβ, B}, it follows
that every yeJβ is Σi-defmable from parameters in JQ u {/?'} in (Jβ,B}. But
p'<JP = pn

a, so this contradicts the definition of/?". The lemma is proved. D

Since ρ = ρjB and p = p\E, 5.9 implies immediately that A = AjE. That
proves the existence part of 5.6. We turn to the question of uniqueness.

Suppose that <J^ 0,5 0> and <J^l5 Bx> are such that ρ = ρ̂ . 5. and Z = Aj.Ei,
i = 0, 1. Set /?f = ̂ . β . . For each j eω and each x e Jρ- we have

iff t<jpίtB

Since (φ7 | j < ω) enumerates all the Σ x formulas of i f (yl) with free variables υ0, υ t ,
we have, for all x, y in Jρ and all j , fc e ω,

h (y,p0)) iff ^ , ^ 0 " , (χ,

(b) H,Bo(J> (χ>Poϊ) e ^0,β0(fc, (y,/?o)) iff V.^0'* fe

(c) %o,Bo0'? (^^o)) e Bo iff Λ^.^0", (^

But

KM x iPi}) = Jβi

for Ϊ = 0,1, so by (a)-(c) we have

where for x e Jρ-, j G ω, we set

Φpo,Bo(J> (x>Poϊ) - hPltBι(j> (x,Pι))-
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This means that β0 = βx and that σ = id \ Jβ0, so Bo = Bx as well. Hence β, B are
unique and it remains only to show that ft is unique.

Let Hi 3 π , fit: (Jβ, B} <m+ x (Jβ, B}, n^p) = /?, for i = 0,1. Let j ; e J^. For
some j e ω and some x e J^, we have y = hp s(j, (x,p)). Then

πo(x) = π 0 ° hPfB(j, (x,p)) = hβtB(j, (πo(x), πo(p))) = ^ , β ( / ? π(x),

= hβtB(j, (π^x), πi®)) = «! o hPiB(j, (x,p)) = π^y).

Hence πo = π1, and the proof of 5.6 is complete.

6. An Application: A Global • -Principle

S Let S denote the class of all singular limit ordinals. Given any class E of limit
ordinals, we shall denote the following principle by • ( £ ) : there is a sequence
(Cα I α e S) such that:

(i) Cα is a club subset of α;

(ii) o t p ( Q < α;

(iii) if α < α is a limit point of Cα, then α e <S, α φ E, and Q = α n Cα.

Using our fine structure theory we shall prove the following theorem (which
will be utilised in the next chapter):

6.1 Theorem. Assume V= L. Then there is a class E of limit ordinals such that:

(i) <xe E -»cf(α) = ω ;

(ii) if κ> ω is regular, then E n K is a stationary subset ofκ;

(iii) D (E) is valid. D

In fact by a slightly different argument, it is possible to prove the following
more general result.

6.1' Theorem. Assume V— L. Let Abe a class of limit ordinals. Then there is a
class E c A such that:

(i) if K > ω is regular and A n K is stationary in K, then E n K is stationary

in κ\

(ii) D(£). D

This more general result is proved in detail in Chapter IX, using Silver ma-
chines instead of the Fine Structure theory. It is also possible to adapt the proof
given in this chapter using the fine structure (see Exercise 4), but in order to avoid
making an already complicated proof look even worse, we prove the more spe-
lised version (which in any case is enough for our needs here). As will be seen, the
advantage with the specialised version is that the existence and behaviour of
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the set E can be relegated to a special case of the construction, and thus may be
ignored for most of the proof. (This advantage does not arise with the machine
proof, which does not involve a number of separate cases.)

Before we commence the proof, let us see how this relates to the principles D κ

considered in Chapter IV. Let D denote the principle D (0). Clearly, if F c E, then
D (E) implies D (i7), so D is the weakest of the global D -principles of the above
kind.

6.2 Theorem. Assume D. Then D κ holds for any uncountable cardinal K.

Proof. Recall that D κ asserts the existence of a sequence (Cα|α < κ+ A lim(α))
such that:

(i) Cα is a club subset of α;

(ii) cf(α)< κ H C α | < κ ;

(iii) if ά is a limit point of Cα, then Cs = αnC β .

We shall denote by D£ the following principle: there is a sequence
(Ca\aeS nκ+) such that:

(i) Cα is a club subset of α;

(ii) cf(α) <κ-+\Ca\<κ;

(iii) if α is a limit point of Cα, then όίe S n κ+ and Q = α n Cα.

We shall prove the implications D -» D£-> D K . We deal with the second
implication first. Let (Ca\oce S n κ+) be as in D£. Define a Dκ-sequence
(Cα I α < κ+ A lim(α)) as follows.

Suppose first that K is regular. Then we define Cα = Cα — K for K < α < τc + ,
lim(α), and Cα = α for α ^ K, lim(α). If K < α < τc+, lim(α), then aeS n κ+, so Cα

is defined. Hence Cα is defined for all limit ordinals oc<κ + . Clearly,
(Cα I α < κ:+ Λ lim(α)) is a Dκ-sequence.

Now suppose K is singular. In this case the above method will not work, since
in order to satisfy D κ we shall require \CK\ <κ, which prevents us from defining
Cκ = K. So we proceed as follows. Let θ = cf(κ) < K. Let Cκ be a club subset of K
of order-type θ with min(Cκ) = 0. If α < K is a limit point of Cκ, set Q = α n C κ .
If α < K is a limit ordinal but is not a limit point of CK9 then there is a largest
element v e Cκ such that v < α, and we set Cα = α — v. Finally, in case K < a < κ+,
lim(α), we set Cα = Cα - /c. It is easily seen that (Ca\(x <κ+ A lim(α)) is a
D ^-sequence.

We turn now to the considerably less simple problem of deducing D£ from D.
We start with a D-sequence (C° | α e S). For each α e S n κ + , w e s e t C α

1 = C° - K
in case α > K: and Cα

x = C^ in case α < K. It is clear that the sequence
(C£ | α e S n / c + ) satisfies the following conditions:

l(i) C\ is a club subset of α;

l(ii) otp(C α

1 )<α;

1 (iii) if α is a limit point of C\, then a e S n / c + and C\ = α n Ci

1 (iv) if α e S n /c + , α > K:, then Q1 n K: = 0.
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We next define a sequence ( C 2 \oce S n κ+) such that :

2(i) Cl^Cl;
2(ii) C 2 is a club subset of α;

2(iϋ) otp(Cα

2) ^ κ;

2(iv) if ά is a limit point of C 2 , then α ' G S n κ + and Cf = α n C 2 .

For α G S n κ: + , let θa = otp(C*) a n d l e t f*: θa-^> Cί be the monotone enumer-
ration of C*. We define C2 by recursion on α.

For α ίξ K, set C 2 = C\. This part of the C2-sequence clearly satisfies
2(i)-2(iv). And by l(iv), the remaining case (α > K) will not affect the situation
below K, so we shall not beed to worry about any clashes when we come to check
2(iv) for the rest of the C2-sequence.

Now suppose α > K and we have defined C 2 for α e S n α. If θa ^ K, we set
C 2 = C«. It is immediate that 2(i)-2(iii) are satisfied in this case. We check 2(iv).
Let α be a limit point of C 2 . Then α is a limit point of C\, so by 1 (iii), de S and
C\ = a π Cl. Thus θ& = otp(Cj) ^ otp(Ci) = θa^κ. But by 1 (iv), ά > K. Thus
C? = Ci = a n C i = a n C e

2 .
We are left with the case where θa > K. In this case, θa is singular, since

cf(0α) = cf(α) ^ K < θa. Hence θaeS nκ + . By l(ii), θa < α, so C2

αis defined alrea-
dy. Set Cl=fί'CβΛ. Using the induction hypothesis, it is immediate that
2 (i)-2 (iii) are satisfied. We check 2(iv). Let α < α be a limit point of C 2 . Then
cf(ά) < otρ(C2) ^ K. But by 1 (iv), α > K. Thus α e S. Now, α is a limit point of Cl,
so Cl = ά n CJ. Hence θδ - otpίQ1) < otp(Cl) = θa and f& =fjθ,. Clearly,
/α(̂ α) = α So as α is a limit point of C 2 and C 2 = / / C2

α, θ5 must be a limit point
of C^. Thus 0S G S and C2

α = θα- n C2

α. But Cfα c c£β, so θ« is a limit point of C^,
so by 1 (iv), θd > K. This means that Cj = / / C2_, and we have (since /α(θά) = α and
/α" C α̂ = C 2 and α is a limit point of Cα

2):

C 2 = / / C 2

s =//(θα- n C2

α) = / / ( θ δ n C2J = α n C 2 .

That completes the definition of (C 2 |αGκ: + ). If Λ; is regular, then
(C2 | a e S n / c + ) clearly satisfies D^, and we are done. If K is singular, we extract
from (C2 I α G S n κ+) a Π^-sequence (Cl \ CL e S n κ:+) in the same way as in the
proof of IV.5.1 (at the very end). The proof of 6.2 is complete. D

Notice that in the above proof of 6.2 we commenced with a D-sequence
(Ca\(xeS) and constructed a Πκ-sequence (CJα <κ+ A lim(α)) such that, in
particular, Ca ^ Ca for K < oc < κ +. Thus the same argument establishes the fol-
lowing more general result:

6.2' Theorem. Assume •(£). Then for any uncountable cardinal K, ΏK(F) holds,
where F = (E n κ+) — (K + 1). (So if E n κ+ is stationary inκ + ,F is stationary in
κ + .) D

This relates to 6.Γ, of course.

We turn now to the proof of 6.1. We assume V= L from now on.
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Define a class E of limit ordinals as follows. E is the class of all limit ordinals E
OL such that for some β > α:

(i) α is regular over Jβ\ and

(ii) for some p e Jβ, if p e X -< Jβ and I n α i s transitive, then X = Jβ.

6.3 Lemma. If K > ω is regular, then E n K is stationary in K.

Proof. Let C c / c b e club in K. We prove that E n C φ 0. Let AT be the smallest
N <JK+ such that C e N and N n κis transitive. Since K is regular, JV n K EK. Let
α = N n TC.

Let π:Jβ = N. Then π f α = i d f α and π(α) = κ;. Since CeN, we have
C n oce Jβ and π(c n α) = C. Since C is club in K, by absoluteness we have

Nr + " C is club in K:".

So, as π: J^-< J κ + ,

Nj^"C n α is club in α".

Thus by absoluteness again, C n α i s indeed club in α. But C is closed in K. Hence
OLEC. We show that α G £ as well.

Suppose that there were a J^-definable map from a bounded subset of α
cofinally into α. Then by applying π: Jβ<Jκ+ we would obtain a J κ +-definable
map from a bounded subset of K cofinally into TC, which is impossible. Hence α is
regular over Jβ.

Now suppose that C n α e l <Jβ and that I n α is transitive. Applying
π:Jβ^N<Jκ+ we get C e (π" X) < N < J κ + . But π(α) =/c, so (π/rX) n K: =
π"(X n α) = X n α, which is transitive. So by the choice of N we must have
(π"X) = JV. Thus X = Jβ.

Thus β and C n α testify that OLEE. The proof is complete. D

6.4 Lemma. Let α e E, am/ let β > a be as in the definition of E. Then cf (a) = ω
and there is a Σί(Jβ+1) map from ω cofinally into a.

Proof Let pEjβbe such that whenever pE X <Jβ and I n α i s transitive, then
X = Jβ. Let h = hβ + 1, the canonical Σ x skolem function for Jβ + ι , and let
// = Hβ + ί be the uniformly ΣJ

o

β + ί predicate such that

y - h(i, x) iff (3z e Jβ+ x) H(z, y, i, x).

For n < ω, define partial functions /zM by

y = hn(i9 x) iff x,yE Sωβ+n A (3Z E Sωβ+n) H(z, y, ΐ, x).

Since J^ + i is amenable (and hence closed under Σ o subset formation), hneJβ + ί .
And clearly, the sequence (hn\n < ω) is Σ1(Jβ + 1).
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Define a sequence of sets (Xn \n < ω) and a sequence of ordinals (ocn | n < ω) as
follows.

α 0 = 1;

an+ί =sup(Xn not).

Let X = {J Xn, and set αω = (J αΛ. Then clearly, X = /z*(Jαω x {(A •/„)}) and
n<ω n<ω

X n α = αω .
Let 7 = X n J^. Since J^ e X and X - < i ^ + i, we clearly have Y<Jβ. But

/? e Y and 7 n α = X n α = αω . So by choice of j!?, 7 = Jβ. Thus αω = Yn α = α.
This shows that α = [ ) αB. Since (ocn \ n < ω) is easily seen to be Σί(Jβ + 1)9 we shall

n<ω

be done if we can show that αn < α for all n < ω.
For each n < ω, let yM be a Jαn-definable map from ωan onto Jα n. For v < ωαM,

ί < ω, set

\ _ fin{U (jn(y\ (P, Jβ))\ if this is defined and is an element of α;
n ' [undefined, in all other cases.

Since hneJβ + 1 and Jβ + 1 is closed under Σ o subset formation, fneJβ + 1. But
/„ ^ Jβ.So fne Def(J^), i.e. /„ is J^-definable. Since α is regular over Jβ, it follows
that for each v < ωocn, sup i<ω/M(v, i) < a. Likewise, it then follows that if ωan < α,
then s u p v < β > α n s u p i < ω / π ( v , ϊ ) < α . But clearly, sup v < ω α n sup i < ω / n (v , i) = α n + 1 .
Thus ωαπ < α implies ocn+1 < α. But α is regular over Jβ9 so if <xn+1 < α then
α ) α π + 1 < α . Thus by induction on n we obtain απ < α for all n < ω. The proof is
complete. D

By 6.3 and 6.4, £ is a class of limit ordinals, each cofinal with ω, such that
E n K is stationary in K for every regular K > ω. We complete the proof of 6.1 by
showing that D (E) holds: that is, there is a sequence (Cα | α e S) such that:

(i) Cα is a club subset of α;

(ii) otp(Cα) < α;

(iii) if α < α is a limit point of Cα, then ά e S, ά φ £, and Q = α n Cα.

In the definition of Cα there are several cases to consider.

Case 1. α < cOi
In this case, let Cα be any ω-sequence cofinal in α. There is nothing to check

in this case.
In order to describe the next case we make use of the Gόdel Pairing Function,

Φ (see II.8.6). Set

Q Q = {a\Φ"{a x α ) ^ α } .

By the properties of Φ,

Q = {oc\(Φ ία x α): α x α<->α}.
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Q is clearly a club class. And it is an elementary exercise to verify that if α e g, the
next element of Q beyond α is αω .

Case 2. oc > ωx and α φ β.
Let β be the largest element of β below α. Thus β < ot < βω. Hence we can find

a unique integer n > 0 and unique ordinals ξ 0, £ i , . . . , ξn9 ξn + 0, 0 < ξi < β9 such
that

Let m be the least integer such that ξm φ 0.
Suppose first that ξm = ζm+l. Since lim(α) we must have m > 0. Set

Q = {(ξnβ
n + ^-i/i - 1 + . . . + ξm+1βr+1 + cm/r + f/r-1)!

It is easily seen that Cα is club in α and of order-type β < a.
Now suppose that lim(^m). Then set

Q = {«„/»" + ξn-,βn~ι + ... + ξ m + i Γ + 1 + ξβm)\ i < ί < U .

Again Cα is club in α. And Cα has order-type ξm < β < α.
In either case now, if α < α is a limit point of Cα, then with j8 as above we have

β < δί < βω and Q = α n Cα. (This is elementary.) Moreover, it is clear that
£ g β, so we have α φ E.

Case 3. α > ωx and oce Q and sup(β n α) < α.
Let β = sup(β n α). Then α is the successor of jS in β. Hence α = j?ω, and we

may set
Ca = {βn\n<ω}.

There is nothing to check in this case.
From now on we shall assume that α does not fall under Cases 1-3. Thus,

OL> ωγ and α is a limit point of Q. Notice that, in particular, ωoc = α. Let

β = β(μ) = the least β such that α is singular over Jβ; β(α), β

n = n(a) = the least n such that α is Σn-singular over Jβ. n(oc), n

Case 4. n = 1 and β is a successor ordinal.
By IV.5.2, cf(α) = ω, so may let Cα be any ω-sequence cofinal in α. There is

nothing to check in this case.
Notice that by 6.4, every element of E falls under Case 1 or Case 4.

Case 5. n > 1 or lim(β).
This is the only remaining case, and is by far the most difficult one. To

commence, set

Notice that we must have lim(ρ) here.
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By definition of ρjj"1, there is a Σ , , - ! ^ ) map from a subset of ωρ onto β.
Hence there is a Σn-ι(Jβ) map from a subset of ωρ onto α. But α is Σπ_ x-regular
over Jβ. Thus α ̂  ωρ. Hence as ωα = α, we have α =ζ ρ. Again, there is a Σn(J/J)
map from a bounded subset of α cofϊnally into α. Since \=Jβ "α is regular", this map
cannot lie in Jβ. Hence ^ ( α x α) n Σn(Jβ)^Jβ. So, utilising GόdeΓs pairing func-
tion o n α x α , we see that ^(α) n ΣΠ(J^) φ Jβ. Thus ρ]? ^ α. Hence we have proved
that

p{oi\p By virtue of the first of the above inequalities, we may define p = p(oc) = the
< j-least p e JQ such that every x e Jρ is Σ x -definable from elements of α u {/?} in
<J ρ ,4>. (Thus/^.,/#.)

ft, H Let h = hQtΛ9 the canonical Σ x skolem function for <Jρ, A>, and let fί = HβtΛ

be the uniformly Σtfp'Λy predicate such that

y = h(i, x) <-> (3z e Jρ) H(z, y, i, x).

6.5 Lemma. There is ay < a such that h*(y x {p}) n α is unbounded in α.

/ By choice of β there is a τ < α and a ΣΠ(J^) function / such that / r / τ is
cofinal in α. Since α < ρ, / c J ρ . But ρ = ρ j " 1 , .4 = Ay1. Thus / is Σ ^ ^ , A}).
By choice of/?, / will in fact be Σ<Jp'A>({v,p}) for some v < α. Since α is a limit
point of Q, we can pick a y e β such that v, τ < γ < α. We show that
h*(y x {/?}) n α is unbounded in α. It suffices to show that f " τ c ft*(y x {/?}).

Let X = h*(γ x {p}). We show that X is closed under the formation of order-
dered pairs. Let xo,xi e X, say xfc = ή(iΛ, (ξk9p)). Let ξ = Φ(ξ0, ξι). Since y e β,
ξ < y. Moreover, by the nature of Φ, ξ0 and ξί are Σx-definable from ξ in JQ.
Hence (x0, xx) is Σ^definable from ξ, p in <Jρ, v4>. So for some i e ω,

Since X is closed under ordered pairs, 3.3 tells us that X - < x <J ρ , 4 > . But
y u {/>} c X and τ ^ y. So as / is Σ ^ J p ' A > ( y u {/?}), we have f " τ c χ ? as re-
quired. D

/zτ F o r τ < ρ, we shall write hτ for hτAnJτ. T h u s :

y = Λτ(i, x) iff (x, yeJτ)Λ(3ze Jτ) H(z, y, i, x).

), ^ Define a m a p # = gicc) from a subset of α o n t o J ρ by

gf(ωv + ί)~h(i,(v,p)).

G Thus gf is Σ{Jf»Ay({p}). Let G be the canonical Σ<0

JpMy({p}) predicate such that

g(v) = x iff (3z G J ρ )G(z,x,v).
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Let y be the smallest ordinal such that α n g"y is unbounded in α. By 6.5, y < α. y
And it is clear that y must be a limit ordinal. For y ^ τ < α we have
(J(α n ^"τ) = α > τ. Hence there is a maximal K = κ{a) < α such that κ:(α), K:
|J(α n g"κ) ̂  K, and moreover K < y. We fix y, /c for the rest of the proof. Note
that (J(α n #"τ) > τ whenever K < τ < y.

6.6 Lemma. // (κ,p) e X <ι(Jρ, A} and X n oc is transitive, then X n α = α.

Proo/. Let X be as above, and set α = X n α. Since K e X, δί> K. Thus if it were
the case that α < oc, we should have sup(α n g"α) > α. So for some v < ά, α < gr(v)
< α. But g(v) = h(i, (τ,/?)), where v = ωτ + Ϊ, SO as p e X and T ^ v e ά ^ I and
X -<! <Jρ, A>, we have ^(v) G X. Then gr(v) e α, a contradiction. Hence α = α. D

We define, by recursion, functions k: θ —• y, m: 0 -> ρ, and sequences
(Xv I v < θ), (αv I v < θ), for some θ ̂  γ, as follows. (The exact order in which the
definition proceeds is described after we have stated all of the clauses.)

k(v) = the least τ e dom(g) — K such that: k(v)

(i) τ>(J(*"v);
(ii) g(τ)eoc and gf(τ) > αv;

(iii) m(v)eΛ*(gf(τ) x {p}).

m(0) = the least η > K such that p e Jη;

m(y + 1) = the least 77 > m(v) such that: m(v)

(i) ?7 > /c(v), gf o fc(v);

(ii) A nJm{v)eJη;

(iii) m(v)6Λ*(gfofc(v) x {/?});

(iv) ( 3 z e J J G ( z ^ o k ( v ) , k ( v ) ) ;

m(l) = supv < Am(v), if lim(A) and supv < Λm(v) < ρ

(otherwise undefined).

*v = Λί(v)(Λ x {P})> where η = max(U [fcr/v], (J [g o fe"v]). Xv

αv = sup(Xv n α). αv

We stop the construction when an ordinal θ is reached such that k"θ is cofinal θ
in γ, unless the construction breaks down earlier. (We shall prove that this is not
the case.)

Let us see how the construction proceeds. The definition of m(0) is un-
problematical. Now suppose that m(v) is defined. This presupposes that we have
not yet reached 0, so (J(/c"v) < γ < α. Since (J(fc"v) < y, the choice of y implies
that α n g"{\j k"v) is bounded in α, so α n g ° k"v will be bounded in α (because
f̂ ° /c/r v c gf"(y /cr/v)). Hence the f/ in the definition of X v satisfies η < α. There is no

difficulty in defining Xv and αv of course. Since m(v) < ρ and <Jρ, ̂ > is amenable,
we have ΛTO(V) e J ρ £ J^. So as α is a regular cardinal inside J^ and η < α, we have
αv < α. By the choice of/7, /z*(α x {/?}) = Jρ, so there is now no problem in defin-
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ing k(v). Then we define m(v + 1). This causes no difficulty as far as clauses (i), (ii)
and (iv) are concerned, but what about clause (iii)? Well, by definition of fc(v)
we have m(v) eh*(g ° fe(v) x {/?}). So as lim(ρ) there is an η <ρ such that
m(v) eh*(g ° fc(v) x {/>}). Thus we can easily satisfy clause (iii) as well.

Now suppose that λ is a limit ordinal and that k\λ9 m\ λ, (Xv | v < λ\
(α v |v < λ) are defined and that supk"λ<y. Then by choice of γ,
η = sup(# ° k"λ) < α. Suppose it were not possible to define m(λ). Thus it must
be the case that supv < λra(v) = ρ. Let X = (J Xv. Clearly, in this case,

X = h*(Jη x {/?}) and X n α = sup v<λocv. Now for all v < A, by the definition of
k we have g ° k(v) > αv, and by the definition of m(v + 1) (clause (iv)),
g ° fc(v) e l v + 1,so^fo k(v) < α v + x . Thus ocv< g ° k(v) < α v + x for all v < λ. Hence
X n α = s u p v < Λ ^ ° fe(v) = η < α. But (κ,p)e Xo^ X <ί <Jρ, A>, so this contra-
dicts 6.6. Hence m(A) can be defined. We may now define Xλ9 αA, k(λ) without
trouble, just as before.

Thus the construction proceeds until an ordinal θ is reached for which
sup/c"0 = γ. Clearly, θ must be a limit ordinal. Since k is monotone increasing
from θ into γ, we have θ ^ γ. Note also that, as we observed above,
αv < g o k(v) < α v + 1 for all v < θ.

6.7 Lemma.

(i) s u p v < θ α v = α.

(ii) supv < θm(v) = ρ.

(iii) U ^v = Λ
v<θ

Proof, (i) By our last observation above,

oίv<gok(v) < α v + 1

for all v < θ. Hence

Suppose now that (i) were false, and that

η = s u p v < θ α v = s u p v < θ ^ ° k(v) < α.

By choice of γ, α n g"y is unbounded in α. So let τ 0 e dom(gf) be least such that
κ,η < g(τ0) < a. By definition of κ9 τ 0 e dom(^f) — K. AS τ 0 is minimal, by the
choice of γ we must have τ 0 < γ. So there is a least v < θ such that fc(v) > τ 0 .
Consider the definition of fc(v): namely, the least τedom(g) — κ such that
τ ^ U(fe"v), αv < r̂(τ) < α, and m(v) e h*(g(τ) x {/?}). Now look at τ 0 . We have
already observed that τ 0 e dom(g) — K. By the minimality of v, we have k"v c τθ9

so τ 0 ^ (J(/cr/v). By the choice of τ 0 , we have ocv<η < g(τ0) < α. Finally, since
g o k(v) < η < g(τ0), we have (by the definition of k(v)) m(v) e /ι*(^f(τ0) x {/?}).
Thus τ 0 is a candidate in the choice of k(v). Hence k(v) ^ τ 0 . But we chose v so that
k(y) > τ 0 . This contradiction proves (i).
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(ii) Let ρ = supv < θm(v). Then for all v < θ we can find a z e J-Q such that
G(z, g o fc(v), k(v)). Thus as supv<θg ° fc(v) = sup v < θ α v = α (by (i) and (*)), if
we define / from a subset of y into α by the E 1 «J^, A n J^» definition

then f"y is unbounded in α. But if ρ < ρ, then as <Jρ, 4̂> is amenable,

fe Jρ^ Jβ, so cc is not regular inside Jβ. Contradiction! Hence ρ = ρ.

(iii) By (i), (ii) and (*), we have

U X, = h*(Jx x {/>}).
v<0

So by choice of/?,

For each τ < θ, define a map gτ from a subset of ατ into J m ( τ ) by

By definition of m, if lim(τ), then <Jm ( τ ), X n Jw ( τ )> is amenable, and in this case gτ

We define κτ from gfτ in the same way that K was defined from g\ that is, we let κτ

κτ be the largest κτ ^ ατ such that lj(ατ n g"κτ) ^ κτ.

6.8 Lemma. For sufficiently large ordinals τ < θ, κτ = K.

Proof. Clearly, if v < τ < θ, then gx c gτ. Moreover, (J gτ = g. Thus for any
τ<0

τ < 0, (J(ατ n ^'?c) ^{J(oc n g"κ) *ζκ. Thus jcτ ̂  ?c. Similarly, v < τ < θ implies
that κτ ?ζκv. So for some v < θ we must have κτ = κv^ K for all τ > v. Suppose
that κv > K. Then (J(α n #"κ;v) > τcv. So for some τ < 0, (J(α n ^/c v) > κ:v. But
we may assume that τ > v and that, in fact, (J(ατ n g"κx) > κv. Then κτ = κx and
so (J(α r n ^'κΓ) > κτ. Contradiction! That proves the lemma. D

By recursion, we define a strictly increasing, continuous function ί: θ -> θ, for ί
some θ ^ θ. First of all we let ί(0) be the least v such that (v ̂  τ < θ) -> (κ:τ = ?c)
and αv > ωx.

In case n = 1, when ί(z) is defined we let ί(z + 1) be the least v < ί(/) such that
Φ"(αί(θ x ατ(o) — α v Since α is a limit point of Q, ί(z + 1) < θ is always defined.

In case n > 1 and ί(z) is defined, we let t(ι + 1) be the least v > t(ι) such that
Φ"(α f( l) x α f ( 0) c αv and

We must check that t(ι + 1) < θ is well-defined.
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Let

We must show that Y^Xξ for some ξ < θ. Since Y^ Jα, it suffices to show that
Y^ Jτ for some τ < α; for if τ < α, then aξ> τ for some ξ < θ, and we have
gok(ξ)>aξ, so by definition, Jτ^Xξ+ί. Now, for some η<a, we have
*ίd) = tiZ(tiι))(Jη

 x {/>})• Since (Jρ, A} is amenable, ΛTO(f(l)) eJρ^Jβ. Thus J^ con-
tains a function mapping ωη onto ω x (Xt(ι) x {/ ĴΓ1})- Again, by the definition
of Y, Y is the image of a Σ1«JρM-2>y4n-2» function defined on a subset of
ω x (Xt{ι) x ί^" 1 }) . By the properiies oί the standard code Anf2, this function
is Σ , , - ! ^ ) . Combining these two functions gives us a Σn_!(J^) function / such
that f"ωη = Y. Since / is Σ n_ x (Jβ), so too is /: ωη -• α, defined by letting /(v) be
the least τ such that /(v) e Jτ. Since α is Σπ_ t-regular over Jβ,f"ωη^τ for some
τ < α. Then 7 ^ J τ, as required.

Finally, if lim(i) and t \ λ is defined, we let ί(A) = sup t < λt(ι\ if this is less than
0, with ί(A) undefined otherwise.

S Thus for some limit ordinal θ ^ θ we shall have sup I < β ί(ϊ) = 0, at which point
the definition of t is complete.

We define

Thus Cα is a club subset of α of order-type ίΓ ̂  θ ^ y < α. To complete the proof
α of • we must show that if α < α is a limit point of Cα, then α e S , α φ £, and
λ Q = α n Cα. Let ά = α λ, where lim(/l).

^ι/ n— 2 / 4 n ~ ^ \

6.9 Lemma. δί> ωx and UGQ. Moreover, if n > 1 αrcd f is a Σt

ρβ β

(Xλ u ί ^ " 1 ) ) function from a bounded subset of ά into ά, ί/iew / is bounded in α.

/. That όί> ωι and α e Q is an immediate consequence of the definition of t.
Now let n > 1, and let / be as above. Since the function m is continuous, so too
is the sequence (Xv\v < θ). Thus Xλ= (J XV9 and the finitely many parameters in

v<λ

the definition of / will all lie in Xv for some v < λ. We may choose v here so
that dom(/) c αv. Let z < S be least such that t(ι) > v. Since α = αλ is a limit
point oΐn Cα, A is a limit point of ί and so ί(ι), ί(z + 1) < A. But / is
Σ i J ρ ? " 2 ' A ? 2 >(X ί ( l ) x { ??"1}) and dom(/) g α t ( I ) c jfί(ι). So by definition of
t(ι + 1), ran(/) c X ί ( I + 1 ) . Thus ran(/) c α ί ( I + 1 ) < αA = ά. D

Let

π : < J ρ - , ^ > ^ < X A , ^ l n X A > .

Thus

π: <J_, Z> <d <Jm ( A ), A n J w ( λ ) >.

But by Σ0-absoluteness,

Om(λ), A Π Jm ( λ )> -< 0<Λ' ^>

Thus
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So by 5.6 there are unique β, ft such that ρ = ρjf1, A = Anfι, π: Jβ<n-iJβ, β,
π c π, π(pjp*) = /?J" *. Note that by definition of fc, g ° fc(v) > αv for all v < λ, so
by definition of Xv+ί, α v ^ X v + 1 for all v < λ. Thus ά ̂  Z A and in fact
όc = Xλ n a. So we have π \ α = id f ά, and in case ά < /?, π(α) ̂  α.

Let ft = ftρ-;I, H = Hρ-?I. Set^ = π " 1 ^ ) . ί,

6.10 Lemma, p = the <rleast element of Jρ such that every xe Jρ is Σ ^definable
from parameters in α u {p} in <Jρ, Ay.

Proof By definition,

Xλ = h*(λ)(Jη x {/>}),

where ^ = max(/c + 1, sup[gf ° k"λ]). But av< g ° k(v) < α v + 1 for all v < θ. So as
α = 0Lλ and lim(/ί), η = a. Thus

Applying π " 1 , we get

But by definition of t, we have α e β, so by 3.19 there is a Σ"{α map from α onto
Jd. Hence

J s = Λ| 0 (α)sR*(«).
Thus

This shows that every element of Jρ- is Σ x -definable from members of ά u {̂ } in
<Jρ, Z>. We must now show that p is the < j-least such member of Jρ. Suppose,
on the contrary, that p < 3p also has this property. Then, in particular, for some
i < ω and some v < α, we have p = h(ί, (v,/?'))• Applying π: <Jρ, Ay -<x

<J m ( λ ) , A n JTO(A)>, we get/7 = Λm(λ)(i,(v,/?')), where/ - π ^ ) Thus^ = h(i, (v,p')).
Hence by choice of/7, every element of JQ will be Σx-definable from parameters in
α u {p} in < Jρ, A>. But / < jp, so p <3p, and so we have contradicted the choice
θf/7. D

Now define g from R, a d j u s t as g was defined from ft, α,/7. Thus, we define ^ g
from a subset of ά into Jρ by

^(ωv + i) ~h(i,{v,p)).

Let G be the canonical Σ<J*'Λ>({p}) predicate such that G

g(v) = x iff (βzeJs)G(z,x,v).

Note that the Σ o formula which defines G from p in <Jρ, Z> will be the same as
that which defines G from p in <Jρ, ^4>. But

π: <Jρ-, Άy -<! < J m ( λ ) , A n JW ( Λ )>,
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π ίά = id ία, and π(p) = p. Thus for v,τeα,

g(v) = τ iff (3zeJ-)G(z,τ,v)

iflf(3zeJm(A))G(z,τ,v)

iff 0Λ(v) = τ.
Hence

(1) ^"n(αxα>^n(αx α).

K; Next we define k from g, α just as K was defined from g, α. That is, let k be the
largest TC ̂  α such that (J (α n #"*;) ̂  κ\ By (1) and the fact that α = αλ, this is the
same as the definition oϊκλ,sok = κλ. But by the definition of ί(0), /cA = K. Thus
/c = TC.

^ Let η = [jk"λ. By definition of Xv + x , we have fc(v)elv+1,sofc(v)<αv+1 for
all v < A. Thus η ̂  ά.

Since ccv< g ° k(v) < ocv+1 for all v < A, we have

(2) α = U ^°*(v)

Now by clause (iv) in the definition of m(v + 1), gλ \ k"λ = g \ k" λ. Thus by (2), we
have

(3) ά = U gλ°k{v).

Since k is monotone increasing, we have k"v c fc(v) for all v < λ. Thus
g"λ{k"v) c ffjjk(v) for all v < A, i.e. gλ <> k"v c ff;jk(v) for all v < λ. So from (3) we
have

(4) *=\J(&nglk{v)).

This is the same as

(5) α = U ( α n ί I ί | ) .

So by (1) and (5) (noting that η ̂  α) we have

(6) a=U(anA).

Now by definition of k we have fc(0) > K, SO η = [j k" λ > K. SO as k = K we have
K < η ̂  α. So by choice of jc we have (J(α n ^;/η) > *?. Thus by (6) we have δί> η.
But (6) also tells us that g maps a subset of f/ cofinally into α. Thus, in particular,
α e S .

6.11 Lemma, β = β{3).
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Proof. By definition, g is Σ1«Jρ-, A}). S o g n ( α x α ) is Σ i « J ρ , 4 » . But ρ =definition, g is Σ1«Jρ-, A}). S o g n ( α x α ) is Σ i « J ρ , 4 » . But ρ = ρnfι,
4̂ = AY1. Thus g n (α x ά) is Σn(Jp). By (6) above, g n (α x α) maps a subset of

*7 < α cofinally into α. Hence α is Σn-singular over Jβ. Thus β(α) ̂  /ί.
Suppose that β(ΰ) < β. Then there is an fe Jβ and a <> < α such that / maps

δ cofinally into α. Now, ft fά = id fα, so we have π(δ) = δ and / c π(/). But
Nj^"dom(/) = ̂ ", so applying π: J$<n-1Jβ we have hJ/?"dom(π(/)) = (5". Thus
we must have π(f) =f. But tj-β"{Jf"δ = α", so applying π, N^"(j/"<5 = π(α)M.
Since π(α) ̂  α > α, this is impossible. Hence jS(α) = jβ. D

6.12 Lemma, n = n(α).

Proo/ By the properties o f ^ n ( α x α ) mentioned above we have n(S) ̂  n. So if
n = 1 we are done. Assume that n > 1.

Let / be a ΣΠ _ ! (J^) function from a bounded subset of α into α. We shall show /
that / " α is bounded in ά, thereby proving that n(α) = n. Let w = dom(/). Let u
π = π\ Jρ"-2. By 5.6 we know that

and

Since ρ = ρjp x, we can find an x e Jρ such that / is Σx

 βi* β ({x, /?̂ ~ *}). Let x
/ be defined over <Jρ"-2, An

β~
2} by means of the same Σ x definition in parameters /

π{x),pTι._
Since/^ α x α and π f α = id f α, we have/^/ . Again, w is a Σn-1(Jβ) subset

of α ̂  ρ = ρ^"1, so by 4.6, <Jρ, M> is amenable. But u is bounded in α. Hence
UE Jρ. Thus π(w) is defined. Since w is a bounded subset of ά and π \ α = id ί α, we
have π(u) = u. But the statements

"/ is a function" and "dom(/) <Ξ w"

are Π t

 ρ^ ' ^ ({x9Pp~1

9 u}) Hence as π is Σx-elementary, / is a function and
dom(/) c M. Thus / _ = / n 2 ^n_2

This shows that/ i s Σ ί β ί ' ' ({π(x),^"1}). But π(x) eXλ. So by 6.9, / i s
bounded in α, and we are done. D

6.13 Lemma, ρ = ρ(α) and A = A(ά).

Proof. Directly from 6.11 and 6.12. D

6.14 Lemma, p = p(S).

Proof Directly from 6.13 and 6.10. D

6.15 Lemma, g n (α x α) = gλ n (ά x α) = g(ct) n (α x α) and τc(α) = τc(α) = K.

Proof. By our previous results. D

6.16 Lemma, ά falls under Case 5 in the definition of Q.
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Proof. Since α > ωγ, α does not fall under Case 1. Since ά e β, ά does not fall under
Case 2. Since ά is a limit point of Q (by definition of the function t) α does not fall
under Case 3. If n > 1, then by 6.12, α does not fall under Case 4. And if n = 1, then
β = ρ, so as π: Jρ<\Jm(λ) and lim(A), /Πs a limit ordinal, so by 6.11, α still does
not fall under Case 4. Hence ά must fall under Case 5. D

6.17 Corollary. α φ £ .

Proof. Since all members of E fall under Case 1 or Case 4. D

6.18 Lemma. Q = ά n Q .

Proof. Define fc: ff-> γ, fh: θ-• ρ, (Xv \ v < θ), (αv | v < θ) from ά just as k, m,
(Z v I v < θ\ (αv I v < θ) were defined from α. Since α is a limit point of Cα, we clearly
have θ = λ here. And a straightforward induction proof shows that for v < λ,
k(v) = fc(v), π(m(y)) = m(v), π"Xx = Xv, αv = αv.

Now define Ffrom α as ί was defined from α. For some X, we will have λ = t(λ).
By induction on v < I, we get ϊ(v) = t(v). Hence

Q = {αF(v)|v <λ} = {α ί ( v ) |v < 1} = α n Cβ. D

The proof of 6.1 is finally complete.

Exercises

1. Strong Embeddings

This exercise is concerned with establishing a sort of "dual" to theorem 5.6. This
result says that if there is an embedding

then <Jρ-, A} must have the form ρ = ρf, A = A}, and the embedding σ can be
extended to an embedding

In the result proved below, the roles of <Jρ-, 2> and (Jρn, An

βy in the above are

interchanged.
Let <Jρ, Ay, (Jρ,Ay be amenable structures. We say that an embedding

is strong iff, whenever φ(x, y) is a Σ o formula of «S?C4), if

{(x,y)eJ ρ - |h < 7 M > φ(i,]?)}

is well-founded, then

{(x9y)eJe\t<JptA>φ(x9y)}
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is well-founded. (Notice that in describing this property as an attribute of σ, we
are really using the fact that in order to specify a mapping it is necessary to specify
the domain and the range. The actual behaviour of σ plays no part in the defini-
tion of strongness.)

We shall prove that, for any n > 0, if <Jρ, A} is amenable and

is strong, then there is a unique ordinal β such that ρ = ρj, A = An

β9 and a (strong)
embedding

such that σ ̂  σ.
It suffices to prove the following: Let n, i > 0, and suppose that

is strong, where <Jρ, A} is amenable. Then there are η, B, σ, such that σ ^ σ and

(i) ρ = ρlB, A = AlB, σ(jff1)=p}ltB;

(ii) σ: (JQn-i, Ap~ίy><i+i<Jη, By is strong.
β

Set: ρ = Q% A = A% ή = ρnf \B = Anf \p= pPf1.

N o t e t h a t : Jή = h%E{J-Q x {p}).

Define: 7z((z, x)) ~ \ B(i, (x, p)) {x e Jρ).

Define relations D, E, Γ, B' on Jρ by:

D = dom(R);

E={(x,y)eD2\h(x)eh(y)};

T={(x,y)eD2\h(x) =

B'= {xeD\h(x)eB}.

Since D, £, Γ, F are Σ ^ ^ίίp}), they are Σ ^ ' A > . Let D, E, 7, 5' have the same Σ o

definitions over <Jρ, Ay. Since σ is strong, E is well-founded. Let

M = <D, /, £, B'>.

Let T be the Σ x satisfaction relation for the structure M. Then

Since T is Σ^^'β>({^}), it is Σtfp*Λ>. Let T have the same Σ o definition over
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1 A. Prove that T is the Σ x satisfaction relation for the structure M.

Since the satisfaction relations % T are Σ o in <Ĵ  A}, <«/ρ, A}, respectively, by
the same definition, and σ is ΣΓelementary, we have

(σ\D):M<i+ίM.

Thus M satisfies the identity axioms (for I) and the Axiom of Extensionality. So
we may define the factor models

M*= M/Γ = < £ * , £ * ,

M * = M / / = <£>*,£*,£*>.

Let k: M -• M* and k: M -• M* be the natural projections. Since M*, M* are
well-founded and extensional, let T, I be their transitivisation isomorphisms, re-
spectively. Clearly,

Let

and set

Define σ*: M* <i+1 M* by σ* ° k = k ° σ, and define

by σ o h = h ° σ. We have the following commutative diagram of the situation.

σ \ D

1B. Prove that σ \ J- = σ.

Set /? = σ(p).

1C. Prove that

(i, x) e D ̂  h((i, x)) = ̂ ^( i , (x,/ι)).
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1D. Prove that

A = {(i,x)\xe Jρ A t<JritB><Pi(x,P)},

where (ψi \ i < ώ) is as usual.

IE. Prove that ρ = ρ*fJϊ.

I F . Prove thatp = pι

η,B-

1G. Conclude that A = A^B.

1H. Prove that σ is strong. (Hint. Pull back to D and D, and use the fact that σ

is strong.)

That completes the proof.
The result just proved may be used to give a proof of the Covering Lemma

(Chapter V) different from the one given in this book. This alternative proof may
be found in Devlin and Jensen (1975).

2. The Combinatorial Principle ΠK(E)

For each infinite cardinal K, let

Sκ = {oceS\cϊ(oc)^κ}.

Let ΠK(E) denote the following assertion. There is a sequence (Cα |α e Sκ) such
that:

(i) Ca is a club subset of α;

(ii) if cf(α) < K, then otp(Cα) < κ\

(iii) if α < α is a limit point of Cα, then α e Sκ, α φ E, and Q = ά n Cα.

2A. Prove that D κ (£) implies DK(F), where F = £ n (κ:+ - K:). (Hint: Let
(Cα I α G Sκ) be as in D κ (£). For K < α < κ:+, let C« = Cα n (κ:+ - /c). For OC^K,
define C« in two cases. If K is regular, let C'Λ = α. If K is singular, and if δ = c%),
let Q be a club subset of K of type δ. If α < K: is a limit point of Cκ, let C'a = α n Q .
If α < K: is such that μ < α ^ v, where μ, v G Q are such that v is the least element
of Cκ above μ, let Q = α - μ. If α < min(C,;), let Q = α. Then ( Q | α < κ + &
lim(α)) is a Dκ(F)-sequence.)

2B. Prove that D (E) implies that ΠK(E) holds for any infinite cardinal K. (Hint:
Since the case K = ω is trivial, assume κ> ω. First define ( Q | α e SJ to satisfy:

(i) Q is a club subset of α;

(ii) o t p ( Q ^ κ;

(iii) if α < α is a limit point of C«, then α e Sκ, α φ £, and Q = α n Q .

This is done as follows. Let (Cα | α e iS) satisfy D (E) with the additional assumption
Cα c α — K: for α > κ;. (For a fixed JC this is trivially arranged.) For α singular, set
ξa = otp(Cα), and let fa:ξa^ Ca be the monotone enumeration of Cα. Define C'a by
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recursion on α. For α e Sκ such that ξa ^ JC, let C£ = Ca. Now suppose α e S κ and
we wish to define C'Λ. Thus ξa > K. Since cf(£α) = cf(α) ^ #c < /c < £α, ξα is singular,
so £αeSκ By (ii) of D(E), £α < α, so Q α is defined. Set C«=/α"C£β. Then
(C« I α e Sκ) satisfies (i)-(iii) above. If/c is regular, (C'a | α G Sκ) satisfies D κ (£) alrea-
dy. Suppose 7c is singular and let δ = cf(τc). Let (<5V | v < δ) be a normal sequence
cofinal in K with <50 = 0. Define ( C J α e S J as follows. Let #α: 0α-> C'Λ be the
monotone enumeration of Q . If <5V < 0α < <5V+1, set Cα = #i'(0α — (δv + 1)). If
0α = suρ{δv I (5V < 0J , set Cα = ^{(5V | (5V < 0J . Then (CJot e Sκ) is as required.)

2C. Prove that if V= L, then for any uncountable regular cardinal /c, there is a
sequence (Xξ \ξ <κ+) of classes such that for each closed set X ^ On of order-
type K:

(i) for all ξ < κ + , X n Xξ is stationary in X;

(ii) if ξ <η <κ+, then X n Xξ n Xηis not stationary in X.

(Hint: First use O κ to show that there are stationary sets Yξ^ K, ξ < κ+, such that
Yξ n Yη is not stationary whenever ξ <η <κ + . Now let (Cα | α G -SJ be as in D κ(0).
Let (ρ| I ί < ηa) be the monotone enumeration of Cα. Let

X, = Yό u {αe U sv -κ\(3ξeYδ)(3βeSκ) [lim(£) Λ α = ρf])}.)
<
U

V< K

2D. Prove that if V= L, then for any uncountable regular cardinal K: there is a
sequence (Xξ\ξ <κ) of pairwise disjoint classes such that for any closed set
X c On of order-type K, X n Xξ is stationary in X for every £ < K. (Hint:
Use 2C.)

Deduce that, if V= L, then for each cardinal K: there is a set ,4 c K: such that
neither 4̂ nor K: — .4 contains a closed set of order-type ωι. (See also the Notes
on this chapter.)

3. The Failure of Πκ and Large Cardinals

Show that if κ+ is not Mahlo in L, then D κ holds. (Hint: Let C e L be a club subset
of κ+ consisting of singular cardinals in L. By 6.1, D holds in L, so there is a
" D-sequence" on C. Using the ideas from the proof of 6.2, modify this sequence
to a D κ-sequence.)

Deduce that if D κ fails, then κ+ is Mahlo in L.
Notice that the above result provides an alternative solution to Exercise IV.5.

4. The Principles D (E)

Prove Theorem VI.6.Γ. (Use the argument of IX.2 as a starting point.)




