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Chapter VI
The Fine Structure Theory

The basic ideas of the fine structure theory have already been outlined in IV.4. In
this chapter we develop rigorously the material sketched there. We commence
with a certain class of set functions — the rudimentary functions — and then, with
the aid of these functions we shall define a new hierarchy of constructible sets,
namely the Jensen hierarchy, (J, |« € On). This hierarchy has all of the important
properties of the usual L, -hierarchy, with the difference that each level in the
Jensen hierarchy has many of the properties of the limit levels of the L -hierarchy
(notably amenability). The Jensen hierarchy is thus a more convenient hierarchy
as far as a detailed examination of individual levels is concerned. Certainly it is
possible to carry out a comparable study of the sets L,, but only at the cost of
some considerable (though in a sense “trivial”) technical difficulties. Intuitively,
we may regard J, as a slightly expanded version of L, which is closed under simple
set functions such as ordered pairs, etc. This is not totally accurate (as we shall see),
but it should serve the reader well enough until a more complete understanding
is achieved.

1. Rudimentary Functions

The definition of rudimentary functions has already been given in Chapter IV, but
is repeated here for convenience.

A function f: V" — V is said to be rudimentary (rud for short) iff it is generated
by the following schemas:

(l) f(xla-“axn):xi (lglgn);
(ll) f(xlw-';xn):{xisxj} (1 <la.]<n)a
(i) f(xy,.x)=x—x; (1 <i,j<n)
(V) f(X1sees X)) = R(G1 (X1 ey Xy ooy Gl(Xas oo, X))

where h, g4, ..., g, are rudimentary;
™) fO,x2,-.sx) = 9(z,%3,...,%,), where g is rudimentary.

zey
Notice that in the above definition we have made use of proper classes, which
is not strictly allowable in ZF set theory. There are two ways of avoiding this, both
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of relevance to our later development. Firstly, since any “rudimentary function”
from V" to V will be built up from functions of types (i)—(iii) in the above list by
means of finitely many applications of the composition rules (iv) and (v), we could
replace any mention of the “function” by the LST formula which is implicit in the
construction of the function via these schemas. In other words, we are just making
use of our usual (and we hope familiar by now) conventions concerning proper
classes in ZF set theory (Chapter I). An alternative approach is to regard the “V”
in the above definition as being some set (e.g. a V,) which is large enough to contain
all of the sets which we are interested in at any one time, in which case the
rudimentary functions defined are genuine functions (i.e. they are sets). Since the
untimate goal in set theory is to study the properties of sets, this second approach
is clearly adequate. Nevertheless we choose to take the “class function” approach
as basic for one important reason: it emphasises the uniformity of the rudimentary
functions; how their construction is quite independent of any particular set do-
main under consideration.

A similar situation has already arisen in Chapter II. When we studied the
L ,-hierarchy, we proved “global” results concerning the logical complexity of the
LST formulas which define the L,-hierarchy, as well as “local” results concerning
the definability (using the language %)) of the hierarchy within given levels of the
hierarchy (1.2.6 and 1.2.7 provide good examples of this parallel development).
Here, the rudimentary functions are used (instead of the language %) to define
the Jensen hierarchy of constructible sets: global results will be proved using class
rudimentary “functions” (which correspond to LST formulas), and local results
will be proved using set rudimentary functions (which are genuine sets, as are the
formulas of %y).

From now on, except for occasional remarks, we leave it to the reader to
supply the relevant “rigorisation” of our development in the appropriate fashion.

To continue with our definition then, if A4 is a class we say that a function
f: V">V is rudimentary relative to A (A-rud for short) iff it is generated by
schemas (i)—(v) above and the schema:

(vi) fxy,..,x)=40x; (1 <i<n).

If p is a set, we say that a function f: V" — V is rudimentary in parameter p (or
simply rudimentary in p) iff it is generated by schemas (i)—(v) and the schema:

(vii) f(xX1y.00y X,) =P

By a rudimentary definition of a rudimentary function f we mean a sequence
fos ..., f, of functions such that f, = f and for each i < n, f; is obtained from
fos---» fi—1 by means of a single application of one of the schemas (i)—(v) above.
Similarly for an A-rud definition of an A-rud function and a rud in p definition of
a function rud in p.

A class R = V" is said to be rudimentary iff there is a rudimentary function
f: V">V such that

R={(x,...,x) | f(x1,...,x,) + 0}.
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Similarly for an A-rud class and a rud in p class.

The following lemma lists some of the basic properties of rudimentary func-
tions. In each case, the simple proof is given in parentheses alongside the state-
ment of the result.

1.1 Lemma.
(1) The function id (the identity function) is rud. (By schema (i).)

(2) The function f(x) = | Jx is rud. (By schema (v) together with (1) above.)

(3) The function f(x,y)=xuy is rud. (f(x,y) = (J{x, y}, so use schema (ii)
and (2) above.)

(4) The function f(xy,...,x,) = {X1,..., X,} is rud. (By schema (ii), the function
g(xy, ..., x,) = {x,} is rud for each n. But,

{Xiseers Xpr1) = {X1yes X} U{Xps1}-
So argue by induction on n, using schema (iv), together with (3).)
(5) The function f(xy,...,X,) = (X1,..., X,) is rud. (By definition,
(1 eees x0) = {{x1}, {x1, (X2, ..., X)}}.
So argue by induction on n, using schemas (ii) and (iv).)
(6) The function f,,(x) = mis rud for each m € . (We have:
fo)=0=x—x; fi(x)=1={0}; folx)=2={0,1}; etc
So use schemas (iii) and (iv), together with (4), and proceed by induction on m.)
(7) The relations (x & y) and (x + y) are rud. (We have:
(x¢y)e{x} —y+0;
x*Fy)ex—puly—x *0.
The result is clear now in view of earlier results.)

®) If f(y, %) is rud, so is the function ¢(y, X) = (f(z, X)| z € y). (Use schema (v),
together with previous results and the identity

90, %) = U {(f(z, %), 2})

ZEYy
O©) If f1V">Visrud and R < V" is rud, then g: V" — V is rud, where we set

o Jf®, if  R(®),
“”‘{Q if = R(3).
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(Let r be a rud function such that
R(X) e r(X) + 0.

g = U f(%))

yer(X)

Then

(10) Let yg be the characteristic function of R. Then R is rud iff xg is rud. (If yg is
rud, then since

R(F) < 1r(®) * 0,
R is rud, by definition. Conversely, if R is rud, then yg is rud by (6) and (9).)
(11) R is rud iff — R is rud. (By (10), since yx(X) =1 — y- r(%).)

(12) The relations (x € y) and (x = y) are rud. (By (7) and (11).)
(13) (Definition by Cases) Let f;: V*— V be rud fori=1,,...,m. Let R, = V" be
rud fori=1,...,m, and such that R,nR; =0 fori+jand R,u...UR, = V"
Define f: V" -V by

J(X) = fi(X) & Ry(%).

Then f is rud. (Foreachi=1,...,m, set ~

e ) Si(X), i Ry(X)
fi® = {q), if = Ri(%).
By (9), each f;' is rud. But then f is rud, since

fR)=fiZ)v...uf().)

(14) If R(z, X) is rud, so is the function

f(ya X) = yﬁ{ZlR(Z,)E)}

{z}, if R(z, %)

(Set
h(z %) = {(z), if 11 R(z, %).

By (9), h is rud. Hence f is rud, since
J, %) =) h(z %))

zey

(15) Let R(z, X) be rud and such that for any X there is at most one z such that
R(z, X). Then f is rud, where we define

that z € y such that R(z, %), if such a z exists,
0, if no such z exists.

f(y,i)={
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(By (14) and the identity
f, %) = U n{z|R(z %)}))

(16) If R(y, X) is rud, so are (3z € y) R(z, X) and (Vz € y) R(z, X). (Let r be a rud
function such that

R(y, %) =r(y, %) + 0.
Then

(3zey)R(z, X)) r(z, %) + 0,

zey
s0 (3z € y) R(z, %) is rud. The second part now follows using (11).)
(17) The function f(x) = (x is rud. (Use (12), (16) and (14) and the identity

f&)=(Ux n{zI(V¥yex)(zey})

(18) The function f(x,y) = x Ny is rud. (Because f(x, y) = ({x, y}.)
(19) If R, V" are rud for i=1,....m, then S=R;uU...UR, and
T=R;n...n R, are rud. (Let r; = yg, for each i. Then

S(X) > (X) U ... Ur(X) £ 0,

T(X) 1 (X) U ... Ur,(X) + 0.

The result follows easily now.)
(20) The functions (x), and (x), are rud. (For example,
that z € () x such that (Jv e {J x) (x = (z, v)), if such a z exists,
(X)o = . .
0, if no such z exists.
Now use (15).)
(21) Define
() = that z € | | ) x such that (z, y) € x, if there is a unique such z,
V= 0, if there is no unique such z.
Then the function f(x, y) = x(y) is rud. (By Definition by cases.)
(22) The functions dom(x) and ran(x) are rud. (We have:

dom(x) = {ze JUx|@we JJx) (W, 2) e x)};
ran(x) = {ze JUx|@we JUx) (z, w) € x)}.)

(23) The function f(x, y) = x x y is rud. (By the identity

xxy={) U {wun})

UEX VEY
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(24) The function f(x,y) = x |y is rud. (By the identity
x [y =xn(ran(x) x y).)

(25) The function f(x, y) = x"y is rud. (Since x"y = ran(x [ y).)
(26) The function x ! is rud. (By definition,

x '=u"(x n(ran(x) x dom(x))), where

u(z) = (21, (2)0)) O

By now, the reader may well have observed that all of the results in the above
lemma are valid if we replace “rud” by “Z,”. (In class terms, a function is said to
be X, iff it is of the form

{0, %) 20, %)},

where @ is a X, formula of LST. In set theoretic terms, a function f is said to be
X, iff there is a X, formula ¢ of & such that for any %, y, if M is a transitive set
such that X, y e M, then

f®) =yoFyo@, ).

By 1.9.15, these notions are, in a sense, “equivalent”.) However, it is not the case
that the class of rud functions is the same as the class of X, functions. As we shall
show presently, the rud functions form a proper subcollection of the Z, functions.
Strange as it may at first seem, in the case of relations, the notions of being rud
and of being X, do coincide (as we prove later). The reason why there is no
paradox here is that, whereas a function f is X, just in case it is of the form
{(y, X) | @(y, X)}, where @ is a X, formula of LST (so the fundamental concept is
that of a relation, functions being treated as simply special kinds of relation), a
function f is rud iff it can be built up using the schemas for rud functions (i.e. the
fundamental concept is that of a function, and relations are effectively identified
with their characteristic function).

In order to show that every rud function is X, it is convenient to introduce
the following auxiliary notion.

Say a function f: V"— V is simple iff, whenever R(z, y) is a X, relation, the
relation R(f(X), y) is also Z,.

The following lemma shows that simplicity is characterised by two special
cases of the simplicity requirement.

1.2 Lemma. A function f: V"— V is simple iff:

(i) the predicate z e f(X) is Z,; and
(ii) whenever A(z) is a X predicate, so too is (3z € f(X)) A(z).

Proof. (—) Trivial, since (i) and (ii) are special cases of the simplicity requirements.
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(«). Using (i) and (ii) we shall prove by induction on the logical complexity of R
that if R(z, y) is Zy, so too is R(f(X), ).

(a) Suppose first that R(z, y) has the form (z = y;). Then

R(f(%), )= f(X) =y
(Vzef(X) (zey) A (Vzey)(zef(X).
By (i), the clause (Vz € y;) (z € f (X)) is Z, and by (ii) the clause (Vz e f(X)) (z € y;) is
X,. Hence R(f (%), y) is Z,.
(b) Now suppose R(z, y) has the form (z € y;). Then

R(f (%), §) = f (%) € yi
—(3zey) (f(X) =2).

By part (a) above, the clause (f(%) = z) is Z,. Hence R(f (), y) is Z.
(c) Suppose that R(z, ) has the form (y; € z). Then

R(f(X), ))<= yief(X).

This is X, by (i).
That takes care of all the primitive (i.e. atomic) cases.

(d) If R(z, y) has the form S(z, y) A T(z, y) the induction step is immediate.
(e) If R(z, y) has the form —1 S(z, ) the induction step is also immediate.

(f) Suppose that R(z, y) has the form (Ju € y;) S(u, z, y). Then
R(f(%), ) Quey) S, f(X), ),

and the induction step follows at once.

(g) Finally, suppose that R(z, y) has the form (Ju € z) S(u, z, y). Then

R(f(X), )= Qu e f(%) S, £(X), ),
and the induction step follows from (ii). [
1.3 Lemma. If f is rud, then f is simple. Hence all rud functions are X,.

Proof. Let f be rud, and let f,, ..., f, be a rud definition of f. Using 1.2, we shall
prove by induction on i < n that f; is simple. (Such a proof is said to be “by
induction on a rud definition of f”.)

It is clear that schemas (i), (ii) and (iii) for rud functions all give simple func-
tions. (In each case it is trivial to check conditions (i) and (ii) of 1.2.)

To handle schema (iv) we use the definition of simplicity. Let

fX) = h(g:(X), ..., g(X)),
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where h, g, ..., g; are already known to be simple. Let R(z, j) be Z,. Define S by

S(z1, .05 2k, ) = R(h(zy, ..., 24, ).

Since h is simple, S is Z,. But

So, as gy, ..., gx are simple it follows (in k steps) that R(f (%), y) is Z,.
Finally, for schema (v) we use 1.2 again. Suppose that

f(y’xz,-“sxn):U g(u3x2a'--axn),

uey

where g is known to be simple. Then

zef(y,X) > Quey)(z g, %).

Since g is simple, by 1.2(i) the clause (z € g(u, X)) is Z,. Hence (z € f(y, X)) is Z;.
Again, if A(z) is X, then

@z ef(, X)) A(2) = (Qu e y) Az € g(u, X)) 4(2).

Since g is simple, by 1.2(ii) the clause (3zeg(u, X)) A(z) is X,. Hence
3z ef(y, X)) A(2) is Z,. The proof is complete. O

That the converse to 1.3 is false will follow from the following result.

1.4 Lemma (Finite Rank Property). Letf: V" — V be rud. Then there is a p € ®
such that for all x,, ..., x,,

rank(f(x,,..., x,) < max(rank(x,), ..., rank(x,)) + p.
Proof. By induction on a rud definition of f. The details are trivial. [
Consider now the constant function f: V— V defined by
f(x)=w (all x).
By 1.4, f cannot be rud. But f has the X, definition
y = f(x) = 0n(y) A lim(y) A (Vz € y) (succ(z) v z = ).

But as the next lemma shows, the graph of f (i.e. the set {(y, x)|y = f(x)}) is rud.
1.5 Lemma. Let R < V" Then R is rud iff it is Z,.

Proof. If R is rud, then yg is rud, so by 1.4 yp is £, so R is £,. Conversely, by 1.1,
parts (11), (12), (16), (19), the class of all X, relations is a subclass of the class of all
rud relations. [J
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A useful consequence of 1.5 is that, because of 1.1(14), if R(y, X)is a £, relation,
then the function

S, %) = {ze y|R(z, )}

is rud. We utilise this fact in our next, highly relevant result.
A class M is said to be rudimentary closed iff f” M" = M for all rud functions
f: V">V (all n).

1.6 Lemma. Let M be a transitive set containing w. If M is rud closed then it is
amenable.

Proof. Recall that a transitive set M is amenable iff:
@) (Vx,y e M) ({x, y} € M);
(i) (Vxe M) (Jx e M);
(i) w e M;
@iv) (Vx,ye M)(x x y e M);
v) if Re M is £y(M), then (Vue M)(R nueM).

Assume that M is rud closed. By definition, the functions f(x, y) = {x, y} and
f(x) ={Jx are rud, so M satisfies (i) and (ii) above. And by the hypotheses of
the lemma, M satisfies (iii). By 1.1(23), the function f(x, y) = x % y is rud, so (iv)
is valid. That leaves us with (v). Let R= M be X,(M). Suppose R is
=M (1, -...,pa) Let S be = such that

Vxe M)[R(x)>S(X,P15---5Pn)-

Since S is X, it is rud (by 1.5). So by 1.1(14), the function
S, xg,...,x)=un{x|Sx, x1,...,X,)}

is rud. Hence as p,,...,p,€ M and M is rud closed,
ueM ->f(u,p,,...,p,) EM.

In other words,
ueM->unReM,

as required. (Notice that we have here made use of “localised” versions of 1.5 and
1.1) O

The converse to 1.6 is false. But by strenthening amenability clause (v) a little,
it is possible to obtain a complete characterisation of rud closure in amenability
like terms. We leave this as an exercise for the reader. (Hint: See what is required
in order to prove the “converse” to 1.6.)

The rudimentary closure of a set X is the smallest rudimentary closed set Y
such that X < Y. It is immediate that the rudimentary closure of X is of the form

{f(®)| fis rud and X € X}.
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1.7 Lemma. If U is transitive, then the rud closure of U is transitive.

Proof. Let W be the rud closure of U. We prove by induction on a rud definition
of f that for any rud function f: V"— V and any x,,...,x, € W,

* TCx))SWA...ATC(x,) S Wo>TC(f(xq,..., %)) = W.
Since U is transitive and, as noted above,

W= {f(X)|fis rud and X € U}.

this proves the lemma.
If f(xy,...,x,) = x;, (*) is a propositional tautology.
Iff(xl, ceey x,,) = {x,-, xj}, then

TC(f(x1,...5x,)) = TC({x, x;}) = {x;, x;} U TC(x)) U TC(x)),

and (*) is immediate.
If f(xl, ceey x,,) = x,- - Xj, then

TC(f(xy,...,x,) = TC(x; — x;) = TC(x)),

and again (*) is immediate.

If f(xla [ERX} xn) = h(gl(xla -~°’xn)5 ey gk(xla ceey xn))a WhCI'e ha g1s---, gy are
rudimentary and where (*) holds for h, g, ..., gi, then (*) for f follows from the
application of (*) first to each of g4, ..., g, and then to h.

Finally, suppose f(y, X,, ..., X,) = | 9(z, X2, ..., x,), where g is rudimentary

y

and where (*) holds for g. If TC(y) = W, then TC(z) = W for all z €y, so by
applying (*) to g(z, x,, ..., x,) for each z € y we get (*) for f by taking the union
according to the definition of f.

The proof is complete. [J

We consider now the notion of relatively rudimentary functions. We show that
these reduce, in a natural way, to combinations of rud functions and the function
fx)=4nx.

1.8 Lemma. Let A = V.If f: V"> Vis A-rud, then f is expressible, in a uniform
way with respect to any given A-rud definition of f, as a combination of rud
functions and the function a(x) = A N x.

Proof. Let P(f) mean that f is expressible as a composition of rud functions and
the function a defined above. We shall show that if f is A-rud, then P(f). The
proofis by induction on a rud definition of f. (The uniformity will be an immediate
consequence of the proof.)

Clauses (i), (ii), (iii), and (vi) in the definition of A-rud functions cause no
difficulties in the induction. And clause (iv) is taken care of by virtue of the fact that
a composition of compositions is itself a composition. The only trickly step is the
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proof that if P(g) holds and f is defined by
0,9 = g6z, 9,

zZ€y

then P(f) holds. We do this by induction on the “complexity” of g. More precise-
ly, let By(h) mean that h is rud, and, inductively, let P, ; (h) mean that

h(Z) = ho(%, A O hy (%), ..., A O hy(%))

for some hy, hy, ..., h, such that By(ho) and B, (h,), ..., B,(h,,) are all valid. By the
definition of P, it is clear that

P(h) < 3nP(h).

So it suffices to prove that R(n) holds for all n, where R(n) means:

if B(g) and f(y, %) = | g(z, ), then P(f).

zey

We do this by induction on n.
For n = 0 there is nothing to prove, since in this case fis itself rud. So suppose
that n > 0 and that R(n — 1) holds. Let g be given such that P,(g). Thus

g(z, X) = ho(z, X, A N hy(z, %), ..., A N h,l(z, %)),
where By(hy) and B,_,(h,), ..., B,_(h,,). Set
g(z, X, u) = ho(z, X, u N hy(z, X), ..., u N hy,(z, X)).
Clearly, P,_{(g). Set
Fo % u = 4@ %, ),
h(y, %) = [ hy(z, D] U ... U [ hwlz, D).

zey zey

By R(n — 1), both P(f) and P(h). But

f(y’ )2) = U g(Za )E) =f(y’ X, AN E(ya .56.))

zey

This proves R(n). O

A structure of the form M = (M, 4), where 4 = M, is said to be rud closed iff
f"M" = M for all A-rud functions f: V"— V (all n).

1.9 Lemma. Let = (M, A), where M is transitive and A = M. Then M is a rud
closed structure iff M is a rud closed set and the structure M is amenable.

Proof. A direct consequence of 1.6 and 1.8. [
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1.10 Lemma. Let A < V.If f: V" — Vis A-rud, then f | M" is uniformly (M4~ M>
for all transitive, rud closed structures (M, A N M.

Proof. By 1.3 and 1.8. O

The following lemma shows that, in a certain, obvious sense, the rud functions
have a finite “basis”. In the statement of the lemma, we allow the use of “dummy
variables” so that, for later convenience, all of the “basis” functions are binary.

1.11 Lemma (The Basis Lemma). Every rudimentary function is a composition of
some or all of the following rudimentary functions:

Fo(x, y) = {x, y};

Fi(xy)=x—y;

B(x,y) =x xy;

F(x,y) ={u,zv)|zex A (u,v) € y};
Fy(x,y) = {(w,v,2) |z€ x A (4, 0) € y};
Fs(x,y) = Ux;

Fs(x, y) = dom(x);

F(x,y) =en(x x x);

Fy(x, y) = {x"{z}|z € y}.

Proof. It is easily seen that each of the above functions is rudimentary. Hence if
% denotes the class of all functions obtainable from F,, ..., F; by composition,
then every function in % is rudimentary. We prove the converse, that every
rudimentary function is a member of €.

If ¢ is an #-formula and x,,...,x, are variables of &, say x, =
Vi(0)> -+ -» Xn = Ui (> We usually write @(x,, ..., X,) to indicate that the free variables
of ¢ are all amongst x,, ..., x,. Let us call the expression “¢(x,, ..., X,)” a repre-
sentation of ¢. Thus, any .#-formula has infinitely many representations: if the free
variables of ¢ are all amongst v,, ..., v,, then

¢(UO""’vn)a (p(vOa"'avna vn+1)a (p(UO>-"avn9 Un+105 vn+3)

are all representations of ¢.
For each representation ¢(x,, ..., x,) of an #-formula ¢ we define a function
to(xo.....x, as follows:

tq:(xo ..... x,‘)(u) = {(a09~"aan)la0’ ~~-aaneu A |=u(p(&Os“-a‘in)}'

As a first step towards proving the lemma, we show that ¢, ... ., €% for any
@(xg, ..., x,). The proof is by induction on the construction of ¢.
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(a) Suppose that ¢(x,, ..., x,) is the formula (x; € x;), where 0 < i < j < n. Thus

t(p(xo ..... x,.)(u) = {(aO? (RS an) I aO» ey an EUAN |=u(di € dj)}
={(ap,.--»a,)lao,...,a,€u A a;€a;}.
The main complicating factor is the presence of the “superfluous” variables

X0y -5 Xim15 Xit 152> Xj—15 Xj415-+-» Xp. This is where we use the functions F;
and F,. (Remember that, by definition,

(X0 e ves X)) = (X05 (X1s e Xp) = (X0, (X1, (X2, 000y X)) = ovvvnn )

We shall assume that 0 <i,i + 1 <j,j < n. This is the most complicated case,
with “superfluous” variables in all possible locations. All other cases are degener-
ate versions of this one. Let us write G°(x, y) for F,(x, y) and, inductively,
G™*1(x, y) for F,(x, G™(x, y)). Thus G™e % for all m. Note that, in particular,
G™(u, u) = u™*2 for all m. Let

H(u) = Fy(G" ™7~ %(u, w), F;(u, w)).
Then H € ¥. But we have

Hu) = F,(u" 7, e nu?)
= {(a,b,c)|ceu" "I A (a,b) € (e nu?)}

={(a,b,c)lceu""  Aa,beu A acbh}.

Thus,
Fy(u, Hw) = {(d, e, f)|lecu A (d, f) e Hu)}
= {(a, e, (b,c))|ecu A (a, b, c)e Hu)}
= {(a,e,b,c)|ecu A (a,b,c) e Hu)}.
Similarly,

F;(u, F5(u, Hw))) = {(a, e, f, b, c)| e, feu A (a, b, c) € H(u)}.
So if we write F (y) for F;(x, y) we have

7 HW) = (@ e1s v ejim1,b,0)]

ey,...,ej_i—1 €U A (a,b,c)e Hu)}.

Then
G'(u, 77" Y HW) = {(f1>---» fi—1,a €45 ..., €j-i—1, b, 0)|
fisooos fici,€1,..,ej—i—1 €u A (a, b, c) € H(u)}
= Lo (xo,...,xn(H)-
Thus t,x,,...,x, € €
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(b) Suppose that ¢ =y v 0 and that t,., . x> lowo,....xn €G- Then
x € 6, because,

toxor..oxm (™) = tyixo, ... xm (W) U to(x, ..., 1 (W)

x) €€. Thent x,) € € because

@ (x05.. -y

.....

t(p(xo ..... x,.)(u) =u-—- tl[l(xo ..... x,.)(u) = Fl (u’ t\[l(xo ..... xn)(u))‘

x, € € by (b) and (c).

.....

(d) If q) = l/, A 9 and tn[/(xo ..... Xn)? tO(xo ..... Xn) € (g’ then t(p(xo

() fo=3yyand t, ....x) €%, thent

o(xo....,xn) € G, because

t(p(xo ,,,,, xn)(u) = dom(t\l/(y,xo ..... xn)(u) = F6 (tlll (Vs X05+-+» xn)(u)9 u)'

() fo=Vyyandty, . . x) €% thent, . ., €% by(e)and (0

.....

(8 If (xo, ..., x,)is the formula (x; = x;), where 0 < i,j < n, then t,,,
To see this, let 8(y, x,, ..., x,) be the formula

.....

(yex)e(yex).

By (a), together with (b), (c), (d), ty. xo,....x, € €. Let Y(xo, ..., x,) be the formula
Vy0(y, xo, ..., %,). By (f), t)(x.....x, € €. But clearly,

‘:u(p(&OV"’dn) lff ':uu(uu)lp(dOa"'adn)'
Thus,

t(p(xo ..... xn)(u) = {(aO’ ey an)laOa ceey Ay EUN t:uu(uu)l//(do’ aaon)}

= un+1 N tl/l(xo ..... x,.)(u o (U u))

But we saw in (a) that the function F(u)=u"*' is in % (if n=0, use

F(u) = u — (u — u) instead), and by Fs, F, the function F(u) = u U (| Ju) is in .
Thus t,x,,....x) € 6-

(h) Now suppose that ¢(x,, ..., x,) is the formula (x; € x;) where 0 < j < i < n.To
see that t,, ... ., €%, argue as follows. Let ¥(y, z, X, ..., X,) be the formula

ez) Aly=x) A (z=x)).
By (a), (g), (), ty ¢,z xo.....x € €. But clearly,
F.o(dg,...,d,) iff E,3ydz¥(y, 2z, do, ..., 4,)-
So by (€), ty(xo.....x,) €B-

By (a), (h), (g), (b), (c), (d), we see that t,, ., €% whenever ¢ is a quantifier
free formula of Z. Hence by (e), (), t,(x,,....x, € € for any L-formula o.

.....



1. Rudimentary Functions 239

As the next step towards proving the lemma, for any f: V"— V we define
f*: V>V by

f*w) =f"u".

We prove that if f is rudimentary, then f* € €. The proof is by induction on a
rudimentary definition of f.

(a) Suppose that f(xy,..., x,) = x;. Then
frw =f"v"=u—(u—u)
and so f*e¥.
(b) Suppose f(x;,...,x,) = x; — x;. Then
Jrw) =f"u" = {x — ylx, y € u}.
Let ¢(z, y, x) be the formula z € (x — y). Let
Fu) =ty xp@ o (Juw) n(Ju x u?)
={@x,yIx,yeunz=x—y}
Since t,,, x,, € € we have F € 4. But then f* € €, since
Fy(F(u), u?) = {F(u)" {a}|a € u*}
= {Fu)"{(x, »)} | x, y € u}
={{z}Ix,yeunz=x—y}
={{x—y}Hx yeu}
=f*w).
(©) Let f(xy,..., x,) = {x;, x;}. Then
f*w) = {x, y} |x, yeu} = W),

so f*e%.

(d) Let f(x1,..-»%0) = h(g1(Xys.ees Xp)y -5 Gi(X1, ..., X,)), Where h, g4, ..., g, are
rudimentary and h*, g¥,...,gf € 4. Let

Gu) =gfw) v ...vg¥w), Hu) = h*(Gu), K(u) =u" v G(u) v H(u).

By our assumptions, G, H, K € €.
By 1.3 there is a Xy-formula @(z, ..., z;, X4, ..., x,) of LST such that

Oy, ey Ziy Xy eear Xy) T

2y = G1(X15 00 s X)) A e A zk=gk(x1a---’xn)
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and a X,-formula ¥(y, z,, ..., z;) of LST such that
Yy, 21,...,2¢) Iff y=h(zq,...,2).

Let r exceed the number of quantifiers which occur in ® and ¥, and define D by

Dw=uv(Juwou(JUwu...ulJw.

Then D € €, and moreover, by 1.9.15, if 6, y are the #-analogues of @, ¥, then for
any set u and any y, z;, ..., Zx, Xy, .- X, € U,

Oy, .oy 2k Xy, X)) M Epy 0y, ..., 2, Xy, .00, X))
and

Y, z1,..,20)  Wff Epoy¥ (B, 21, ..., Z).

(Strictly speaking, 1.9.15 is not adequate for the above, since this would require
D(u) to be transitive. However, as is easily seen, the choice of the integer r above
makes D(u) resemble a transitive set sufficiently for the proof of 1.9.15 to go
through for the formulas concerned here.) Let ¢(y, x4, ..., x,) be the £-formula

3z1 o i [0z, ooy Ziy Xy s X)) AWV, 2050005 Z0)]-

Now, K (u) consists of u", together with all values of g4, ..., g, on u and all values
of f on u. Thus by the definition of ¢,

Lo ox1.....x(D 0 K@) N (f"u" x u”)

= {(f(x15'~~’xn)axls-'~:xn)'x1,.n,xneu}-
Thus

[*W) = U Fs(typx,,....x0D ° K@) N (HW) x u"), u").
This shows that f* e %.
(¢) Suppose that f(y, x4, ..., x,) = |J g(v, x4, ..., x,), where g is rudimentary and

vey

g* € €. By 1.3 there is a Xy-formula &(z, y, x4, ..., x,) of LST such that
D(z,y,%1,...,%,) iff Qvey)zeg, xq,...,Xx,)]

Suppose that ¢ has fewer than r quantifiers, and define D as in the above case (d).
Then, if ¢ is the #-analogue of &, we have, as above, for any z, y, x;, ..., x, € u,

D(z,p, X155 %) Ml Fpuy@(Z, §,%4,...,%,).
Then

t‘P(z,val ,,,,, xn)(D(u)) = {(Z’ Vs X150, xn)lza VX, Xp € D(u)

A (Eivey)(zeg(v,xl,...,x,,))}
={(z,¥, X1,..» X) |2, Vs X15 ..., X, € D()

ANZES(Y, X1y, X,)}-
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So
Fy(t, (2,9, X150 0s xn)(D(u))a ut 1)

= {{Z}Iy’xla--'axneu A zef(y,xl,...,x,,)}.
Thus

f*(u) = U FS(Lp(z,y,x; ..... x,.)(D(u))3 u"+ 1)’
which shows that f* € .
We have proved that f* € € for any rudimentary function f. We are now able

to complete the proof of the lemma. Let f: V" — V be a given rudimentary func-
tion. We prove that fe . Define f: V— V by

ﬂn={ﬂ““”“L if x = (21,5 2,)

0, in all other cases.

By 1.1(9), f is rudimentary. So by the above, f* € . Moreover, g € ¢, where we
define g: V" - V by

gx1, .y xy) = {(x1,...5 x0)}.

(By repeated use of F,.) But

fGr e x) = U G 3} = UG e 3
= UF" {05y Xt = UT*Cxr5 005 %)
= UMy, ).
Thus fe %, and we are done. [J
As an immediate corollary of 1.8 and 1.11, we have:
1.12 Lemma (Extended Basis Lemma). Let A < V, and define F, by

Fy(x,y)=A4n x.

Then every A-rudimentary function may be expressed as a composition of some or
all of the A-rud functions Fy, ..., Fy. O

Lemma 1.14 below provides an immediate application of the above basis
result. It concerns the semantics of the languages %} (A). These languages (or
rather more general languages %, (4,, ..., A;)) were defined in 1.9. As was men-
tioned there, the basic syntactics and semantics of these languages differs only in
a trivial way from that of the language %}, and so there is no need to spend any
time on such a development. Suffice it to say that, what comes out of it is the
following. There is a X, formula Sat*(u, a, ) of LST (in three variables, u, a, @)
which says that:

“u is a non-empty set” A “a < u” A “¢ is a sentence of £, (4) which is
true in the structure <{u, a) under the canonical interpretation”.

Just as in 1.9.10, we get:
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1.13 Lemma. The LST formula Sat*(u, a, @) is A%. O

As usual, we usually write F, ,, ¢ rather than Sat*(u, a, ¢). For any n € w, we
denote by F¥; ,, the restriction of the relation F,, ., to the X, sentences of Z,(A).

The following lemma will provide us with an analogue to I1.6.3 for the Jensen
hierarchy of constructible sets, defined in the next section.

1.14 Lemma. F}Y ,, is uniformly (™4 for transitive, rud closed structures
(M, AD.

Proof. Consider the language I}, which consists of the variables v,, n € w, of ¥
(i.e. v, = (2, n)), the constant symbols X(= (3, x)), for each x € M, and the binary
function symbols 150, ey 159. (More formally, for eachi =0,..., 9, Ii(x, y) denotes
the set (0, i, x, y).) The syntax of I}, is particularly simple. Each variable and each
constant of %, is a term of I, and if t,,t, are terms of I,, then
Folty,to), ..., Fy(t,, t,)are all terms of I;,. Note that each term of I, is an element
of M. A constant term is one which contains no variables. Each constant term, ¢,
of I}, has an obvious interpretation in (M, 4), where we let x interpret x for each
x € M and F; interpret F; for each i = 0,...,9. Since (M, A is rud closed, the
interpretation, 1™ 4> of each constant term ¢ is an element of M. Clearly, for each
constant term ¢t and each x € M, we have:

x =M ff
3f3g[Finseq(f) A Finseq(g) A dom(f) = dom(g) A g(dom(g) — 1)
=x A (Viedom(f)) [Consty(f() v 3j, kei)[f({)
= Fo(f Gl f(R) v ... v £@) = B (£(), f(R)] A (Vi € dom ()
[Consty (f (@) = g() = (f (1] A (Viedom(f)) (V), kei)
[(fG) = Fo(fG)s f(K) — g(0) = Folg () g(K) A ... A (£()
= Fo(f(), f(K)) = g(i) = Fo(g()), g(k)]]-
Now, if such f, g as above exist, they will certainly be elements of M. Moreover,
by 1.10, each of the functions F,, ..., F, is (uniformly) Z{-4>. Hence the above
equivalence shows that the relation x = t<™*4” (as a relation of x, ) is (uniformly)

2{M-4> The idea now is to utilise this fact by associating with each X, sentence
¢ of #)(A) a constant term t,, of I}, so that:

(i) the map @t is Z{M'4> (uniformly);
In fact, in order to do this, we need to define t, for any formula ¢, not just
sentences. (This is why we allow variables in the language I},.)

As our starting point we take 1.5. This tells us that if R(X) is a £, relation, there
is a rud function f(%) such that

RE) o f(F) =1.
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By 1.11, we know that the function f here may be expressed as a composition of
the basic functions F, ..., Fy. Now, the existence of the function f is established
by proceeding inductively on the logical structure of R, using 1.1(11), (12), (16),
(19), and the proof of 1.11 is (essentially) by induction on a rudimentary definition
of f. And by virtue of 1.8, we can extend all of this to allow for the unary predicate
A, introducing the extra basic function Fy. So by examining the inductive proofs
of 1.5, 1.11, and 1.8, we obtain the required map ¢ ¢,.

We proceed inductively following the logical construction of the X, formula
o, using the techniques of 1.1, 1.11, and 1.8. Now, if you have spent any time on
the proofs of these results, particularly 1.11, you will appreciate that it would be
pointless trying to write out explicitly the definition of the function ¢+ t,,. But it
should be clear that the following is the case.

From 1.9 (extended to the language .#,,(A4)) we know that there are X, for-
mulas F., F_, F,, F,, F_,, F; of LST such that (see, in particular, 1.9.3):

F.(6, x, y) > 0 is the ¥);(A4) formula (x € y);
F_(0, x, y) < 0 is the Z)(A4) formula (x = y);
F,(6, x) 0 is the Ly (A) formula A(x);
E (6, @, ) < 0 is the £,(A) formula (¢ A V);
F_ (0, ¢) < 0 is the £ (A) formula (4 ¢);
E(8, u, ¢) < 0 is the £\ (A) formula Ju ).
These LST formulas simply describe the way in which the formulas of #,,(A) are
constructed. Implicit in the proofs of 1.1, 1.11, and 1.8 is the fact that there are X,
formulas G., G-, G4, G,, G-, G; of LST such that:
G(t, x, )t = Lixey)s
G_(t, x,y) >t = tx=y);
Gut, X) ot = L0
Gty by, ty) Dt =Ly
G- (L, t,) =t = 1)
Gi(t, tqa)‘_’t =layex)os
where for each ¢, ¢, is a term of I}, which satisfies (ii) above. These G-formulas
describe the way in which the terms ¢, must be combined (together with specific
of the function symbols Fy, ..., F;) to make (ii) valid, and thus correspond to the

induction steps of the proofs of 1.1, 1.11, and 1.7 (all rolled into one).
It follows that there is a X, formula H of LST such that

H(t, ) “¢is a X, formula of ), (4)” A t =t,.

In essence (though not totally accurate), H(t, ¢) is as follows (see 1.9, in particular
1.9.6):
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3f3g[Build(f, ¢) A Finseq(g) A dom(g) = dom(f)
A (Vie dom(f)) (Fe(f (i), x, y) = Ge(9(), x, y)))
Ao A (E(FG), u, () = Gs(g(i), u, gG)].

Notice that if H(t, ¢) is true, it is always possible to find such f, g as above in M.
Consequently, if h(t, ) denotes the £-analogue of the LST formula H(t, ¢), we
have, by 1.9.15, for any x, y e M,

H(,V, X)H |=Mh()°” -XQ:)

This proves (i) and (ii) and thus completes the proof of the lemma. O

The following result, which will provide us with an analogue of I1.6.4 for the
Jensen hierarchy, is deduced from 1.14 in exactly the same way that 11.6.4 was
deduced from I1.6.3:

1.15 Lemma. For any n > 1, the relation ¥y, 4y is uniformly M4 for all transi-
tive rud closed structures {M, A>. O

For any set U, we define the set rud(U) to be the rudimentary closure of the
set U U {U}, i.e. the smallest rud closed set that contains U as a subset and as an
element. Notice that by 1.7, we have:

1.16 Lemma. If U is transitive, then rud(U) is transitive.
Proof. Immediate, since if U is transitive, then U u {U} is transitive. O

We shall use the function rud(U) in order to define the Jensen hierarchy. The
following lemmas will be of use to us in this connection. The first of them will
enable us to compare the rates of growth of the two constructible hierarchies. The
other two will help us to define well-orderings of the levels of the Jensen hierarchy.

1.17 Lemma’. Let U be a transitive set. Then

rud(U) n 2(U) = Def(U).
In fact
Xo(rud(U)) n 2(U) = Def(U).

Proof. We commence by proving that

(*) 2o(U U {U}) n 2(U) = Def(U).

First of all let A € Def(U). Thus for some formula ¢(x) of %y,
A={xeUl|kFypX)}.

7 In the statement of this lemma we extend our notation a little by using Z,(M) to mean the set
of all Z,(M) subsets of M. This notational extension will be used several times from now on.
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Let /(x) be the formula of £y, 1, obtained from ¢(x) by binding all unbounded
quantifiers by U. Clearly, for any x € U.

Fopo(x) iff FUu(U}‘//(f)-

A={xeU U {U}FyomEe U Ay} eZo(U v {U}) N 2(U).

Thus

Conversely, let A€ XZo(U u {U}) n 2(U). Thus for some X, formula ¢(x) of
gUu(U),

A={xeUlky,meX)}.

To show that A € Def(U), it suffices to show that for any X, formula ¢(%) of
Loy there is a formula @*(X) of £y such that for any X e U

FUu{U)(D()a iff FU(P*(f)'

The proof of the above is by induction on ¢. Suppose first that ¢ is primitive.
If ¢ does not involve U, take * = ¢, in which case the result is clear. Suppose that
@ involves U. If ¢ is of the form (a € U) where a € Vbl U Consty, take ¢* to be
(a = a).If ¢ is of the form (U = U), take ¢* to be Vx(x = x). In all other cases, take
@* to be Ix(x + x). It is easily seen that ¢* is as required. In case ¢ = A 0 now,
we take @* = (y*) A (6*), and in case ¢ = 71, we take @* = 1 (Y *). Suppose
next that ¢ is of the form (3 x € a) y, where a € Vbl U Consty. In this case take ¢*
to be (3x € a) (Y*). Finally, suppose that ¢ is of the form (3x € U) y. Then we take
@* to be Ix(Y*). The result is clear now.

By (%), in order to prove the first part of the lemma, it suffices to show that

2o(U u {U}) n 2(U) = rud(U) n 2(U).

First of all, let A€ Xy(U v {U}) n 2(U). Thus for some X, formula ¢(x) of
egUu{U)a

A={xeUlky,moX)}.

By X ,-absoluteness,

A ={xeU|FqweX)}.

But rud(U) is amenable (by 1.6). Thus by definition of amenability, 4 € rud(U).
For the converse, let A € rud(U) n 2(U). Then for some rudimentary function f
and some a € U, A = f(a, U). Now by 1.3 and 1.2 (or rather by localised versions
of them where V is taken to be the transitive, rudimentary closed set rud(U)), there
is a X, formula ¢ of # such that for any x € rud(U),

xef(a U) iff Fawe(X, 4, U)
Thus

A={xeUl|Fy,4ueXd, lj)}~
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By X -absoluteness it follows that
A={xeUlFyomeX,d, U)}

Hence A e X,(U u {U}).
For the second part of the lemma it suffices to prove that

Zo(rud(U)) n 2(U) < rud(U).
Let A € Z4(rud(U)) n 2(U). Then for some X, formula ¢(x) of &4 ),

A= {xeU|Fyuo(X)}.

So as rud(U) is amenable, 4 € rud(U). The proof is complete. [

By tracing through the proof of the above lemma, we see that we have in fact
proved the following result:

1.18 Lemma. Let ¢(y, X) be a X, formula of &. Then there is a formula Y (X) of
L such that for any transitive, rudimentary closed set U,

(VxeU) [FrameU, %) iff FpyX)] O
This lemma will be of use to us in dealing with successor levels of the Jensen

hierarchy of constructible sets. (See, for example, the proof of V.5.18.) The follow-
ing consequence of 1.18 will be required in Chapter VIII.

1.19 Lemma. Let M, N be transitive, rud closed sets, and let
o:M<N.

Then there is a unique embedding
6:rud(M) < rud(N)

such that ¢ < 6.

Proof. We show first that if f, g are rudimentary functions and x, y € M are such
that f(M, x) = g(M, y), then f(N, 6(x)) = g(N, o(y)).

By 1.3 (and X, absoluteness), let ¢ be a X, formula of % such that for any
transitive, rud closed set U and any a, b, ce U.

fla,b)=g(a, )= FyIzo(z, 4, b,¢).
Then we have

':rud(M)HZ(p(Z’ M’ -)E, j})
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So for some z € rud(M),

Fruaon @ (2, M, X, J).
For some rudimentary function h and some w € M, we have z = h(M, w). So

(1) 'zrud(M)(p(h(M’ W)°9 M, )E’ j})'

Since h is rudimentary, hence simple, the formula ¢ (h(M, w), M, x, y) is in fact X,
in the variables M, w, x, y. So by 1.18 there is an #-formula , which depends
upon ¢ but not upon M, such that (1) is equivalent to

) Em¥ (0, X, ¥)

(for any such M). Applying o to (2) we get

@) Exylo (W) o (x),0 0.

But the equivalence of (1) and (2) holds for N as well as M. Hence by (3), we get
@ Fram@ BN, o), N, o (x), 0 ().

Hence

(9  Fuam3zoz N, o (x),0 ().

So by choice of ¢, we conclude that f(N, a(x)) = g(N, a(y)), as required.
By the above result we may define a function 6: rud(M) — rud(N) by setting

6(f(M, x)) =f(N, o(x))
for all rudimentary functions f and all x € M. We show that 6 is X, elementary.
(Uniqueness of ¢ will then be immediate, of course, since any X, elementary

embedding which extends ¢ must satisfy the above defining equation.)
Let ¢(x, y) be a Z, formula of #. Suppose first that for some x € rud (M),

|=l'ud(M) Hy(P()Eo y)
Pick y € rud(M) such that
Frud(M)(p()%’ .}0})

There are rudimentary functions f, g and elements X, y € M such that x = (M, x),
y = g(M, y). Thus

(*) I:rud(M)qo(f(M’ x)oa g(Ma )—’)D)
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Since f, g are simple the formula ¢(f (M, X), g(M, 7)) is , in variables M, X, j. So
there is an #-formula , independent of M, such that (*) is equivalent to

o

(%) Ey¥(E )

Applying o to (x*), we get

Ev(o (), (7).

Since the equivalence of (*) and (*#) is valid for N in place of M, we get

) ':rud(N)q)(f(N’ O-()—C-))oa g(N’ G(f))o)’
1.€.

krud(N)(p(ON- (X), G (0)’))
Thus

Fraaan 37 @(6 (%) ).

This is what we set out to prove.
Conversely, suppose that x € rud(M) is such that

Fraa 3y @6 (%), y)-
Let x = f(M, x), where f is rudimentary and x € M. Pick y € rud(N) so that
Fraam (6 (%), J).
Let y = g(N, y) where g is rudimentary and j € N. Then
() Fram@(f(N, 0(x)), g(N, 7))
As above, let Y be an #-formula such that (+) is equivalent to
(++) Fnd(o (39
for any such N. We have (since (+) is valid)
Fv3Y Yo (%), ).
So,as 6: M <N,
Fu3Y V(X Y).
So for some y'e M,

Fm (X, §).
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By the equivalence of (+) and (+ +) applied to M, we get

lzrud(M)q)(f(M’ 2)‘1 g(M, y,)o)-
Thus
Fraaon 3y (X, y),

and the proof is complete. [

The following lemma provides us with a useful hierarchy for the construction
of rud(U) from U.

1.20 Lemma. There is a rudimentary function S such that whenever U is transitive,

Uu{U}csSU) and rud(U)= |J S"(U).

<w

Proof. Set
s =wo ol [ roowy|

The result follows from 1.11. O

1.21 Lemma. There is a rudimentary function Wo such that whenever u is transi-
tive and r is a well-ordering of u, Wo(u, r) is an end-extension of r which well-orders
S(u).

Proof. The idea is roughly the same as in I1.4.4. Since
8
S = oo ()0 Ao |
i=0

r induces, via the functions F, ..., Fg, a well-ordering of S(u). The function Wo
will be rudimentary because of 1.1(14) and 1.5, since we shall obtain Wo by the
definition

Wo(u, r) = S)? n {(x, y)| D(u, 7, x, )},

where @ is a £, formula of LST (see below).

Before we formulate @ precisely, let us indicate what this formula is intended
to say. Let 7 denote the ordering r with u added as a greatest element. To see if
D(u, 1, x, y), we first check if x, y € u U {u}, in which case we order x, y according
tor,ie. P(u,r,x,y) iff xFy. if xeu v {u} and y ¢ u U {u}, then &(u, r, x, y) un-
conditionally holds. If x ¢ u U {u} and y € u U {u}, then 1 &(u, r, x, y). Now sup-
pose that x, y ¢ u U {u}. First we see if the least i for which x € F"(u u {u})? is
smaller than the least i for which y € F,”(u U {u})?, in which case @(u, r, x, y). If the
two indices here are ordered in the opposite way, then =1 @(u, r, x, y). Otherwise,
let i be the common least index here, and proceed as follows. Let x; be the #-least
element of u U {u} for which x € F;"({x,} % (u v {u})), and let y, be defined analo-
gously for y. If x, 7y,, then &(u, r, x, y), and if y, #x,, then 1 @(u, r, x, y). Other-
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wise, x; = y,, and we define x, to be the 7-least member of u U {u} such that
x = F(x,, x,) and define y, for y, y, analogously, and set ®(u, r, x, y) iff x,7y,.

Precisely, ®(u, r, x, y) is the following X, formula of LST (which we write in an
abbreviated form for clarity):

[(xew) Alyew n(xry)]v [(xeu) A (yéu)]
8

V[(x=u)/\(}’¢u)/\(y=|=u)]Vi\/()[(xetu)/\(x#u)/\(MEu)

ANYyFuAANGEF o) AyeF o {u})’)

AxeF'@o{u})’ A y&F'(uo {u})?) v (Ex,x,euv {u)
[x = Fi(xy,x2) A (Vyp, y2€u 0 {u}) (yrrx; vy, =x;
=Y+ F(y1, )] v @Exyeuv {u}) @y, yoeu v {u})
[x = Fi(x1, y1) Ay = Fi(x1,y2) A (V21,22 €u 0 {u}) (2,74
V(zyeu A xy =u)>x * Flzy,22) Ay + Elzy, 2,)

Airys v (yieu Ay, ¢u)l.

In connection with the above formula, the following points should be noted. \8/
denotes the disjunction of nine formulas fori = 0,..., 8, and /\ is the conjunctil;g
of i formulas forj =0, ...,i — 1. In the case i = 0, the conjuJ;::tion /\ should be
dropped, whereas for i = 1 the conjunction is a degenerate one cc;;;isting of a
single formula only. Expressions such as x € F,"(u U {u})? should be written as

@yeuv {u}) 3zeu v {u}) (x = F(y, 2)).

Since the function u U {u} is simple, quantifiers of the forms (Ix € u U {u}) and
(Vx € u U {u}) are allowed in a X, formula of course.

An examination of the above formula @(u, r, x, y) should complete the proof
of the lemma now. [

To complete this section we prove a result which we shall need in order to
prove the Condensation Lemma for the Jensen hierarchy.

1.22 Lemma. Let M be a transitive, rudimentary closed set, and let X < M. Then
X is rudimentary closed and (X, €) satisfies the Axiom of Extensionality. Let
n:{X, e) = (W, €), where W is transitive. If f: M"— M is rudimentary, then for
all e X, n(f(X)) = f(n(X)).

Proof. Since M is transitive, (M, €) satisfies the Axiom of Extensionality. So for
any x,ye X,

Fulx #yeodzzexozdy)).
Thus if x # y, then since X <, M, we have

Fxdz(zexezdy).
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Hence
Fxlx £ yeoJz(zex oz ¢y)].

and so <X, €) satisfies the Axiom of Extensionality. And by 1.3, X is, of course,
rudimentary closed, so in particular, if f: M" — M is rudimentary, then f(X)e X
whenever x € X. We shall prove by means of an induction on a rudimentary
definition of f that n(f(X)) =f(n(X)) for all X € X. Cases (i) through (iv) of the
rudimentary function schemata cause no problems in this induction, as is easily
seen. For case (v), suppose that f(y, X) = (J g(z, X), where g is rudimentary and

ZEy
for z, X € X, it is the case that n(g(z, X)) = g(n(z), n(X)). Let y, X € X. We show that

n(f(y, X)) = f (=(y), (X))
By definition of 7,

n(f(y, X)) = n"[f(y, X) N X].
And by definition of f;

f), n(%) = J{g(z, n(®)] 2 € n(y)}
= {9z @) zen"(y n X)}
=U{g(=(@), n(X)|zey n X}
= U{n(g(z X)|zey n X}.

So it suffices to show that

[, %) 0 X] = U{n(g(z %) |zey n X}

Suppose first that ve n”[f(y, X) N X], say v = n(u) where uef(y, X) n X.
Since u € f(y, X), we have (3z € y) (u € g(z, X)). But this sentence is =} ({u, y, X})
andu,y,Xe X <;M,s0(3zey n X) (ueg(z, X)). Hence v = n(u) € | J {n(g(z, X)) |
zeyn X}.

Now suppose that ve | J{n(g(z,%))|zey n X}. Pick ze y n X such that
vemn(g(z, X)). Then ven"[g(z, X) N X], so for some ueg(z, X) N X, we have
v =n(u). Butthenu e (J{g(z, ¥)|ze y} and u € X, so u e f(y, X) n X, which gives
v=mn()en"[f(y, X) n X]. The proof is complete. [

2. The Jensen Hierarchy of Constructible Sets

The Jensen hierarchy, (J,| « € On), is defined by the following recursion:

Jo=0;
Ja+l = rud(‘]a);
L= Jp if lim(2).

a<i
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2.1 Lemma.
(i) Each J, is transitive.
(i) o < B implies J, < Jp.
(iii) rank(J,) = J, n On = wa.
Proof. (i) By 1.16.
(ii) Immediate.

(iii) By induction on a. For o = 0 the result is trivial. Limit stages in the
induction are immediate. For successor steps, we use the finite rank property of
rudimentary functions (1.4) to show that

rank(J, +{) = rank(rud(J,)) = rank(J,) + w.

The details are left to the reader. O

Note in particular that in passing from J, to J,., exactly w new ordinals
appear: wa, wo + 1, wa + 2, ..., wa + n,..., (n € w), whereas by 1.17,

Ja+1 N t@(Jaz) = Def(‘]a)'

Thus, although J, ;. ; only contains those subsets of J, which are J -definable, these
sets appear in a hierarchy which is “stretched” from one level of rank, as is the case
with the usual constructible hierarchy, to w levels of rank. Moreover, this
stretched hierarchy is closed under many simple set-theoretic functions such as
ordered pairs, union, cartesian product, etc.
To facilitate our handling of the Jensen hierarchy, we define a sub-hierarchy

as follows.

So = (b;

Sac+ 1= S(Sa)’
S;=U S, if lim(4).
a<i

Clearly, the sets J, are just the limit levels of this new hierarchy. In fact:
2.2 Lemma.

(1) o < B implies S, = Sg;

@) Jo= U 8 =Su,

v<oa

Proof. (i) Immediate.

(ii) By induction. The only non-trivial step is the successor step. Here we
have:

Ja+1 = rud(Ja) = U Sn(Ja) = U Sn(Swa) = U Swa+n = Swa+w

= Pp@+1)- O
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We shall use the S-hierarchy in order to assist our detailed study of the Jensen
hierarchy. But before we commence this study, let us digress for a moment to
examine the relationship between the Jensen hierarchy and the usual constructible
hierarchy. (In particular, we have not yet proved that the Jensen hierarchy does
consist only of constructible sets, and that all constructible sets do appear in the
Jensen hierarchy.)

Will, we have J, = L, = 0, of course. And it is easily seen that J, = H, = L,,.
In view of these two facts, and our knowledge that J, n On = wa and
L, n On = « for all &, one might be tempted into thinking that J, = L, for all
o. This is not the case, however. (The proof that the above equality is false makes
a good little exercise for the reader.) Nevertheless, we do have J, = L, whenever
wo = o . As a first step towards proving this, we have:

2.3 Lemma. Forallo,L, < J,and L,, (Lg|B < a)€J 4.
Proof. We first of all prove that:
(*) ueJ,— Def(u) < J,.
For a« = 0 there is nothing to prove, and for o = 1 the result is trivial, since
J, = H,, so we shall assume that a > 1 from now on. During the proof of 1.11, we

showed that for any representation ¢(x,, ..., X,) of an #-formula ¢, the function
to(xo...,xn is Tudimentary, where

t(p(xo ..... x,.)(u) = {(xo, cees xn)le’ s Xy EUA ':u(P(fo, LR )En)}

It follows that the functions d,,,, ... ., are rudimentary, where we define

_ [{xoeulF o(Xo, ..., X))},  if xq,...,x,€U
w0t X155 Xn) = 0 otherwise
2 .

Since J, is rudimentary closed, for each ¢(x,, ..., x,) we have
Uy Xgyeeos Xy €Sy dipixg, . xy U X1s ooy Xp) € Ty
But for any set u,

Def(u) = {d,xo,....xn X1, ..., X)) | @(Xo, ..., X,) is a representation

of an #-formula ¢ and x,,..., x,€u}.

Thus u € J, implies Def(u) = J,, which proves ().

We prove the lemma by induction now. For a = 0 there is nothing to prove.
For the successor case, suppose we know that L,cJ,, L,eJ,;;, and
(Lyglp<a)€J4y. Since L,eJ,yy, () tells us at once that L,,, =
Def(L,) < J,,,. We show next that L, € Def(J,,,), whence L, €J,4,, of
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course. Well, we have

Ly+1={x = L,|(3¢) 3(a) [Fmly(p) A d€ L,
A(VzeL)(zex ok o)}
={xeJps1lxeL, A (39)(3(2) [Fmly(p) A deL,
A(VzeL)(zex ok o )]
={x€Ly+1|x = L, A (39) 3(3)) [Fmly(g) A d € L,
A (Yze L) (z € x o Sat(L,, Sub(e, 3, 2, )]},
where for clarity we have abused slightly the notation developed in I1.2, using Sub
as a function rather than as a relation. Now, for amenable sets M, the predicate
Fmly(—)is AY (by 11.2.4), the function Sub is AY (by I1.2.7), and the predicate Sat

is AY (by I1.2.8). But J, , is rudimentary closed, and hence amenable. Moreover,
the set Fml, is a subset of J,, ;. Hence by A,-absoluteness,

Lyvi ={x€Jps1Fs,,“(x = L) A (39)(3(@) [Fmly(p) A de L,
A (VzeLy)(zex o Sat(L,, Sub(e, 3, 7, H)]}.

Hence L, , € Def(J, ), giving L., € J,4,, as required. Finally, we have
(Lplp<o+1)=(LglB <) U{(Lasr,a+ 1)},

so by induction hypothesis and the fact that L, € J, . ,, since J, ., is rudimen-
tary closed, we see that (Lg|f < a + 1) e J,4,.

There remains the limit case of the induction. Suppose that « > 0 is a limit
ordinal, and that for all # <, Ly, = Jz and Lg, (L,|y < )€ Jg41- So, as J, is
transitive, Ly < J, for all § < o. Hence L, = () L; < J,. Again,

p<a
L,={xeJ,|@v <®)(xeL,)},
so we have

L,={xeJ,|(3f)[f is a function A dom(f)ea A f(0) =0
A (Vv edom(f)) [(lim(v) - f(v) = t\()v f(@) A (succ(v)
= f(v) = Def(f(v — 1))] A x eran(f)]}.

But by induction hypothesis, (L, |y < p) € J, for all B < a, so the quantifier (3 f)
in the above can be restricted to J, (without affecting the meaning). Moreover, the
unbounded quantifiers involved in the definition of the function Def can also be
restricted to J,, since they only refer to elements of ( ran(f) (see the proof of
11.2.12). Hence, if ¢ is the #-formula which we have just been (implicitly) discus-
sing, we have

L, = {x e J,|Fs,0(%)}.
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Thus L, € Def(J,) = J,, . Similar considerations lead to the conclusion that
(Lg|B < o) € Def(J,), and so

(LplB <) =(Lpl B <) U {(Ly, )} € Sy

The lemma is proved. [

Using 2.3, we may now show that

L= {J J,.

aeOn

In fact we show that the sets J, and L, are equal for many ordinals «.
2.4 Lemma.
(i) LycJ, S Lg,.
@ J,=L, iff oa=a.
(@) L= ) J,.

aeOn

Proof. Clearly, (i) — (ii) — (iii). We prove (i). By 2.3, we know already that L, < J,.
* We show that J, = L,,. As a first step we prove that

(*) forall a: ue L,—»Su)eL,;s.
It is easily seen that for each i =0,..., 8,
X,y € Ly—> Fi(x,y) € Ly 4.
Thus if ue L,, we have S(u) = L, 4. So, by X,-absoluteness,

SW)={x€LysqlFL,, “xeu A @v,weuu {u})

[x = FK(,w) v...v x = Fg(v,w)]"}.

Hence S(u) € Def(L,+4) = L, 5, which proves ().
In order to prove that J, = L,,,, since L, is transitive and J, = ] S,, it

v<wa

suffices to show that S,e L,,, for all v < wa. By (*), S"L,,, < L,,,. In particular,
L, is rudimentary closed and (by 1.3) there is a X, formula ¢(vy,v,) of &,
independent of o, such that for x, y e L,,,

y=8() iff ky o).
By induction on a we prove the following result:

P(a): if v < wa, then S,, (S;|T < v) e L,, and the sequence (S, |v < wa)
is uniformly Tie=,
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This, of course, will complete the proof of the lemma.
Let 6(f) be the following X, formula of # (to define the hierarchy
(S,|v e On)):

“f is a function” A “dom(f) is an ordinal” A f(0) = 0
A (Vv e dom(f)) [(succ(v) = o(f(v), f(v — 1))
A (lim(v) - f(v) = U f@)]-

TEV

By our above remarks, it is clear that for any o and any v < wa, if
Fro . 3f[0(f) Ay =fO)],

then y = S,. We prove the part of P(«) concerning X, definability by showing that,
in fact, for any o and any v < wa,

y=S5, iff F 3f[0() A y=fO)]

Now for the proof of P(x). For o = 0 there is nothing to prove. Now assume
P(x). Then, in particular, (S,|t < wa) is == and hence is an element of L, ;.
Thus J, = |J S.€Lyus2 S Ly@+1)- For any n < o, since L, is rudimentary

t<wa
closed, we have S,,+, = S"(J,) € Ly@+1)- Thus S, € Ly, 41y for all v < w(a + 1).
Again, for any n<w, (S [t<wa+n=(S|1<w0x)U {(Spgtm @+ m)|
m < n}, so as L,,+q) is rudimentary closed, (S|t < wa 4+ n)e L, ,+1), and
$0 (S;|T<V)€L,u+y for all v <ow(x+ 1). Finally, to show that for any
v < w(x+ 1),

y=S8 iff kp .., 3f0(f) Ay=fO)]

it clearly suffices to show that whenever v < w(a + 1) and y = S,, then there is an
f€ Ly@+1y such that

l:L(a;+1)9(f) NY —_—f(V)

But (S;|7 < V)€ L,,+1)1s such an f, so we are done.

Finally, assume 6 > 0 is a limit ordinal and that P(«) holds for all o < 8. It is
then trivial that S, (S;|t < v)e L, for all v < wé. And since (S, |7 < v) € L, for
all v < wd, the same argument as above shows that for v < w4,

x =8, iff kr, 3f[0(f) Ay=S0)]

The proof is complete. [J

Returning now to our study of the Jensen hierarchy itself, the same argument
as in 2.4 above shows that

2.5 Lemma. The sequence (S,|v < wo) is uniformly i« for all o. [
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2.6 Corollary. The sequence (J,|v < o) is uniformly 1= for all o.

Proof. Clearly, the sequence (wv|v < «) is uniformly XJ= for all «, so the result
follows easily from 2.5. O

2.7 Lemma. There are well-orderings <5 of the sets S, such that:

s s .
Vi g < v2)?
(i) <5, is an end-extension of <5;

(iii) the sequence (<5|v < wa) is uniformly 3= for all «.

i) vi < v, implies <

Proof. We use 1.21. Set <3 = 0, and, by recursion, let

<‘\9!+l = WO(S\,, <§)>

<5=U <3, if lim(4).
v<ai

Then (i) and (ii) are immediate, whilst (iii) is proved by an argument as in 2.4 and
25 0O

2.8 Lemma. There are well-orderings <, of the sets J, such that:

(i) oy <y implies <,, S <,,;
(i) < .4, is an end-extension of <,;
(ili) the sequence (<z|p < «) is uniformly Z{= for all «;
(iv) <, is uniformly i for all a;
(v) the function pr,(x) = {z|z <,x} is uniformly = for all a.
Proof. Set <, = <5 for all a. Then (i)—(iii) are immediate by 2.7. For (iv), note
simply that x <,y iff 3v e J,) (x <5y). For (v), note that

y=pr(x) iff GveJ)(xeS, Ay={z|z<5x})
and that v < wa implies <3 € J,, and use 2.5 and 2.7. [
By 2.4 we can define a well-ordering < ; of L by setting

<,;=U <.

aeOn

Then, as was the case with the well-ordering <;, <;is a £; well-ordering of L.

2.9 Lemma (Condensation Lemma). Let o be any ordinal. Let X <, J,. Then there
is a unique ordinal § and a unique isomorphism w such that:
(1) m: X = Jg;
@ nvy<v forall ve X nou;
(i) =(x) <y;x forall xeX;
@iv) if Y= X is transitive, then n [ Y=1id | Y.
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Proof. By 1.22 there are unique 7, W such that n: X =~ W, where W is transitive.
Let B = n"(X n wa). We show that W= J;, which proves (i). First we establish a
simple claim.

Claim. ye X nwa—[S,€ X A n(S,) = Sy

We prove the claim by induction on y. Clearly, 0 e X n wa, Sy = @ € X, and
7(So) = n(@) = @ = Sy = S;(0)- Suppose now that y = § + 1 and we have proved
the claim below y. Since y € X, we have d € X also. And by 2.5, we have S,, S; € X.
Using 1.22 now, together with the induction hypothesis,

(S, ) = 11(S5+1) = 7(S(Sy)) = S(n(Sy)) = S(Snw)) = n(6)+ 1= Sn:(y)

Finally, suppose that y > 0 is a limit ordinal and we have proved the claim below
7. Notice that k; lim(y), so lim(otp(X n 7)), so lim(n(y)). Now, S, = () S;,

o<y

so n(S,) =7n"(S, n X) = n”(U (S5 n X)), so it suffices to show that S, =
"( U (S5 N X)). First of all, let x € S;(;)- Thus for some ¢ < n(y), x € S;. But ran(n)

is transmve so & =n({) for some { € X ny. Thus by induction hypothesis,
X€S;p=n(S) =n"(S§nX)=n"( U (S5 " X)). Conversely, let x € n” ( U (S5 X))

Thus x = n(y), where yeU(SamX) Now, k; (36 <y)(y€S;), so as »,yeX

< J,, we have Fx(36 < y) (y € S;), so we can pick 6 € X n y with y € S;. Then by
induction hypothesis, x = n(y) € n(S;) = S; 5. But n(6) < n(y). Hence x € S, ,).
This proves the claim.

Using the claim, it is now easy to prove that W= §,; = J;. Suppose first that
we W. Thus w = n(x) for some x € X. Now k; (3y)(x € §,),s0as x e X <, J,, we
have Fx(3y) (x € S,). So pick ye X n wa with x € §,. Then w = n(x) € n(S,) =
Se») € Sop = Jp. Conversely, suppose that y € J;. Then y €S, for some y < wp.
But y = n(d) for some 6 € X N wa. Thus y € S, = n(S;) = n"(S; N X), whence
y € ran(zn) =

That proves part (i) of the lemma. Part (iv) holds by definition of =. And (ii)
follows from (iii). So we need to prove (iii). Notice that as <, is uniformly 1=, we
have

x <,y iff n(x) <gm(y).

Suppose that x <, m(x)for some x € X. Let x be the < ;-least such. Since n(x) € J,
we must have x € J; here, so x = n(x’) for some x’ € X. But n(x’) = x <;n(x) so
x' < ;x. Thus by choice of x, n(x’) <,x’. But this means that x <,x’, which is
absurd. The lemma is proved. [

3. The £, Skolem Function

The general notion of a X, skolem function was already introduced in I.6. Recall
that if M ={(M, (A);<,>, where M is an amenable set and 4; = M, then by a
%,-skolem function for M we mean a Z¥({p}) function h (for some p € M) with
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dom(h) = w x M, such that whenever p e ZM({x, p}) for some x e M, then
dyP(y) - (i € w) P(h(i, x)). (In which case we say that p is a good parameter
for h.)

In this section we shall be concerned with structures of the form (M, 4),
where 4 = M. Notice that if M is rudimentary closed, it is amenable. Hence we
may reformulate 11.6.1 through I1.6.3 as follows.

If h is a function with dom(h) = w x M, and if X = M, then we shall denote
by h*(X) the set h”"(w x X). In what follows we assume n > 1.

3.1 Lemma. Let{M, A) be transitive and rudimentary closed. Let h be a X, skolem
function for <M, A). If xe M, then x e h*({x})<,{M, A). (More precisely,
<h*({x}), A N R*({x})) <.XM, 4)) O

3.2 Lemma. Let (M, A), hbe as above. Let q € M, and let X = M be closed under
ordered pairs. Then X U {q} = h*(X x {q}) <.,{M, 4). O

3.3 Lemma. Let {M, A), h be as above. Let X = M, and suppose that h*(X) is
closed under ordered pairs. Then X < h*(X) <,{M, A>. O

Now, in I11.6.6 we showed that each limit L,(x > w) has a £, skolem function.
And an entirely parallel proof will show that each J,(« > 1) has a X, skolem
function. But as our discussion in section 1 indicate, we require slightly more than
this. We need to know that each amenable structure {J,, 4> has a (uniform) X,
skolem function, and that even in the absence of amenability, the definition of this
skolem function still defines a function having “skolem-like” properties. This is
where 1.15 comes in. By 1.15 (together with 1.9) we have:

3.4 Lemma. Letn > 1.If a > 1 and {J,, A) is amenable, then ¥%;__4, is (uniform-
ly) ==4 O

We now fix, once and for all, some simple enumeration (¢; |i < w) of all the
formulas of #(A) of the form

®; = @i(vo, v1) = 0, P;(vo, vy, V),

where @; is Z,. The exact definition of this enumeration is not important. All we
need to know is that it is A7, which will be the case for any “effective” enumer-
ation. We leave it to the reader to supply any details felt neccessary.
Fix {J,, A) now. For i e w and x € J, set:
1., 4(i, x) ~ the <;-least z € J, such that F ;4 @:(2)o, X, (£),)

ha,A(i, X) =~ (ra,A(is x))O‘
Thus, forie w and x, ye J,:

y = h,, 4(i, x) & there is a z € J, such that (z), = y and z is the
< least z in J, such that k ;4 @,((2)o, X, (2),).
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In other words:
y=h, (G, x)>3zIw [2)o =y Aw={v|v<,z}
A F(h,A)[(pi((zo)Oa X, (2)1) A (Vv e w)14:((v)o, X, (V)1)]]-
Let 0 be the canonical X, formula such that for all « > 1 and all z€ J,,
w={v|v<;z} o F,; 3tOW, 2, 1).
(See 2.8(v).)
Then we have:

Y = by 4, x) > 323W3L[(@)o = ¥ A Fega 008, 2, 1) A 0:i((2)os X, (2)1)
A (Yo e W) 71 il(v)o, X, (0)1)]]-

Let 6;(u, y, x) be the £, £-formula:

[(W)o)o =y A O((W)y, Wo, (W)2) A @:((Wo)o» X, (W)o)1)
A (Yv e (u)1) 71 @i((v)o, X, (v)1)]-

(More precisely, let 0; be the canonical rendering of this formula in true X, form.)
Then 6; is independent of the choice of a, 4. But clearly, for any <{J,, 4),

y= ha,A(ia X) H(Elu € Jaz) [F<J,,A>9i(da .)39 i)]

We establish several important facts concerning the functions h, 4.

3.5 Lemma. The sequence (0;]i < w) is AJ'.

Proof. Since the sequence (¢;]i < w)is A, O

3.6 Lemma. Let 1 <a <o, A< J,. If y =hy 45,0, X), then y = h, 4(i, x).
Proof. By X,-absoluteness (1.9.14). O

Notice that we have not so far required that the structure {J,, 4) is amenable.
As we shall show presently, in the case where we do have amenability, the function
h,, 4 is Z;-definable over {J,, 4). In such cases, it is possible to deduce our next
three lemmas from I1.6.1-11.6.3. We do not do it this way because we shall need
these results in cases where amenability is not available.

3.7 Lemma. Let A< J,,xeJ,. Then
X € h:A({x}) <l <Ja5 A>

Proof. Set h = h, 4, N = h*({x}). Let P e Z{'=4*(N) n 2(J,). We show that if
P+0then PA N 0.

Let P be Z{/=({x,, ..., X,}), where x,, ..., x, € N. Pick i, ..., i, €  so that
xy; = h(iy, X), ..., x, = h(i,, x). Foreach k = 1, ..., n, x, is the unique y in J, such
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that k., 4,320, (z, y, X). Hence for each such k, x, is Z,-definable from x in
{J,, A>. Hence P is in fact Z{'=4>({x}). Thus for some i € w,

P(y) F(Jas a> (¥, X).

Since P # §, let y be the < ;-least element of P. Then clearly, y = h(i, x). Hence
ye N, proving that PA N + 0. [

By modifying the proof of the above lemma along the lines of 11.6.2 and 11.6.3,
we obtain:

3.8 Lemma. Let A< J,,peJ,, X = J,. If X is closed under ordered pairs, then
X U {p} s hiaX x{p})<i{Jp 4. O

3.9 Lemma. Let A< J,, X = J,. If h¥ 4(X) is closed under ordered pairs, then
X ch¥ 4(x)<,{,, 4. O

3.10 Lemma. If {J,, A) is amenable, the function h,_, is (uniformly) T{'=4.
Proof. We have

y = ha,A(i9 X) > EFro, 4> ub;(u, y, X).

By 3.5 and 3.4, the result follows immediately. [

Let H, , denote the uniformly Z§’=4> predicate such that for amenable
{Jas 4D,
y = ha,A(is X)H(HZ € Ja) Ha,A(Z’ y9 i, X).

As an immediate corollary to the above result we have:

3.11 Lemma.

(i) The function h, 4 is a (uniformly Z,) X skolem function for amenable
{Jyy A with o > 1.

(ii) The function h, y is a (uniformly Z,) X, skolem function for J, for each
a>1. O

We often write h, for h, y. The notation h, 4, h,, 0;, H, 4 H,( = H, ) is fixed
for the rest of this book.

As an illustration of the use of the skolem functions h,, we shall prove an
analogue of 11.6.8 for the Jensen hierarchy, showing that for any ordinal « there
is a X, (J,) map from wa onto J,. This will require some preliminary lemmas, but
before we give them we introduce an important notion which should throw some
light upon our construction of the X, skolem function.

A function r is said to uniformise a relation R iff dom(r) = dom(R) and for
all x,

dyR(y, X) < R(r(%), X).



262 VI. The Fine Structure Theory

We say a structure of the form M = (M, (4,);<,,» is Z,-uniformisable iff every
2,(M) relation on M is uniformised by a X,(M) function.

In general, X -uniformisability is a very strong condition to demand of a
structure. Indeed, the existence of any uniformising function definable over the
structure concerned is quite a strong property, let alone the existence of one whose
definition is no more complex than that of the relation it is uniformising, It is thus
perhaps rather surprising to learn that for all «>1 and all n>1, J, is
2,-uniformisable. In the general case the proof is rather tricky, and will be given
in the next section, where X,-uniformisation will play an important role in our
study of the X, -projectum. But the case n = 1 is quite straightforward, and we
shall consider this case here, using it to obtain an analogue of I1.6.7 for the Jensen
hierarchy. (In the proof of I11.6.7 we did in fact make implicit use of the fact that
for limit « > w, L, is X, -uniformisable, but we did not dwell upon this point there.)

First let us see how Z,-uniformisability affects the existence of Z,-skolem
functions.

3.12 Lemma. Let n > 1, a > 1. If J, is X,-uniformisable, then it has a Z,-skolem
function.

Proof. Let (¢;]i < w) be a A{* enumeration of all X, -formulas of ¥ with free
variables v, v;. By 3.4, the relation

{06, %) | By, 05, X)}

is ZJ= Let r be a £,(J,) function uniformising this relation. Pick p € J, so that r is

Z;*({p}). Set
h(i, x) ~r(i, (x, p)  (x€Jy).

It is easily seen that his a X, skolem function for J, and that p is a good parameter
for h. O

We note that the converse to the above lemma is trivially true.
For the case n = 1 we now prove:

3.13 Lemma. Let o > 1. Then J, is Z,-uniformisable.
Proof. Let R(y, %) be a £,(J,) relation on J,. Let S be a Z,(J,) relation such that

R(y, X) =@z e J) S(z, y, X).
Define g on J, by
g(X) ~ the < ;-least w such that S((w)o, (W);, X).

The function g is X, (J,). For it has the definition

w = g(x) & S(W)o, (W);, %)

A Julu = {W|w <;w} A (Yweu)1S(W)o, (W), X)),
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which is Z,(J,) by 2.8(v). Now set

r(%) > (9(X)); -

Then r is X,(J,), and r clearly uniformises R. O

At this point the reader might like to see what goes wrong when we try to
generalise the above argument to the case n > 1. (As we shall see in the next
section, proving X -uniformisability of J, for n > 1 is by no means a simple matter,
though it is achieved by somehow pushing through an argument such as the
above.)

Now for our analogue of 11.6.8. As in I1.6.6, let

@:0n x On«<On

be Godel’s pairing function. By the same argument as in I1.6.6, we have:
3.14 Lemma. @ ! | wa is uniformly 3= for all 0. O
Analogous to 11.6.7 we have:
3.15 Lemma. There is a X,(J,) map from wa onto wa X wa.
Proof. Set
Q0=A{a|P:a x aea}l,

a closed unbounded class of ordinals. It is easily seen that wa = o for any ordinal
o such that wa € Q. Moreover,

0 = {o| (0, x) = a}.

We prove the lemma by induction on «. For a = 0 the result is trivial, so we
assume o > 0 now and that the lemma holds for all f < a. There are three cases
to consider.

Case 1. wae Q.
In this case, ¢! | wa suffices.

Case 2. a = f + 1.
If f = 0 here, then wa = w € Q and we are done by Case 1. So we may assume
that f > 0. Define j: wa < wf by

2¢, if <o
j©)=1¢, fo<{<owp
2n+1, if of +n.

Clearly, j is Z{*({w, v B}).
By induction hypothesis, there is a Z,(J;) map g from wf onto wf x wp. Let

G={vx) g0 =x},
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a X, (Jp) relation on Jy. Let g be a Z, (J) function uniformising G. Clearly, g maps
wp x wp one-one into wpf. Now, gerud(Jy) =J, (since rud(Jg) n P(Jp) =
Def(Jy)), so f is a Z,(J,) map from wa x wo one-one into w B, where we define f
by

S, 1) = g(G ), j(@).

Now, j is onto w f, so ran(f) = ran(g) € J,. Hence his a X, (J,) map from wa onto
wa X wa, where we define h by

hy) = f~Yv), if veran(f)
0,0, otherwise.
The map h is as required.

Case 3. wa ¢ Q and lim(«).
Set (v, 7) = @ '(wa). Since wa ¢ Q, we have v, T < wa. Let <* be the well-
ordering of On x On used to define @ (see 11.6.6), and set

c={z|z <*(v,1)}.

Then ¢ € J,, and moreover, @ | cis a £,(J,) bijection from ¢ onto wa. Pick y < a
such that v, t < wy. (Possible since lim(x).) Then @~ } wy is a £,(J,) map from
wo one-one into wy. Also, arguing as in Case 2, the induction hypothesis implies
the existence of a map g € J, one-one from wy X wy into wy. Then f is a £,(J,)

=1

bijection from wa X wa onto d = §"[§"c x §”c], where we define f by

fUE D) =3g(@(@™ " (&), g(@ Q).

ButdeJ,, so his a Z,(J,) map from wa onto wa X wa, where we define h by

[, if ed,

h(©) = {(O, 0), otherwise.

Then h is as required. The proof is complete. [
We may now prove our analogue of 11.6.8.
3.16 Lemma. Let o > 1. There is a £,(J,) map from wa onto J,.

Proof. Let f be a Z{*({p}) map from wa onto wa X wa, where p e J, is the
< j-least for which such an f exists. Define f°, f! by

SO =M f10)  (vewa).
By induction, define f, from wa onto (wa)* by:

fi=idloa,
Saxr ) = (LOO) fuo 1 O)).
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Notice that each f, is ZJ<({p}).
Let h=h,, H= H,, and set X = h*(wa x {p}).

Claim 1. X is closed under ordered pairs.

To see this, let x,, x, € X, say x; = h(j;, (v, p)). Let (v{,v,) =f,(7). Then
{(x1, x,)} is a Z=({, p}) predicate on J,. So by definition of h, (x,, x,) € X, as
claimed.

By claim 1 and 3.9, X <, J,. Let n: X = J;, where § < a, by the Condensation
Lemma. Clearly, wa = X, so we must have § = a here.

Claim 2. Foralliew, xe X,
w(h(i, x)) ~ h(i, ©(x)).

Let iew, x € X. Suppose first that y = h(i, x) is defined. Note that as
xe X <,J,, we have y € X. Now (with (0;|i < w) as defined in the definition of
the X, skolem function),

E;,320i(z, ¥, X).
Soas x,ye X <J,,
Fx3z0,(z, y, X).
Pick z € X such that
Fx0:(Z, y, X).
Applying n: X =~ J,,
Fr 0:(m(2)°, m(y)°, m(x)°).

E;,3z0,(z, n(y)°, m(x)°).

Thus

Thus 7n(y) = h(i, n(x)).

Conversely, suppose h(i, n(x)) is defined. Then h(i, n(x)) € J, = n” X, so for
some ye€ X, h(i, n(x)) = n(y), and we can reverse the above steps to obtain
y = h(i, x). This proves claim 2.

Now, f: wa - wa X wa,soasn fwo = id [ wa, " f = f. And by isomorphism,
n"f is Z{*({n(p)}). So by choice of p, p <, n(p). But by 2.9(iii), n(p) <,p. Hence
n(p) = p.

By claim 2 now, for i e w, v € wa, we have

n(h(, (v, p))) = h(i, n((v, p))) = h(i, (v, p)).
Thus 7 [ X =id [ X. Thus X = J,. It follows at once that if we set

r(v) = h((f ("o, (f V)1 D),
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then r is a £,(J,) map such that r"wa = J,. However, we are not yet done,
since the map r just defined is not total on wa. To achieve this, define
g: wa X wa X woa — J, by:

i, v, 7) = y, if@3zeS)H(z,y,i,(v,p)
gnv.1 = 0, otherwise.

Then g is Z,(J,). And clearly,
g (wa x wa x wa) =h*(wa x {p})) =X =J,.

Thus g o f; satisfies the lemma. [J

By examining the proofs of 3.15 and 3.16, we see that in the case where o € Q,
no parameters are required in the functions we defined. Hence, noting that wo = o
whenever a € Q, we have:

3.17 Lemma. If o is closed under the Gddel pairing function, there is a (uniform)
X{* map from wo onto J,. [

4. The X -Projectum

As we indicated in IV.4, the Z,-projectum of an ordinal plays an important role
in the reduction of X, predicates to £, predicates, the main idea behind the fine
structure theory. Indeed, if g is the Z,-projectum of «, then it is as a £, predicate
on {J,, A) for some set A that we shall code a given Z, predicate on J,.

Letn > 0,a > 0. The Z,-projectum of a, ¢}, is the least ordinal ¢ < « such that
there is a £,(J,) function f over J, such that f"J, = J,.

By 3.16, it is easily seen that g} is the least ¢ < o such that there is a X,(J,) map
f for which f"we = wa.

Clearly, 0 <m < n— " < . So it is natural to define g2 = o for each
ordinal a.

4.1 Lemma. If g} > 1, then lim(o?%).

Proof. Suppose that ¢ = g} =y + 1, where y > 0. Let f be a £,(J,) function such
that f"wg = wa. Define g: wy —» wg by

m, if v=2m<w,
gv)={wy+m, if v=2m+1<o,
v, if o<v<owy.

Clearly, g is Z(J,). Thus fo g is Z,(J,). But (f°g)’ @y = wa, so this contradicts
the choice of 9. [
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In order to obtain more information about the X -projectum we shall prove
that for all « > 1 and all n > 0, J, is £,-uniformisable. The proof is fairly intricate,
and requires several preliminary lemmas. Before we begin, we outline the general
strategy.

We begin by examining the proof of X,-uniformisation given in 3.13. This
reduced to proving that every X, relation is uniformised by a X, function. (In 3.13,
what we really did was to uniformise the X, relation S, obtaining the uniformi-
sation of the X, relation R as a simple consequence.) This worked in the case n = 1
because, if S(y, X) is Xy, then so too is (Vz € y)—1 S(z, X). But consider now the
analogous situation for n > 1. We seek a X, uniformisation of a IT,_, relation S.
Now, if S(y, X)is I1,_,, then (Vz € y)—1 S(z, x) is in general X, , ;, not X,. Roughly
speaking, we overcome this difficulty as follows. We reduce the predicate S on J,
to a predicate on J,,-.. The structure J,-: is sufficiently suited to handling
%,_1(J,) predicates on it that the canonical uniformisation procedure applied to
the reduced predicate turns out to be Z,(J,), thereby providing us with the desired
¥, uniformisation of S. The precise property of the projectum which we need in
order to make this work is described below.

Let P(y, X) be any predicate on J,. For ¢ < a, we say that P(y, X) is Z,(J,) on
J, iff there is a T, formula ¢(y, X) of &Z;_ such that

(VyeJ) (VX e J) [P(y, %)= Fy 00, D).

Similarly for I1,(J,) on J,.
For any predicate R(y, X), we denote by R(y, X) the predicate

{30, %) (Vzey) R(z, %)},

and by R¥(y, X) the predicate
{(», X)|(3z € y) R(z, %)}

Leta>1,n>0,0 < ¢ < a We denote by I'(a, n, ¢) the following property:
whenever R(y, X) is Z,(J,), then RY(y, X) is Z,.,(J,) on J,.

We shall prove that for any « > 1,n > 0, I'(a, n, @}) is valid. Using I'(e, n, @%)
we shall be able to prove that J, is X, , ;-uniformisable, the proof being a variation
of the proof for the X, case (3.13) as outlined above. (In fact the proof of I'(«, n, o7
and that of X, ; | -uniformisability proceeds by a simultaneous induction on n.) But
first we need some preliminary results.

4.2 Lemma. Let o > 1, n > 0,0 > 0. Assume I'(«, n, g). Then:
@) if R(y, %) is I1,(J,), then R3(y, X) is I, 4 1 (J,) on Jy;
(ii) if R(y, X) is Z,(J,), then Q(y, X) is Z,+,(J,) on J,, where
Q ={(n¥)1(Vz <,y) R(z, %)}
Proof. (i) This follows from I'(e, n, @) by taking negations.
(ii) For y, X € J,, we have

Q. ) @uwvel)yeS,Aw=<SA(V2)(zeue(z,y) ew)
A (Yz € u) R(z, X)].
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Using I'(«, n, @), this is easily seen to be X, (J,). (In case ¢ < «, we must use J,
as a parameter to ensure that u € J,. If ¢ = « there is no need to mention ¢ at all,
of course.) [

4.3 Lemma. Let o > 1,n > 0, and set ¢ = g}}. Suppose that J, is X ,-uniformisable.
Then {J,, A) is amenable for all A€ X,(J,) N 2(J,).

Proof. Let A€ Z,(J,) n 2(J,). We show that {(J,, A) is amenable. If ¢ = 1, then
J, = H,, so this is immediate. Now assume ¢ > 1. Thus by 4.1, lim(g). So it suffices
to show that y < ¢ implies 4 N J, € J,.

Let y < ¢ be given. Set B = A n J,. Thus B is Z,(J,). Let B be Z=({p}). Let
@ (vg, vy) be a X ,-formula such that

(*) xeB iff kE; o(X,p).

By assumption, J, is Z,-uniformisable, so by 3.12, J, has a X, skolem function, h.
Set X =h*(J, x {p}). By 32, X<,J,. Let m: X =J;. Set p=n(p), h=
n"(h 0 (X x o x X)). Since B = J,, n"B = B. So by (%)

(%%) xeB iff £, o(%,p).

Thus B is Z;+({p}). Hence B € J;, . If @ < g then this means that B € J, and we
are done. So we are reduced to proving that & < g.

Suppose, on the contary, that & > ¢. By definition of X, J; = h*(J, x {p}). So,
as his £,(J;), thereis a Z,(J;) function f such that f”J, = J;. Let g be a £,(J;) map
such that g"J, = J,. Since ¢ < &, g°f is a Z,(J,) map such that gof"J, = J,,
contrary to y < ¢. The lemma is proved. O

Our proof of Z, uniformisability will be by induction on n. The key to the
induction is provided by the following lemma.

4.4 Lemma. Leto > 1,n > 0, and assume I'(a, n, 03). If J, is X ,-uniformisable, then
it is X, -uniformisable.

Proof. The procedure is not unlike that adopted in proving X,-uniformisability,
except that we reduce the predicate to one on J,, before we commence.
Let R(y, X) be X, ,(J,), and let S be I1,(J,) such that

R(y, X) =3z € J) S(z, y, %).

Let ¢ = o}, and let f be a Z,(J,) function such that f”J, = J,. We shall consider
the case where ¢ < «. The case where ¢ = a is a little simpler, since there is no need
to mention ¢ at all. Set

r(X) ~ the < ;-least z such that S((f(2))o, (f(2)1, X),
F(X) = (for(X);.

Clearly, 7 uniformises R. If r is £, ; (J,), so too is 7, so what we must do is prove
that r is indeed X, ;(J,). We have, by definition,
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y=r®e[yedom(f)] A [Vz(z = f(y) = S(2)o, (2):, X)]
A (VY <y9) (v € dom(f) > S(S (Do, (f D15 X)]-

The first conjunct here is £,(J,) and the second is I1,(J,). Also, dom(f) is Z,(J,),
and for ye J,, {y'|y' <,y} €J,, so by 4.3,

dom(f) n{y'ly' <,y}€eJ,
for each y e J,. Hence the third conjunct reduces to

Queld)[(Vy'ew(y' <,y A y'edom(f))
A YY) <yy Ay edom(f)—yeu)
A (VY eu)(32) (z =f(V) A 71 5((2os (2)1, X))

This is of the form

Que ) [(Vy' eu) () A (YY) L)) A (VY €u) (Z,(J)]-
Using I'(a, n, 0), we see that it is in fact of the form

QueJ) [Z+10U) A L) A Zyi 1 (J)]:

Hence r is Z,, ;(J,), as required. [

4.5 Theorem (Uniformisation Theorem). Let o > 1,n > 0. Then J, is X,-uni-
formisable.

Proof. By 3.13 we are done if n = 1. By 4.4, the result follows by induction if we

can establish I'(«, n, g}) for all n > 0. We do this by induction on n as well.
Letn > 1,and in case n > 1 assume I'(«, 1, 0;), ..., I'(¢, n—1, g%~ *). We prove

that I'(a, n, @). Note that by 4.4, J, is X, -uniformisable for all m < n, m > 1.
Set ¢ = o, n = o '. Notice that ¢ < n < « There are two cases to consider.

Case 1. There is no X,(J,) map from any y < wg cofinally into w#.
In this case we commence by proving a sort of X,-Collection Axiom.

Claim. If R(y, x) is Z,(J,) and u € J,, then
(Vxeu)@yeJ)R(y,x) > (3ve ) (Vxeu)(Iyev) Ry, x).

Proof of claim. If ¢ = 1 the claim is trivial, so assume ¢ > 1. Hence lim(g), and we

can pick y < ¢ so thatu e J,. Let j: wy o—m‘;Jy be Z,(J,). Let r be a Z,(J,) function
uniformising R. Define f: wy — wn by

the least t < wy such thatroj(v)eS,, if j(v)eu,
0, otherwise.

f(V)={
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Thus:
t=f)eF(((eu) AdzIf[z=roj0) Af=(SIE<T)

ANzef(D) A(VEen)zgf ()] Vv [(() ¢w A (z=0)].
Thus f is Z,(J,). So, by assumption there is a 6 < w# such that f”wy < . Then
(Vx eu)(Iy e Ss) R(y, x),

which proves the claim.
We must now consider two subcases.

Case1.1.n=1.
Let R(y, X) be Z,(J,). Let S be Z,(J,) with

R(y, X) @3t e J) S(t, y, %).
Let y e J,, X € J,. Since n = g? = «, the claim gives

(Vzey) R(z, X) = (Vzey)(Ite ) S(t, z, %)
«@3veld,)(Vzey) 3tev) S, z, %),

which is 2, (J,). Thus R" is Z, (J,) on J,, proving I'(a, 1, o).

Case 1.2. n> 1.
Let R(y, X) be X,(J,), and let S be IT,_,(J,) with

R(y, X) =3t e J,) S(t, y, X).
Let f be a Z,_,(J,) function such that f"J, = J,. Let y € J,, X € J,. By the claim,

(Vzey)R(z,X) = (Vzey)(Fte ) S(f(), 2, %)
—@@veld)Vzey) 3Atev)S(f(), z, X).
Now, J, is X, _;-uniformisable and dom(f) is Z,_,(J,), so by 4.3,
velJ,»dom(f)nvel,

Hence
RY(y, %) > 3v e J,) [(Vx € v) (x e dom(f))

A(Vzey)(Ftev)(Yw)[w =f(t) > S(w, z, X)]].
This is of the form

(Ell) € Jn) [Hn(Ja) A (VZ € y) (at € U) (Hn— I(Ja))]‘
Using I'(a, n — 1, ), together with 4.2(i), this is in fact of the form

@v e dy) (I, (J) A (V2 € y) (T, (J)],
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which is the same as
(Fv e J,) (I, (J),

which is X, ; (J,), as required.

Case 2. Otherwise.

Let y < wg be least such that there is a Z,(J,) map g from y cofinally into w#.
Let R(y, X) be Z,(J,). We commence by proving:

Claim. There is a A,(J,) predicate Q(v, y, X) such that for any ye J,, X € J,,
R(y, X) = (@3vey) Q, y, %).

Proof of claim. Let f be a Z,_,(J,) function such that f"J, = J,. (If n = 1, then
n = a, so take f=1id [ J,.) Let S be I1,_;(J,) with

Ry, )~ @Qte J) S(t, y, X).
Define Q by
O, y, X)=>(vey) A (3teS,q) S(f(1), y, X).
Since g is cofinal in w#n and f"J, = J,, we have
R(y, %) = (3vey) OO, y, X).

We show that Q is A,(J,). It is clearly X, (J,).
Define Q by

O, y, ) @teu) S(f(), y, %).
Thus:

Q(V, y5 55) H(v € Y) A Q(Sg(v)’ y9 56)
oWey) AVwYt[t=gv) Aw=S8— 0w,y %)

So it suffices to show that Q is IT,(J,).
Well, if n = 1, then f=1id | J,, so

Ou, y, %) > (@teu) S, y, %),
which is in fact X£,(J,). So suppose n > 1. Then

O, y, )« (3t € u n dom(f)) (Yw) [w =1 (t) > S(w, y, %)].
Define T by

T(t, y, %) = (Yw) [w =f(1) = SW, y, X)].
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Then T is IT,_(J,), and by the above
Q(u, y, ¥) =@t eu ndom(f)) T(t y, %).
Now, J, is Z,_ ;-uniformisable and dom(f) is Z, - ,(J,), so by 4.3,

ueJ,—»undom(f)el,.

Thus
O, y, X (Vve J) [v=undom(f)—@@tev) T(,y, X))

But we have

v=undom(f)—(Vxev)(xeu A x edom(f))
A (Vx eu) (x e dom(f)— x € ).

This is of the form
(Vx €v) (Zy-1(J) A (VX €u) (1,1 (J,)).
Using I'(x, n — 1, n), as we may since v € J,, we see that this is of the form
Z,(Jo) A ey (),
and is thus X,(J,). Hence O(u, y, %) is of the form
O, y, %) = (Vv e J,) [Z,(J) = Bt € v) (T, (J)].
Using I'(a, n — 1, %) again, this is of the form
(Vve J) [(Za(J) ~ ()],
which is IT,(J,). That completes the proof of the claim.
By the claim, we have, for y e J,, X € J,,
RY(y, %)= (Vzey) @vey) OO, z, X).
For each x € J,, we define
GRX)={(v,2)|vey Anzeld, A Q(v,z,%)}.
Thus,
R'(y, %) (Vzey)Avey) [(v 2) € G(Z))
< Fu,,60 0L ),
where ¢ is the Z, formula
@ (vo, vy): (YU, € vo) Avs € ;) A((v3, 1)),

in the language £ (A).
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Now, lim(g), so as ¢ is Z,, by Z, absoluteness we have (cf. the proof of 11.6.3)

RY(y, ¥) > (3w € J,) [(w is transitive) A (y, y € w)
A (|:<w,G(§)nw> (P(f, )3))]
—@wel)[(Vuew)Vveu)(vew) A (y,yEW)
A Sat*(w, G(X) 0 w, @(3, 7))].

Now, Q is ,(J,), so for each X € J,, G(X) is a Z,(J,) subset of J,. Moreover, J, is
2 ,-uniformisable. So by 4.3, for each % € J, we have

welJ,—» GEX)nwelJ,.
Hence,
R'(y,)>@@weJ)Faec ) [(Vuew) Vveu) (vew) A (y,yew)

A (a = G(X) nw) A Sat?(w, a, (3, §))].

So in order to show that R"(y, %) is Z,,(J,) on J, it suffices to show that the
function a(w, X) = G(X) nwis X, {(J,).
Well, we have

a=awX)oVz[zeaczew A (2 o€y A (2)1€J, A Q(2)o, (2)1, X)].

So, as Q is A, (J,), the function a(w, X) is in fact IT,(J,). The proof is complete. [J

With the aid of the Uniformisation Theorem, we are now able to provide some
useful information about the X, projectum.

4.6 Theorem. Let o > 1, n > 0. Then @}, is equal to the largest ordinal 6 such that
{Js, A is amenable for all A€ Z,(J,) N P(J;).

Proof. By 4.5 and 4.3, {J,, A) is amenable for all 4€X,(J,) N 2(J,), where we
have set ¢ = g} for convenience. Suppose § were a larger ordinal with this proper-
ty. Let f be a Z,(J,) function such that f”J, = J,. Set

A={uel,|luéfw}.

Ais Z,(J,) and A c J,, so {J;, A) is amenable. But then
A=AnJ,elscJ,

so for some u € J,, we have A = f(u), which leads to the contradiction
uefuyeoueAdoudf(u.

This proves the theorem. [

4.7 Theorem. Let o > 1, n > 0. Then " is equal to the smallest ordinal n such that
P(wn) N Z,(J) § e
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Proof. Let ¢ = g%, and let f be a £,(J,) function such that /" J, = J,. Let j be a
Z,(J,) map from we onto J,. Set

A={vewglvéfoj)}.

AisaZX,(J,) subset of wg. If A € J,, then A = f - j(v) for some v < wg, and we get
the contradiction

vEAevéfoj(v)ove A.

Hence #(wg) n Z,(J,) £ J,. But if n < ¢ and Be Z(wn) n Z,(J,), then by 4.6,
{J,, B) is amenable, so B=BnJ,eJ, < J,. Thus Z?(wn) n Z,(J,) € J,. The
theorem is proved. [

To complete this section, we state the following key fact that was used in our
proof of the Uniformisation Theorem.

4.8 Lemma. Leta > 1,n> 0,0 = . If R(y, %) is Z,(J,), then R"(y, X) is 2,4 1(J,)
on J,. That is, there is a Z,,,,(J,) predicate Q(y, X) such that

WelJ)(Vie)[(Vzey) R(z, X) <= Q(y,X)]. O

5. Standard Codes

Leta>0,n>0. A X, code for J, is aset 4 = J

- A € Z,(J,), such that for any
m=1,

Zn+m(']a) N e@(Jeg:) = zm(<Jg;'> A>)

In this section we show that not only does each J, have a X, code for each n, but
there are particularly nice codes which are preserved under condensation argu-
ments.

We begin by recalling the following result (V.5.9).

5.1 Lemma. Let n: J;<,J,. Then for any v < w&, n(S,) = S;(,). U
Using 5.1, we prove:

5.2 Lemma. Let n: {J;, AY <o {J,, AD and suppose that n" wd is cofinal in wa.
Then in fact n: {J; AY < {J,, AD.

Proof. Let ¢ be a X, formula of .# such that

|=<J,,, 4> Iz e(z, n(X)).

Since n” w& is cofinal in wa, we can find a v < w& such that

|=<J¢,A> (Aze Sn‘(v)) (2, m(X)).
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By 5.1, this can be written as

':<J°,,A>(§|Z e n(S,)) ¢(z, n(X)).

So as 7 is X,-elementary, this gives,
Fusiy(3z€8,) o(z, X).

So, as required,
Fusiydze(z, %). O

Let o > 0. The standard codes, A}, and the standard parameters, p?., are defined
by recursion on n.
To commence, set

Ag:q)’ p2=0«

Now let n > 0 and assume that A} and p}, are defined, and thatif n > 1, A% is
a X, code for J,. We define A2* ! and p2*!. By definition of " * ! thereisa X, ; (J,)
map f< J, X Jyp+1 such that f"Jpe1 = J,. Let f=f N (Jpn X Jpn+1). Then f is
alsoa X, ,(J,) map, and f”Je:H = Jon. But fe Jon, 50 as Az is a Z, code for J,,
[ is in fact 2, ({Jm, 45). Hence we may define

pitl =the < -least pe Jon such that every x € J,, is Z,-definable in

{Jgp» Ay from parameters in Jyn+1 U {p}.

As in section 3, (¢;|i < w) is a fixed A{* enumeration of all the X, formulas of
& (A) of the form

0i(vo, v1) = Fv, @;(vg, V1, V3),
where ¢; is £,. Set
A:+1 = {(l, x) I l EW AN XE JQ:+1 A I=<-’02sA'u‘> (pi(f,ﬁ:+l)}.

5.3 Lemma. A"*'isa X,,, code for J,.

Proof. By assumption, 45 is a Z,(J,) set. So by 4.6, {J,», A;) is amenable. So by
34, A7 is Z;({Jgn, A3)). Hence as A is a Z, code for J, Attlis X, ,(J,). We
must show that for m > 1,

Zor1+md) O ?(Jeg”) = Zm(<qu+1, AFTH).

Suppose first that R € Zo({Jpn+1, 4371 )). Let @ be a X, formula of £ and g an
element from J,.+: such that

R(X)H F(JQ&"",A&""}(/)(‘)%’ qo).
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Since {Jgn+1, A"*1% is amenable, we have, by Zy-absoluteness:

R(x) > @ue Jp1)(Fa € Jypms ) [uis transitive A xeu A geu
ANa=Ay nu A Eg a0 9]

Consider the function a = A%*! ~ u. Since A%+ ! is J,-definable, so is this function
(as a function on J,+). Indeed, it has the definition

a=A"""NnuoVveaweurve A ) A (Vveuw(ve Al s vea).
This is of the form

a=A;"" nue(Vvea)(Z, 1) A (Voew) [1,. ().
By 4.8, fora e Jgn+1, this is of the form

Zo+2) A L1 (Jy),

and hence is Z,, ,(J,).
It follows at once from our above definition that R is X, , ,(J,). Hence

Zo((Jgge 15 A2T1D) € Zpia(J)-
It follows immediately that
Iy (Uggris A7) € Ty ()
By a simple induction on m, we get, for m > 1,
(g 1y A2 ) € Bt 4 mlJ).
It remains to prove that for every m > 1,
St 14ml) O P 1) € ST ger, ATTH).
Since A} is a X, code for J,, it suffices to prove that
Tt 1({Jgns A)) 0 P gne1) S Zu({Tgnvr, 477 1)).
Let f be a %, (J,) function such that " Jpm+1 = J,. Set f:_fn (Jgp X Jgn+1).
Then f is X, ,(J,) and f"Jp+1 = Jpn. Moreover, f< J,n, 50 f is Z1({J, 45))-
Let Re X, (({Jgns A2D) N P(Jgn+1). Assume for the sake of argument that m

is even. Let P be a X,({Jm, 42)) relation such that for x e Jon et

R() @91 € J) (V92 € Jp) - B 1 € Jgp) (Vi € Jgp) PG ).
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Define a relation P by

Pz x) o [(2,x € Jpes) A y[y =f(2) A P(y, ¥)]I.

Now, there are p, g € J, such that f is Z{'ez’ 42’ ({p}) and P is Z{’ez> 42 ({g}). By
choice of p"*!, the palr “(p, q) is Z,-definable from elements of Jger U {p;" !} in
(ops A2 Hence both 7 and P are ez 4% ({u, p"*}) for some u e Jgn+1. Thus
P 15 T{ez 4 ({u, p"*1}). (In case g"*! < g, we may assume that o"*! is
Z,-definable from u and p;*' in {J,., A;) as well)) So for some i € ,

(*) P(Z X)‘—)[(E, X E ) A i:<J‘?n A% (P,((Z X, M) pa+1)]
<[ x ey A (0, (G x u)e A"

Similarly, if we define D by
D(z) & z e dom(f),
then D is Z;({J,n, A3>) and there is a v e J,p+1 and a j € o such that
(%) D@)e[zey A (zv) e 47"
Now, by definition of P we have, for x € Jognv1s

R(x) 3z, €Jpri) (Vza € Jppe1) ... (Azm—1 € Jgn+1) (VZp € Jgn+1)
[(D(zy) AD(z3) A oo AD(zZp—1)) A(D(z3) A D(z4) A ...
A D(z,) = P(Z, x))].

By (*) and (x), this is Z,,((Jpn+1, 457 1)), as required. O

Let {J,, A) be amenable. The X -projectum of the structure <{J,, A) is defined
to be the largest ordinal ¢ <« such that {J,, B) is amenable for all
BeZ,({J,, 4)) n 2(J,), and is denoted by ¢} 4. Note that this definition is not
just a generalisation of the definition of the X,-projectum of an ordinal. Though
by 4.6, the notion is a generalisation of that of a X,-projectum of an ordinal.
Indeed, we can say more, as the next lemma indicates:

5.4 Lemma. Let « > 1,n>0. Then ¢;*' = ggn, 4n.

Proof. By 4.6, o°*! is the largest ¢ < o such that {J,, 4) is amenable for all
Aezn+l(']a) N '@( ) Set n= Qq" AR

Suppose that 4 € Z;({J,n, :)) N P(Jgz+1). Then, as A"*lisa X, ., code for
Jo» A€Zu41(J) N P p+1) Thus by our above remark {J+1, A) is amenable.
Thus by definition of 1, 0" ! < 7.

Nowlet AeX,,,(J) m 2(J,). By choice of 1, we have (trivially) n < ;. Thus
A€Z, (J) N P(Jy) Hence A € Z,({Jy, A7) Thus {J,, 4) is amenable. So, by
definition, # < Q"+1. O
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Again, let {J,, A) be amenable, and set ¢ = g} 4. Suppose that every x € J, is
2,-definable in {J,, A) from parameters in J, U {p} for some p € J,. Then we
define p} 4 to be the < -least such p, and set

A;,A ={(i,x)]iew nx €J, A F(J,,A> <Pi(>%,ﬁalz,,4)}-

5.5 Lemma. Let a > 1,n > 0. Then:

n+1

() "' = pgn, ans
(i) A2*' = AL 4.

Proof. (i) By definition,

pu*! = the <,-least p € J,, such that every x € J,, is Z,-definable in

{Jgp» Az from parameters in Jy+1 U {p}.
By 5.4, 0% = 04n, 4- So by definition, pg: 4 = p3* .
(i) Likewise, by virtue of 5.4 and (i) above, the definitions of A;* " and 4jn 4n
coincide. [J

It is the following result which will enable us to carry out condensation type
arguments with structures of the form {J,,, 43>, thereby enabling us to handle Z,
predicates on the J,’s as coded X, predicates.

5.6 Theorem (“Condensation Lemma™). Let o > 1, n > 0, m > 0. Let {J,, A be
amenable, and let

U <Jéa Z> <m<Jgg’ A:>
Then:

(I) There is a unique & > @ such that g = g}, A = Aj.
(IT) There is a unique & 2 = such that:
(1) 7 Jz<pm+nda» and
(i) fori=1,...,n, &(pl) = pi.
(IIT) Fori=1,...,n,

(ﬁ f-]g;_‘) <ch‘;_‘a A;‘:> <m+n—i<‘]a;9 A;> O

The proof of 5.6 is quite long. Before we commence we make a few remarks.
Firstly, notice that the result is indeed a condensation lemma. In many applica-
tions, the embedding 7 will simply be the inverse of the collapsing map obtained
from some X, elementary submodel of {J,,, 45>. Secondly, note that we allow for
the case where m = 0. We will require this case in applications. Notice that this
is the only case where we need to explicitly demand that {J,, 4) be amenable. In
all other cases this is automatic by the elementarity of . Finally, some nomen-
clature. The embedding #:J;—J, is called the canonical extension of

1: (Jgy A) = (J sy AL
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Now for the proof of 5.6. This proceeds by induction on n. For n = 0 the
theorem reduces to a triviality, so we are at once left with the proof that if the
theorem holds for n — 1, then it holds for n, where n > 0. To simplify the notation,
let us write ¢ = g3, 4 = Aj;. So we are given an amenable structure {J;, 4) and
an embedding

s <J§’ Z) <m<an A>

We shall show that there is a unique structure {Jj, B) such that ¢ = ¢} 5 and
A = A} p, and a unique 7 2 7 such that, setting f = "', B=A""1, p = p":
(1) i <JB, B> <m+1 <Jﬁs B>,

(ii) #(pgp) = p-
The induction step, and hence the theorem, follow directly from this. For by
induction hypothesis there is a unique & such that § = ¢}~ ', B = 43 ', etc., and
we have, by 5.4 and 5.5, p = pj 5, 0 = 0p 5= 03, A = Aj g = A}

The function 7 will be the inverse to a certain collapsing isomorphism. The set
which 7! collapses is defined thus:

X = {x e Jg|x is Z,-definable in {J;, B)
from parameters in ran(zn) U {p}}.

Since X < {Jg, B), there is an isomorphism
#:{Jp, B) = (X, B n X),
for some unique B, B. Thus
fi: {Jg, BY <, {Jy, B).
Define ¢ < ¢ by
wg = sup(n”"w).
Set -
Then B -
n: {Jg A) <o<Jg A).
But " wg is cofinal in wg. So by 5.2,
n: {Jy A <1 <Jy AD.
5.7 Lemma. ran(n) = X N J;.

Proof. Clearly, ran(n) = X n J;. To prove the opposite inclusion, let y € X N J;.
Then for some i € w and some x € ran(w),

y = the unique x € J; such that k;, g, ¢:((J, %), P)-
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Thus by definition of 4 = A4},
y = the unique y € Jg such that A, (y, x)).

But x € ran(n) and n: {J;, A) <; {J;, A, so we conclude that y € ran(n). That
proves the lemma. O

By 5.7, n~ ! is the unique collapsing isomorphism for X n J;. But X N J,is an
e-initial segment of X and #~' is the unique collapsing isomorphism for X,
so # ' (X nJ, is the unique collapsing isomorphism for X n J,. Thus
' MX nJ)=n"". Thus = = & | J, and = < 7. (Fig. 1 sums up the situation
now.)

<Jp B>
— —1
. X= ran (%) =<Jog\ Az >
n
2m+l
<Jz B>
<J, A>
L ! 0 = <Jgn, An>
5= f~ z I “
p=7"(p) 4 n| XN Jz=ran (m)| ,
<J, 4> T Z

(w@ = sup n"0Q)

(A=4nJp

Shaded part = X = {xeJy|x is Z,-definable in <{Jy, B) from parameters in
ran(n) U {p}}.

Fig. 1

5.8 Lemma. 7: {(J5, B) <,,+1<{J;, B).

Proof. If m = 0 there is nothing to prove. So assume m > 0.

Let y be Z,,, ;-definable in {(J;, B) from parameters in ran(f). We must show
that y € ran(f). Now, by the definition of ran(f) = X, y is X, ,-definable in
{Jp, B) from parameters in ran(n) U {p}. Let ¢ be a Z,,, ;-formula of #(B) such
that y is the unique y € J; for which F;, gy 0 (¥, X, p), where % € ran(n). Then we
have

o, o, w) =3z,VYz,3z5... — 2, ¥ (Z, u, O, w),

where y is X, if m is even and II, if m is odd.
Suppose first that ¢ = . Now, y is the unique y such that

(*) 3z, € Jp) (Vz, € Jg) ... (—zn€Jp) [F<J,;,B>‘/’(Z?, Vs JE;P)]
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Butf =0 =09} =04pp=pi=pjpand A=A} = A} g.SoasyisZ, or 1, (*)
is a X4 ({x}) predicate of y. But % € ran(n) <,,{J,, A). Thus y e ran(n) <
ran(f), and we are done.

Now suppose that ¢ < . Let h = hy 3, and set

h((i, x)) = h(i, (x, p)-

Let D = dom(h) N J,. For ueD, h(u) is Z,-definable in (J,,, B) from u, p, so if
ue X, thensince p € X <1<{Jp, B), we have h(u) € X. Thus in order to show that
y € X it suffices to show that for some u e D n X, we have

':<.15,B> (P(ii(ﬁ)a )Z, p).

(For then by uniqueness, y = h(u) € X.) Now, ¢ = ¢", so by definition of p = p”,
every x € Jy is Z,-definable in {J;, B) from parameters in J, U {p}. So in particu-
lar, h”J = Jg, ie. W'D = Jy. Thus it suffices to show that for someueD N X we
have

o o -

(#¥)  (3z,€D)(Vzz€D)...(— 25 € D) [Fey, gy ¥ (hlzy), ..., Bz, hlw), %, ).
If we can show that (xx) is a X{/»4>({%}) predicate of u we shall be done, since
X eran(n) <,,<{J,, 4) and ran(zn) = X.

Let us assume that mis even. (We deal with the similar case m odd later.) There
is an i, < w such that for any z € J,,,

ze D-3y[y = h(z)]
< 3yly = h(@o, (2)1, P))]
< F<Jﬁ,s> ®io(Z, P)
« (io, Z) € A,

where the last equivalence follows from the definition of A = A4j;. Similarly, as
is X, (for m even) there is a j, < w such that for any z,,...,z,,u€D,

o o

F(Jp,B)‘//(E?ZI)’ ceey rl(zm)’ E(“)’ ;{ﬁ)
< '=<J5,B> (pjo((zola [RRE) Zom’ 129 3?;)713)

(o (Z15 .05 Zm, U, X)) € A.
Hence (**) is equivalent to the following (for any u € J,)

[(io,u)e A]A 3z, €J) (Vz€0,)(Fz3€ ) (Vza€ ). ..
(E'Zm— 1 € Jg) (Vzm € Ja) [((109 ZI)GA

Alg,23)€EA A ... A (g, Zm—1) € A) A ((ip,22) €A

A (iO’ Z4)GA Ao A (i0>zm)€A_')(jO>(zl""5Zm’ u’x))eA)]'
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But this is Ze' 4 ({%}), so we are done.
The case m odd is fairly similar. The only difference is that we rewrite (**) as

(3z, € D)(Vz,€D)...(3z,, € D)1 [F(y, 1 Y (R(zy), ..., Bz,
hiu), X, p)],

so that (1 ¢) is Z,. The rest of the proof is modified accordingly.
That completes the proof of the lemma. [

Now let p = 7~ '(p). We must prove that ¢ = 03 5. 4 = A 5, p = pj 5-
5.9 Lemma. A = {(i,x)|ie o A xeJ; A Feyy 5 @i(% D)}
Proof. Since n: {J;, A) <,{J,, AY, we have, for x € J,
A((i, x)) = A((G, 7(x))).
And since B ="}, B=A""1, A = A", we have

A((, m(x))) < ‘:<Jﬂ,B> ¢i(ﬁ°(x), D).

Finally, since #: {Jg, By <, {Jg, B) and 7(x), p € ran(ft), we have

Fipp @i("‘o(x)a P |=<J,,,B> @i(%, ﬁ)
The above three equivalences yield the lemma. [
5.10 Lemma. ¢ = oj 3.

Proof. Since Jy is the collapse of X, every x € Jy is Z;-definiable in {J, B) from
parameters in J; U {p}. Thus if h = hy 5, we have

Jg = h*(J; x {p}).

Hence there is a Z,({Jp, B)) map f from a subset of wg onto Jz. It follows that
QB 5 < 0. For suppose, on the contary, that ¢ < Q“ Let E={(ecwg|é¢f()}.
Then E is a Z,({Jg, B)) subset of wg. By definition of QﬁB, J prag E» must be
amenable. Thus E=E nwge J, LS < Jg. So for some ¢ € wg, E = f(é) But then
we get

{ef(Q)oleEalef(d),

a contradiction. Thus, as claimed, QE 5 < 0. We now prove the opposite inequality.

Let Ce X,(<{Jp, BY) n 2(J,). Since every member of J; is Z,-definable from
parameters in J; U {p} in <JE, B, CeX{#®(J, U {p}). So for some i € w and
some y € J; we have for x € J;,

xeC iff Foypei(% ), D).
So by 5.9, we have, for x € J;,

xeC iff (i,(x,y) e A.



5. Standard Codes 283
Let u € J;, and set

v={G(x,y)[x€u}.
Note that v € J;. Since {J;, A is amenable, A N v e J;. But look,

xeCnu iff (i,(x,y)ed .

So as J; is rud closed, C N u € J;. Thus {J;, C) is amenable. Thus, by definition,
0 < ¢j 5> and the lemma is proved. O

5.11 Lemma. p = p} 5.

Proof. Since every x € Jgis Z;-definable from parameters in J; U {p} in {Jp, B)
and g = Q}l;, 5, it suffices to show that pis < j-least with this property. Well suppose
not, and let p’ <, p have the same property. For some i € w and some x € J;, we
have p = h(i, p). Since #:<{Jg, BY <;{Jy, B) and h = hyp, h = hy g, setting
p' = #(p’) and applying 7 gives p = h(i, (7(x), p')). Now, #t(x) = n(x) € X n J,. So,
as every y € Jy is Z;-definable from parameters in J, U {p} in {J;, B), it follows
that every y € J; is X,-definable from parameters in J, U {p'} in {J;, B). But
p'<;p = pj, so this contradicts the definition of p}. The lemma is proved. O

Since ¢ = ¢j 5 and p = pj 5, 5.9 implies immediately that A = A} 5. That
proves the existence part of 5.6. We turn to the question of uniqueness.

Suppose that {Jz,, Bo) and {Jp,, B,) are such that ¢ = ¢} 5 and 4 = A}, 5,
i =0, 1. Set p; = pj, 5. For each j € w and each % € J, we have

F g Boy @38 Po)  iff AU, () iff oy g, 0,8 B)

Since (¢;]j < w)enumerates all the Z, formulas of £ (4) with free variables vy, v,,
we have, for all x, y in J; and all j, k € w,

(@) hg,, 5,U> (%, Po)) = hg, 5, (k, (v, o))  iff by, 5, (x, p1)) = hy, 5,(k, (v, P1));

(b) hg,, 5,Us (X, o)) € hg, 5,(k, (v, po))  iff hg, 5 .(j, (x, p1)) € hg, 5,(k, (v, P1));
(c) hs, 5,0, (x, po)) € By iff hg, 5,(j, (x, p1)) € B.
But

hi. 5(J; x {p:}) = J,
for i =0, 1, so by (a)—(c) we have
a: {Jg,, By = {Jp,, B,
where for x € J;, j € w, we set

a(hffo, Eo(j’ (X, Po)) =~ hﬁl, El(ja (x9 pl))
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This means that B, = B, and that ¢ = id | Jp,, so B, = B; as well. Hence f, B are
unique and it remains only to show that 7 is unique.

Let ; 2 7, fi;: (Jg, B) <,s1<Jp, B), #i(p) = p, for i =0, 1. Let y € J5. For
some j € w and some x € J;, we have y = hg 5(j, (x, p)). Then

fio(X) = 7o © hg, 5(Jj, (x, ) = hg,5(j, (Fo(x), Fo(D)) = hy, 50> 7(x), P))
= hy (), (1 (x), 71 (D)) = 7y b 50, (x, P) = &1 ()

Hence 7, = 7;, and the proof of 5.6 is complete.

6. An Application: A Global [1-Principle

Let S denote the class of all singular limit ordinals. Given any class E of limit
ordinals, we shall denote the following principle by [1(E): there is a sequence
(C,| o € S) such that:

(i) C,is a club subset of «;
(i) otp(C,) < o
(iil) if @ < o is a limit point of C,, then &€ S, x ¢ E, and C; = & n C,.

Using our fine structure theory we shall prove the following theorem (which
will be utilised in the next chapter):

6.1 Theorem. Assume V= L. Then there is a class E of limit ordinals such that:

(i) c € E - cf(x) = w;
(i) if k > w is regular, then E N k is a stationary subset of k;
(i) CO(E) is valid. O

In fact by a slightly different argument, it is possible to prove the following
more general result.

6.1’ Theorem. Assume V= L. Let A be a class of limit ordinals. Then there is a
class E = A such that:

(i) if k > w is regular and A N k is stationary in k, then E N k is stationary
inkK,
(i OFE). O

This more general result is proved in detail in Chapter IX, using Silver ma-
chines instead of the Fine Structure theory. It is also possible to adapt the proof
given in this chapter using the fine structure (see Exercise 4), but in order to avoid
making an already complicated proof look even worse, we prove the more spe-
lised version (which in any case is enough for our needs here). As will be seen, the
advantage with the specialised version is that the existence and behaviour of
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the set E can be relegated to a special case of the construction, and thus may be
ignored for most of the proof. (This advantage does not arise with the machine
proof, which does not involve a number of separate cases.)

Before we commence the proof, let us see how this relates to the principles [J,
considered in Chapter IV. Let [J denote the principle (1 (@). Clearly, if F < E, then
O (E) implies O (F), so O is the weakest of the global [J-principles of the above
kind.

6.2 Theorem. Assume [1. Then [, holds for any uncountable cardinal k.

Proof. Recall that [J, asserts the existence of a sequence (C,|a < k™ A lim(x))
such that:

(i) C, is a club subset of a;
(ii) cf(x) < k= |C,| < k;
(iii) if & is a limit point of C,, then C, = & n C,.

We shall denote by (1% the following principle: there is a sequence
(C,lce S k™) such that:

(i) C, is a club subset of «;
(i) cf(a) < x = |C,| < k;
(iii) if & is a limit point of C,, thende S n k™ and C; = & n C,.

We shall prove the implications [0 — (0% — [J,. We deal with the second
implication first. Let (C,JaeS nx*) be as in 05, Define a [,-sequence
(€l < k™ A lim(a)) as follows.

Suppose first that « is regular. Then we define C, = C, — x for k < a <« ™,
lim(a), and C, = a for a < «, lim(x). If k < & < k™, lim(a), then € S Nk, s0 C,
is defined. Hence C, is defined for all limit ordinals « <x*. Clearly,
(C,loa < x* A lim(a)) is a (J,-sequence.

Now suppose k is singular. In this case the above method will not work, since
in order to satisfy [J, we shall require |C,| < x, which prevents us from defining
C. = k. So we proceed as follows. Let 6 = cf(x) < x. Let C, be a club subset of «
of order-type 0 with min(C,) = 0. If & < « is a limit point of C,, set C, = a n C,.
If o < k is a limit ordinal but is not a limit point of C,, then there is a largest
element v € C, such that v < o, and we set C, = o — v. Finally,incasex < o < k¥,
lim(x), we set C, = C, — k. It is easily seen that (C,lo < k™ A lim(a) is a
0 ,-sequence.

We turn now to the considerably less simple problem of deducing (1% from [J.
We start with a [J-sequence (C?|a € S). Foreachae S nx*,weset C; = CY — k
in case « >x and C! = C? in case a <x. It is clear that the sequence
(CH e S n k™) satisfies the following conditions:

1(i) C}is a club subset of o;

1(ii) otp(C}) < a;
1(iii) if & is a limit point of C}, then de S n«x* and C; = & n Cy;
1Gv) ifeeS Nnx™, a > K, then C} nx = 0.
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We next define a sequence (C2|a € S n k™) such that:

20) C2 < ¢l
2(ii) C? is a club subset of «;
2(iii) otp(C3) < x;
2(iv) if & is a limit point of C2, then e S N k" and CZ = & n C2.

Forae S nx™*,let6, = otp(C}) and let f,: 6, — C} be the monotone enumer-
ration of C!. We define C? by recursion on a.

For a <k, set C2 = C!. This part of the C%-sequence clearly satisfies
2(i)-2(iv). And by 1(iv), the remaining case (« > ) will not affect the situation
below x, so we shall not beed to worry about any clashes when we come to check
2(iv) for the rest of the C*-sequence.

Now suppose « > k and we have defined C? for de S n . If 6, < k, we set
C2 = C!. It is immediate that 2 (i)—2 (iii) are satisfied in this case. We check 2 (iv).
Let & be a limit point of CZ. Then 4 is a limit point of C}, so by 1(iii), & € S and
C! =an C!. Thus 0; = otp(C}) < otp(C}) = 0, < k. But by 1(iv), & > x. Thus
C2=Cl=anCl=anC2

We are left with the case where 6, > k. In this case, 6, is singular, since
cf(6,) = cf(0) < k < 6,. Hence 6, € S n k™. By 1(ii), 0, < a, so C3, is defined alrea-
dy. Set C}=f,C; . Using the induction hypothesis, it is immediate that
2(i)—2(iii) are satisfied. We check 2(iv). Let @ < o be a limit point of CZ. Then
cf(@) < otp(C?) < k. But by 1(iv), & > «. Thus & € S. Now, d is a limit point of C},
so C} =an C!. Hence 0, = otp(C}) < otp(C}) = 0, and f, =f, | 6,. Clearly,
f.(0:) = a. So as & is a limit point of C? and C? = f," Cz , 0; must be a limit point
of C,. Thus 6, € S and C3, = 6; n C} . But C§ = Cj_, so 0y is a limit point of Cj_,
so by 1(iv), 0; > . This means that CZ = f;’ C;_, and we have (since f,(0,) = @ and

' C3 = C? and a is a limit point of C2):

C=fCoL=f0:nC3)=£'0:nCj)=anC].

That completes the definition of (C?|aex™). If x is regular, then
(C2|a e S N k™) clearly satisfies (13, and we are done. If x is singular, we extract
from (C?|oe S nx*) a OS-sequence (C2 |a € S N k™) in the same way as in the
proof of IV.5.1 (at the very end). The proof of 6.2 is complete. [J

Notice that in the above proof of 6.2 we commenced with a [J-sequence
(C,la € S) and constructed a [J,-sequence (C,|a < x™ A lim(a)) such that, in
particular, C, = C, for x < « < x*. Thus the same argument establishes the fol-
lowing more general result:

6.2" Theorem. Assume [1(E). Then for any uncountable cardinal x, O, (F) holds,
where F = (E n k%) — (x + 1). (So if E n ™ is stationary in k™, F is stationary in
k*) O

This relates to 6.1, of course.

We turn now to the proof of 6.1. We assume V= L from now on.
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Define a class E of limit ordinals as follows. E is the class of all limit ordinals
o such that for some f > a:

(1) o« is regular over J;; and
(ii) for some p e J;, if pe X < Jg and X N a is transitive, then X = J;.

6.3 Lemma. If k > w is regular, then E N K is stationary in k.

Proof. Let C < k be club in k. We prove that E n C #+ (. Let N be the smallest
N < J.+ suchthat C € N and N n k is transitive. Since k is regular, N N k € k. Let
a=Nnk.

Let n:J;= N. Then nla=id[a and n(x) = k. Since Ce N, we have
CnaeJgand n(c n o) = C. Since C is club in «, by absoluteness we have

Fy . “Cisclubink”.
So, as w: Jy < J,+,
Fr,“Cnoaisclubina”.

Thus by absoluteness again, C N o is indeed club in a. But C is closed in x. Hence
o e C. We show that o € E as well.

Suppose that there were a Jy-definable map from a bounded subset of a
cofinally into «. Then by applying n: J; < J,+ we would obtain a J,+-definable
map from a bounded subset of ¥ cofinally into x, which is impossible. Hence « is
regular over Jj.

Now suppose that C nae X <J; and that X n « is transitive. Applying
m:Jy= N<J+ we get Ce(n"X)<N<J+. But () =k, so (n"X)nk =
n"(X na) = X N a, which is transitive. So by the choice of N we must have
(n"X) = N. Thus X = J;.

Thus g and C n « testify that « € E. The proof is complete. O

6.4 Lemma. Let o € E, and let § > o be as in the definition of E. Then cf(a) = w
and there is a £,(Jy 1) map from w cofinally into a.

Proof. Let p € Jg be such that whenever p e X <J; and X N a is transitive, then
X =Js. Let h = hg,,, the canonical £, skolem function for Js,;, and let
H = Hy,, be the uniformly Z¢f** predicate such that

y=nh(,x) iff AzeJziy)H(z,y,i,x).
For n < w, define partial functions h, by
y="nh,x) iff x,yeS,p4n A (3z€S,p:n) H(z, y, 10, X).

Since Jz;, is amenable (and hence closed under X, subset formation), h, € Jg, ;.
And clearly, the sequence (h,|n < w)is Z;(J4+ 1)
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Define a sequence of sets (X, |n < w) and a sequence of ordinals («,|n < w) as
follows.
a =13

Xn = h::(‘]an X {(p’ JB)})’

%+ 1 = SUp(X, N ).

Let X =) X, and set a, = | ) ,. Then clearly, X = h*(J, x {(p, Jp)}) and
Xna=a,.

Let Y= X n J;. Since Jye X and X <, J;,,, we clearly have Y<J;. But
peYand Yna=X na=a,. Sobychoice of p, Y=Js. Thus o, = Yn o = .
This shows that « = | ) «,. Since («, | n < w) is easily seen to be Z, (J;+,), we shall

n<w
be done if we can show that a, < « for all n < w.
For each n < w, let j, be a J, -definable map from wa, onto J, . Forv < wa,,
i < w,set
f;l(v’ l) = {

h(i, G2 (v), (p, Jp))),  if this is defined and is an element of «;
undefined, in all other cases.

Since h, e Jg4; and Jg, is closed under X, subset formation, f, € J;.,. But
fu € Jg. So f, € Def(Jp), ie. f, is Jy-definable. Since « is regular over Jg, it follows
that for each v < wa,,, sup; <, f,(v, i) < a. Likewise, it then follows that if wa, < «,
then sup,<qq, SUPi<e fo(v, i) < a. But clearly, sup,<q,, SUpPice fu(v, i) = dpyy.
Thus wa, < o implies «,,; < «. But o is regular over J;, so if «,,; <o then
wa, 4+, < o Thus by induction on n we obtain «, < o for all n < w. The proof is
complete. [

By 6.3 and 6.4, E is a class of limit ordinals, each cofinal with w, such that
E N k is stationary in x for every regular k > w. We complete the proof of 6.1 by
showing that [J(E) holds: that is, there is a sequence (C, |« € S) such that:
(i) C,is a club subset of «;
(ii) otp(C,) < a;
(iii) if & < o is a limit point of C,, then 4 € S, d ¢ E, and C; = & n C,.
In the definition of C, there are several cases to consider.

Case 1. « < w;.

In this case, let C, be any w-sequence cofinal in «. There is nothing to check
in this case.

In order to describe the next case we make use of the Godel Pairing Function,
@ (see 11.8.6). Set

0 ={o|P"(a x o) = a}.
By the properties of &,

O={a|(DPlaxoa):oxaeo}.
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Q is clearly a club class. And it is an elementary exercise to verify that if « € Q, the
next element of Q beyond o is a®.

Case2. « > w; and o ¢ Q.

Let f be the largest element of Q below o. Thus f < a < . Hence we can find
a unique integer n > 0 and unique ordinals &g, &, ..., &,, &, + 0,0 < & < B, such
that

a=Ep"+ o B+ E B+ .

Let m be the least integer such that &, + 0.
Suppose first that &,, = {,, + 1. Since lim(x) we must have m > 0. Set

Ca = {(ﬁnﬁn‘i' én—lﬁ”_l +...+ ém+1ﬂm+1 + Cmﬁm + éﬁm_l)l
1<¢< B}

It is easily seen that C, is club in « and of order-type f < o.
Now suppose that lim(&,,). Then set

Co=A{CuB" + &uon B+ + L BT HEBMIT S E <L)

Again C, is club in a. And C, has order-type &, < f < a.

In either case now, if & < a is a limit point of C,, then with § as above we have
p<a<p®and C;=an C,. (This is elementary.) Moreover, it is clear that
E = Q,s0 we have 4 ¢ E.

Case 3. a > w; and o € Q and sup(Q N o) < .
Let § = sup(Q n «). Then « is the successor of § in Q. Hence o = ¢, and we
may set
Co={p"In<w}.

There is nothing to check in this case.
From now on we shall assume that « does not fall under Cases 1-3. Thus,
o > w, and « is a limit point of Q. Notice that, in particular, wo = «. Let

B = P(o) = the least f such that « is singular over Jj; p), B

n = n(a) = the least n such that « is Z,-singular over J;. n(o), n

Case 4. n =1 and f is a successor ordinal.

By IV.5.2, cf(¢) = w, so may let C, be any w-sequence cofinal in a. There is
nothing to check in this case.

Notice that by 6.4, every element of E falls under Case 1 or Case 4.

Case 5. n > 1 or lim(B).
This is the only remaining case, and is by far the most difficult one. To
commence, set

o(a), 0

— _ n—1 — — n—1
Q - Q(a) - QB s A A((X) Aﬁ . A(d), A

Notice that we must have lim(g) here.
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By definition of ¢}~ ', there is a X,_,(J;) map from a subset of wg onto f.
Hence there is a X, (J5) map from a subset of wg onto «. But a is X, ;-regular
over Jy. Thus o < we. Hence as wa = a, we have a < . Again, there is a Z,(Jp)
map from a bounded subset of « cofinally into o. Since F;, “a is regular”, this map
cannot lie in J;. Hence 2(a x a) N Z,(J5) $J;. So, utilising Gédel’s pairing func-
tionona x a, we see that 2(«x) N Z,(J4) & J4. Thus gj < «. Hence we have proved
that

05 < a<o.

By virtue of the first of the above inequalities, we may define p = p(x) = the
< -least p € J, such that every x € J, is X, -definable from elements of « U {p} in
{(Jy, A). (Thus p <, p}.)

Let h = h, 4, the canonical X, skolem function for {J,, 4), and let H = H, 4
be the uniformly Z§’»4> predicate such that

y=h(i,x)>@zeJ,) H(z,y, i, x).
6.5 Lemma. There is a y < a such that h*(y x {p}) N a is unbounded in o.

Proof. By choice of f§ there is a 7 < a and a Z,(J;) function f such that f"7 is
cofinal in o. Since o« < g, f= J,. But ¢ = 037!, 4 = A}~ '. Thus f is Z,({J,, 4)).
By choice of p, f will in fact be Z<»4>({v, p}) for some v < . Since « is a limit
point of Q, we can pick a yeQ such that v,7 <y <a. We show that
h*(y x {p}) N o is unbounded in o. It suffices to show that "t < h*(y x {p}).

Let X = h*(y x {p}). We show that X is closed under the formation of order-
dered pairs. Let x,, x, € X, say x;, = h(iy, (&, p)). Let & = &(&y, &,). Since y € Q,
¢ < y. Moreover, by the nature of @, &, and &, are X,-definable from ¢ in J,.
Hence (x,, x,) is Z,-definable from ¢, p in {J,, A). So for some i € w,

(x0> xl) = h(l’ (éa P)) € X.
Since X is closed under ordered pairs, 3.3 tells us that X <, {J,, 4). But

yu{p}= X and t<y. So as f is Z{'»(y U {p}), we have f"1 < X, as re-
quired. [

For © < ¢, we shall write h, for h, 4 ;.. Thus:
y=h(,x) iff (x,yeJ) A @zeld)H(zy,i,x).
Define a map g = g from a subset of o onto J, by
g(wv + i) ~ h(i, (v, p)).
Thus g is Z{’»4>({p}). Let G be the canonical Z§’»4>({p}) predicate such that

gv)=x iff 3zeJ)G(z x,v).
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Let y be the smallest ordinal such that o N g”y is unbounded in «. By 6.5,y < o.
And it is clear that y must be a limit ordinal. For y <t <o we have
J@ng't)=a>1. Hence there is a maximal k =x® <o such that
U(x n ¢g"x) < K, and moreover k < y. We fix 7, k for the rest of the proof. Note
that ( J(« n g"7) > 7 whenever k <7 <.

6.6 Lemma. If (x,p) e X <,<{J,, A) and X n o is transitive, then X N a = a.

Proof. Let X be as above, and set @ = X N a. Since k € X, & > k. Thus if it were
the case that & < a, we should have sup(a N g”"&) > &. So for some v < &, & < g(v)
< a. But g(v) = h(j, (z, p)), where v = w7t + i,soaspe X and 1 < ve & = X and
X <,<J,, Ay, we have g(v) € X. Then g(v) € &, a contradiction. Hence & = «. [J

We define, by recursion, functions k:60—y, m:0 -9, and sequences
(X,|v <), (a,|v < 6), for some 0 < y, as follows. (The exact order in which the
definition proceeds is described after we have stated all of the clauses.)

k(v) = the least T € dom(g) — x such that:

@) = Uk");
(i) gt)ea and g(t) > a,;
(iii) m(v) € h*(g(v) x {p}).

m(0) = the least # > x such that p € J,;
m(v + 1) = the least n > m(v) such that:

@) n > k), gek(v);
(1) ATy edy

(iii) m(v) € h*(g ° k(v) x {p});
(iv) Bz e J,) G(z, g ° k(v), k(v);

m(4) = sup, ., m(v), if lim(4) and sup, ., m(v) <o
(otherwise undefined).

X, = Ky x {p),  where n = max(U[k"v], Ulg * k"v)).

o, = sup(X, N a).

We stop the construction when an ordinal 0 is reached such that k"8 is cofinal
in 7, unless the construction breaks down earlier. (We shall prove that this is not
the case.)

Let us see how the construction proceeds. The definition of m(0) is un-
problematical. Now suppose that m(v) is defined. This presupposes that we have
not yet reached 6, so | J(k"v) <y < a. Since | J(k"v) < 7, the choice of y implies
that « N g”({ J k"v) is bounded in a, so « N g © k”v will be bounded in o (because
g o k"v < g"({)k"v)). Hence the # in the definition of X, satisfies # < a. There is no
difficulty in defining X, and «, of course. Since m(v) < ¢ and {J,, 4) is amenable,
we have h,,,, € J, = Js. So as « is a regular cardinal inside J; and < «, we have
a, < a. By the choice of p, h*(« x {p}) = J,, so there is now no problem in defin-

K@,k

k(v)

m(v)
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ing k(v). Then we define m(v + 1). This causes no difficulty as far as clauses (i), (ii)
and (iv) are concerned, but what about clause (iii)? Well, by definition of k(v)
we have m(v) € h*(g o k(v) x {p}). So as lim(g) there is an 5 < ¢ such that
m(v) € h¥(g o k(v) x {p}). Thus we can easily satisfy clause (iii) as well.

Now suppose that 1 is a limit ordinal and that kA, m 4, (X,|v<A4),
(xy]v<A) are defined and that supk”A<y. Then by choice of »,
n = sup(g ° k") < a. Suppose it were not possible to define m(4). Thus it must
be the case that sup,.,m(v)=¢. Let X =) X,. Clearly, in this case,

v<a
X =h*{J, x {p}) and X n a = sup,.,a,. Now for all v < 4, by the definition of
k we have gok(v)>a, and by the definition of m(v + 1) (clause (iv)),
gek(v)eX, 1,80g°k(v)<a,,;. Thus a, < gok(v) < a,,, for all v < 4. Hence
X noa=sup,<;g°k(v) =1 <a But(x,p)e Xg = X <, {J,, A), so this contra-
dicts 6.6. Hence m(A) can be defined. We may now define X, «;, k(4) without
trouble, just as before.

Thus the construction proceeds until an ordinal 6 is reached for which
supk”6 = y. Clearly, 6 must be a limit ordinal. Since k is monotone increasing
from 6 into y, we have 0 <7y. Note also that, as we observed above,
a, < geok()<a,,, forallv<é.

6.7 Lemma.

(i) sup, <, = .
(ii) sup,<gm(v) = 0.
(i) Y X, =J,

v<6

Proof. (i) By our last observation above,
o, < gok(v) <o,y
for all v < 6. Hence
(*) SUp, <oty = SUP, <99 ° k(V).
Suppose now that (i) were false, and that
1 = SUp, <0, = SUP,<pg ° k(v) < at.

By choice of y, « n g”y is unbounded in «. So let 7, € dom(g) be least such that
K, < g(to) < a. By definition of x, 1, € dom(g) — k. As 7, is minimal, by the
choice of y we must have 7, < 7. So there is a least v < 6 such that k(v) > 1.
Consider the definition of k(v): namely, the least e dom(g) — x such that
= (J(k"v), o, < g(r) < o, and m(v) € h*(g(z) x {p}). Now look at 7,. We have
already observed that t, € dom(g) — «. By the minimality of v, we have k"v = 1,
so 7o = (J(k”v). By the choice of 74, we have a, < < g(t,) < o. Finally, since
g°k(v) <n <g(ty), we have (by the definition of k(v)) m(v) € h*(g(ty) x {p}).
Thus 7, is a candidate in the choice of k(v). Hence k(v) < 7. But we chose v so that
k(v) > 14. This contradiction proves (i).
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(i) Let ¢ = sup,<om(v). Then for all v < 6 we can find a z € J; such that
G(z, g ° k(v), k(v)). Thus as sup, <49 ° k(v) = sup, <o, = o (by (i) and (%)), if
we define f from a subset of y into « by the X, ({J;, 4 N J;») definition

{=fQ)e@zeJ) G190,

then f”y is unbounded in a. But if ¢ < g, then as {J,, A) is amenable,
feJ, € Jp, so ais not regular inside J;. Contradiction! Hence ¢ = .

(iii) By (1), (i) and (%), we have

U X, =k, x o).

So by choice of p,

Ux,=J, O

v<6

For each t < 0, define a map g, from a subset of «, into J,,(, by
gr(é) = XH(HZ € Jm(r)) G(Z’ X, é)'

By definition of m, if lim(z), then {J,, ¢, 4 N J,,(,)> is amenable, and in this case g,
is 2<J"I(t)v‘4 ﬁJm(t)>({p})'

We define «, from g, in the same way that « was defined from g: that is, we let
k. be the largest k. < a, such that | J(&, N g7 k,) < k.

6.8 Lemma. For sufficiently large ordinals 1 < 0, k, = k.

Proof. Clearly, if v <t <0, then g, < g.. Moreover, | ) g, = g. Thus for any
<0

1< 0, (@, ngix) < J@ N g"k) < k. Thus k, > k. Similarly, v < © < 6 implies
that x, < k,. So for some v < § we must have x, = k, > « for all T > v. Suppose
that x, > k. Then | J(« n g"k,) > Kk,. So for some © < 0, | J(« N g7k,) > k,. But
we may assume that T > v and that, in fact, | (¢, n ¢"x,) > k,. Then k, = k, and
so | J(a, m g7 k) > k.. Contradiction! That proves the lemma. O

By recursion, we define a strictly increasing, continuous function ¢: § - 0, for
some 0 < 6. First of all we let ¢(0) be the least v such that (v < t < 6) - (k, = k)
and o, > ;.

In case n = 1, when t(2) is defined we let t(: + 1) be the least v < t(z) such that
D" (aty () X Ar(y) S &, Since o is a limit point of Q, t(z + 1) < 0 is always defined.

In case n > 1 and ¢(2) is defined, we let t(z + 1) be the least v > t(z) such that
D" (o) X Oy(y) < o, and

Ja N h:";'z,A";‘z(Xt(l) X {Pﬁﬂ}) S XV'

We must check that t(: + 1) < 0 is well-defined.

9.
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Let
Y=J,n h;";_z,,,zq(X,(,, x {pp~'}).

We must show that Y< X, for some ¢ < 6. Since Y < J,, it suffices to show that
Yc J, for some t < «; for if 7 < a, then a, > 7 for some ¢ < 6, and we have
go k(&) > a:, so by definition, J, < X;,,. Now, for some n <o, we have
Xiy = Mheap(Jy x {p}). Since {J,, A} is amenable, h,,,, € J, < Js. Thus J; con-
tains a function mapping w# onto @ x (X, % {ps~'}). Again, by the definition
of ¥, Y is the image of a Z;({J,n-2, 4n-2)) function defined on a subset of
o X (X, x {pj~'}). By the properfies of the standard code A}~ 2, this function
is ¥, 1(Js). Combining these two functions gives us a Z,_, (J;) function f such
that f"wn = Y. Since f is £,_,(Jp), so too is f: wn — «, defined by letting f(v) be
the least 7 such that f(v) € J,. Since a is Z,_ ,-regular over J;, f” wn < t for some
7 < a. Then Y < J,, as required.

Finally, if lim(4) and ¢ I 1 is defined, we let t(1) = sup, <, £(2), if this is less than
0, with t(4) undefined otherwise.

Thus for some limit ordinal § < 0 we shall have sup, - #t(1) = 0, at which point
the definition of ¢ is complete.

We define

C, = {o|v < 0}.

Thus C, is a club subset of « of order-type § < <y < «. To complete the proof
of 00 we must show that if & < a is a limit point of C,, then &€ S, a ¢ E, and
C,=an C,. Let & = a,;, where lim(A).

_ _ . . (Tn-2,47%" 2
6.9 Lemma. & > w, and a€ Q. Moreover, if n>1 and f is a X% °°

(X, U {pp~'}) function from a bounded subset of & into &, then f is bounded in d.

Proof. That & > w, and & € Q is an immediate consequence of the definition of .

Now let n > 1, and let f be as above. Since the function m is continuous, so too

is the sequence (X, |v < 6). Thus X; = | X,, and the finitely many parameters in
v<Ai

the definition of f will all lie in X, for some v < A. We may choose v here so
that dom(f) < «,. Let 1 < @ be least such that t(z) > v. Since & = ; is a limit
point of C,, A is a limit point of ¢ and so t(), t¢ + 1) <4 But f is
¥ 45 >(X,(,) x {pp~'}) and dom(f) < o, S X;- So by definition of
t@ + 1), ran(f) € X,(,+1). Thus ran(f) € 41y < &y = &

Let _
n:{Jy A = (X, A 0 X))

Thus
T <J@s A <1 JImays A O Ty p>-
But by X,-absoluteness,

Tmays A O Ty <0< Jps AD.
Thus
T <Jg‘s ‘/T> <O<Jg’ A>'
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So by 5.6 there are unique B, # such that g = j ™', 4 = A}~ ", #: Jp<,_1Jp,
n < &, f(py~') = pj~ '. Note that by definition of k, g o k(v) > a, for all v < 4, so
by definition of X,,;, a,< X,,, for all v<A. Thus & < X, and in fact
& =X, o Sowehave n [ & =id | & and in case & < B, #(d) > o.

Let B = hé,;, ﬁ = Hg,,Z' Setﬁ = 7'6—1([7).

6.10 Lemma. p = the <-least element of J; such that every x € J; is Z,-definable
from parameters in & U {p} in {J5, A).

Proof. By definition,

X}. = hrﬁ(ﬂ.)("n X {P}),

where # = max(x + 1,sup[gc k"A]). But o, < g o k(v) < &, for all v < 6. So as
& = o, and lim(4), # = & Thus

X; = hnw(Uz x {p})-
Applying ™1, we get
Jg = h*(J; x {p}).

But by definition of t, we have & € Q, so by 3.19 there is a £{* map from & onto
J;. Hence

J; = h¥ (@) = h*(3).
Thus

Jg = h*(@ x {p}).

This shows that every element of J; is X, -definable from members of & U {p} in
{Jz, A>. We must now show that p is the < ;-least such member of J;. Suppose,
on the contrary, that p’ <, p also has this property. Then, in particular, for some
i<w and some v<d, we have p=h(i,(v,p)). Applying =n:<{J; A> <,
{Imys A O Ty, We get p = hy,)(i,(v, p)), where p’ = n(p’). Thus p = h(i, (v, p)).
Hence by choice of p, every element of J, will be Z,-definable from parameters in
au {p'}in{J,, A). But p'<;p,so p’<;p, and so we have contradicted the choice
ofp. O

Now define g from h, &, p just as g was defined from h, «, p. Thus, we define g
from a subset of & into J; by

glwv + i) ~ h(i, (v, p)).
Let G be the canonical £¢/74>({p}) predicate such that
gv)=x iff AzeJy) G(z x,v).

Note that the £, formula which defines G from p in {J;, A» will be the same as
that which defines G from p in {J,, A). But

Uz <Jév /Z> <1 <Jm().)’ An Jm(}.)>a

Q)

Q
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n | & =1id | &, and =(p) = p. Thus for v, 7t € @,

gy =t iff Aze J) Gz, 1, v)
iff AzeJ,u) Gz, 1,v)

iff g,(v) = 1.
Hence

8y gn@xa=g,n(@&x a.

Next we define i from g, & just as x was defined from g, a. That is, let k be the
largest ¥ < & such that ( J(& n §"k) < &. By (1) and the fact that & = a, this is the
same as the definition of x,, so k¥ = x,. But by the definition of ¢(0), x; = «. Thus
K =K.

Let n = (k" A. By definition of X, ,, we have k(v) € X, 1, so k(v) < a,, for
all v< A. Thus # < @.

Since a, < g o k(v) < a, 4, for all v < 4, we have

@ a={) gok().

v<i

Now by clause (iv) in the definition of m(v + 1),g, [ k"4 = g | k" A. Thus by (2), we
have

@) a= gioko).

v<i

Since k is monotone increasing, we have k"v < k(v) for all v < A. Thus
gi(k"v) = gik() for all v < A, ie. g, o k"v = g3 k(v) for all v < A. So from (3) we
have

) a=|J (@ngik().

v<i

This is the same as

©) a=J@n gin).

So by (1) and (5) (noting that n < &) we have

© a=U@ngmn.

Now by definition of k we have k(0) > k,son = (Jk" A > k. So as k = k we have
k <1 < d. So by choice of & we have ( J(@ n §"#) > n. Thus by (6) we have & > .

But (6) also tells us that g maps a subset of # cofinally into &. Thus, in particular,
aeSs.

6.11 Lemma. B = B(&).
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Proof. By definition, g is Z,({J;, 4>).So g N (& x &)is Z,({J;, A)). But g = ™',
A= Aj"'.Thus g n (& x @) is ,(Jp). By (6) above, § n (& x &) maps a subset of
n < & cofinally into &. Hence & is Z,-singular over Jz. Thus f(&) < B.

Suppose that B(&) < B. Then there is an fe Jzand a 6 < & such that f maps
o0 cofinally into & Now, @ [& =id [ &, so we have #(d) = 6 and f< #(f). But
F;, “dom(f) = 67, so applying #: Jg <, J; we have F, “dom(7(f)) = 6”. Thus
we must have 7(f) = f. But F,E“Uf”é = a”, so applying %, #,ﬂ“Uf”(S = 7(&)”.
Since (&) > a > &, this is impossible. Hence B(&@) = . O

6.12 Lemma. n = n(&).

Proof. By the properties of g n (& x &) mentioned above we have n(x) < n. So if
n = 1 we are done. Assume that n > 1.

Let f be a ,_, (Jp function from a bounded subset of & into & We shall show
that f”& is bounded in &, thereby proving that n(&) = n. Let u = dom(f). Let
=17 [ Jpp-2. By 5.6 we know that

T <Jg'§_2a A§_2> <1 <J92_2a A;_2>
and
oy )=pp -

. = <Jgnm2, 4572 _
Since ¢ = @j~ ', we can find an x € J; such that f is }21]“5 A8 >({x,p§ ). Let
f be defined over <J03 -2, A}~ *) by means of the same X, definition in parameters
T(x), pp~ L.
Since fc @ x dand n [ & = id | & we have f<f. Again, uis a %, - 1(Jp) subset
of @ < ¢ =gf ", so by 4.6, (J,, u) is amenable. But u is bounded in &. Hence
u € J;. Thus n(u) is defined. Since u is a bounded subset of x and 7 [ & = id [ &, we

have n(u) = u. But the statements
“f is a function” and “dom(f) < u”
-2, A;}'-

Jpn -2 _ . . .
are I1, % ({x, p§~ ', u}). Hence as 7 is Z,-elementary, f is a function and

dom(f) < u. Thus f=Ff. Gome 2 A2
This shows that fis £, % 7 “({rn(x), pj~'}). But n(x) € X,. So by 6.9, f is
bounded in &, and we are done. [J

6.13 Lemma. ¢ = 0(%) and A = A(%).

Proof. Directly from 6.11 and 6.12. O

6.14 Lemma. p = p(&).

Proof. Directly from 6.13 and 6.10. O

6.15 Lemma. § n (@ x &) =g, n (& x @) = g® n (& x @) and k? = k@ = k.
Proof. By our previous results. [

6.16 Lemma. & falls under Case 5 in the definition of C;.

S

- ®
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Proof. Since & > w, & does not fall under Case 1. Since & € Q, & does not fall under
Case 2. Since & is a limit point of Q (by definition of the function t) & does not fall
under Case 3.If n > 1, then by 6.12, @ does not fall under Case 4. And if n = 1, then
B =0,s0as n:J; <, J, and lim(4), B is a limit ordinal, so by 6.11, & still does
not fall under Case 4. Hence & must fall under Case 5. O

6.17 Corollary. G ¢ E.
Proof. Since all members of E fall under Case 1 or Case 4. [

6.18 Lemma. C; =& n C,.

Proof. Define k:0— 7, m:0— g, (X,|v<0), @/|v<0) from & just as k, m,
(X, v < 0),(a,|v < 0) were defined from «. Since & is a limit point of C,, we clearly
have 0 = A here. And a straightforward induction proof shows that for v < A,
k(v) = k(v), n(m(v)) = m(v), " X, = X,, &, = a,.

Now define ¢ from & as t was defined from a. For some 7, we will have A = t(%).
By induction on v < 7, we get t(v) = t(v). Hence

The proof of 6.1 is finally complete.

Exercises

1. Strong Embeddings

This exercise is concerned with establishing a sort of “dual” to theorem 5.6. This
result says that if there is an embedding

o <J§: ‘21_> <1 <Ja'59 A;>a
then <J;, A) must have the form g = ¢}, 4 = A}, and the embedding o can be
extended to an embedding

O-Z JB-<”+ 1 ‘]ﬂ

In the result proved below, the roles of <J,, A) and {J,
interchanged. .
Let <J;, A>, {J,, A) be amenable structures. We say that an embedding

ns Aj) in the above are
o: <Jg" ‘Z> <1 <JQ9 A>

is strong iff, whenever ¢(x, y) is a Z, formula of £ (A), if
{(x,y) € Jg'] '=<.l;,,/{> (X, Y}

is well-founded, then

{(x, y) € Jq | |=<Jp,A>(P(->%’ j})}
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is well-founded. (Notice that in describing this property as an attribute of o, we
are really using the fact that in order to specify a mapping it is necessary to specify
the domain and the range. The actual behaviour of ¢ plays no part in the defini-
tion of strongness.)

We shall prove that, for any n > 0, if {J,, A) is amenable and
0. <J93’ A%> < 1 <an A>

is strong, then there is a unique ordinal ff such that ¢ = g}, 4 = A}, and a (strong)
embedding

&:Jﬁ<n+l‘]ﬂ

such that ¢ = 6.
It suffices to prove the following: Let n, i > 0, and suppose that

o <Jg'i‘f, A%> <i<JQ9 A>

is strong, where {J,, A4 is amenable. Then there are #, B, 6, such that ¢ = 6 and

() ¢ =0y A=Ay 6(PF ) = Po.55
(i) 6: <JQ"5' 1, A5 <i41{J,, B is strong.

Set: é:Q%’/T:A%,ﬁzg%_l’B=A§‘1,ﬁ=p%_l.
Note that: J; = h¥ 5(Js x {p}).
Define: (i, X)) = hy 5, (x, p)  (x € o).

Define relations D, E, I, B’ on J; by:
D = dom(h);
E = {(x,y) € D*|h(x) e h(y)};
I = {(x,y) e D*|h(x) = h(y)};
B = {x e D|h(x) e B}.

Since D, E, I, B’ are {2 ({ p}), they are §’>4”. Let D, E, I, B’ have the same X,
definitions over {J,, A). Since ¢ is strong, E is well-founded. Let

M =<D,LE,B’),
M =<{D, L E, B.

Let T be the T, satisfaction relation for the structure M. Then
T(p, (X)) o F). 5, @(BR)).

Since T is Z{'»B({p}), it is Z§'»4°. Let T have the same X, definition over
{Jys 4.
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1A. Prove that T is the T, satisfaction relation for the structure M.

Since the satisfaction relations T, T are X, in {J,, Ay, {J,, A, respectively, by
the same definition, and ¢ is X;-elementary, we have

(6!D):M <11 M.

Thus M satisfies the identity axioms (for I) and the Axiom of Extensionality. So
we may define the factor models

= M/I = {(D*, E*, B*)
M*= M/I = {D*, E*, B*>.

Let k: M - M* and k: M — M* be the natural projections. Since M*, M* are
well-founded and extensional, let [, [ be their transitivisation isomorphisms, re-
spectively. Clearly,

I:M*~{J;,B), h=Ick.
Let

I: M* = {J,, B,
and set

h=1-k.

Define o*: M* <, M* by 6* o k = k o 5, and define
G: <Jﬁ, B> <i+1<Jn’ B)

by 6 ch = hoo. We have the following commutative diagram of the situation.

/TN

M omL {Jyy B
a rDl a*l ‘5
M*—L (J;, B

N

1B. Prove that 6 [ J, = o.
Set p = 6(p).
1C. Prove that
(i, x) € D — h((i, x)) = hy, 5(, (x, p)).
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1D. Prove that
A={(ix)xeJ, A |=<J,,,B> 0i(X, P},

where (¢;|i < w) is as usual.
1E. Prove that ¢ = g, p.

1F. Prove that p = p; 5.

1G. Conclude that 4 = A; .

1H. Prove that ¢ is strong. (Hint. Pull back to D and D, and use the fact that ¢
is strong.)

That completes the proof.

The result just proved may be used to give a proof of the Covering Lemma
(Chapter V) different from the one given in this book. This alternative proof may
be found in Devlin and Jensen (1975).

2. The Combinatorial Principle [1*(E)

For each infinite cardinal «, let
S, = {oa e S|cf(x) < k}.

Let (O*(E) denote the following assertion. There is a sequence (C,|a € S,) such
that:

(i) C,is a club subset of a;
(i) if cf(x) < k, then otp(C,) < k;
(ii) if @ < o« is a limit point of C,, then & € S, d ¢ E, and C; = & n C,.

2A. Prove that (*(E) implies [,.(F), where F = E N (x* — x). (Hint: Let
(C,|z€S,) be as in (*(E). Fork <a <™, let C,=C,n (k* — k). For a < x,
define C; in two cases. If x is regular, let C, = . If x is singular, and if 6 = cf(x),
let C,. be a club subset of x of type 8. If « < K is a limit point of C;,let C, = a n C,.
If o < x is such that u < o < v, where y, v € C,, are such that v is the least element
of C, above p, let C, = o — p. If & < min(Cy;), let C, = a. Then (C,|la < k™ &
lim()) is a OJ,(F)-sequence.)

2B. Prove that [I(E) implies that (0*(E) holds for any infinite cardinal «. (Hint:
Since the case k = w is trivial, assume x > . First define (C, | € S,) to satisfy:

(i) C, 1is a club subset of a;
(i) otp(C,) < x;
(ii1) if & < o is a limit point of C,, then &€ S,, ¢ E, and C, = & n C..
This is done as follows. Let (C, | « € S) satisfy [J (E) with the additional assumption

C, c a — k for a > k. (For a fixed « this is trivially arranged.) For « singular, set
¢, = otp(C,), and let f,: £, — C, be the monotone enumeration of C,. Define C, by
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recursion on «. For o € S, such that ¢, < «, let C, = C,. Now suppose o € S, and
we wish to define C,. Thus &, > k. Since cf(£,) = cf(a) < ¥ <k < &,, &, is singular,
so £,€8,. By (i) of (J(E), {,<a, so Cg, is defined. Set C, = f,"C;,. Then
(C.| o € S,) satisfies (i)—(iii) above. If k is regular, (C, | o € S) satisfies (J*(E) alrea-
dy. Suppose « is singular and let 6 = cf(x). Let (4, |v < J) be a normal sequence
cofinal in x with &, = 0. Define (C,|a € S,) as follows. Let g,: 0,— C, be the
monotone enumeration of C.. If §,<6,<d,,,, set C, =g, — (5, + 1)). If
0, = sup{d,|d, < 0,}, set C, = g2{5,|5, < 6,}. Then (C,|a € S,) is as required.)

2C. Prove that if V= L, then for any uncountable regular cardinal «, there is a
sequence (X, |¢ < k™) of classes such that for each closed set X = On of order-
type k:

(@ forallé <k™, XN X ¢ is stationary in X;
(ii) if ¢ <n <x*, then X n X, N X, is not stationary in X.

(Hint: First use O, to show that there are stationary sets Y; < «, ¢ < k¥, such that
Y: N Y, is not stationary whenever ¢ < n < k*. Now let(C, |« € S,) be asin [3*(0).
Let (% | ¢ < n,) be the monotone enumeration of C,. Let

X;=Y;u{eel S, —x|3¢eY;) (3B e S [lim(¢) A « = of])})

v<kK

2D. Prove that if V= L, then for any uncountable regular cardinal x there is a
sequence (X,|¢ < k) of pairwise disjoint classes such that for any closed set
X = On of order-type k, X n X, is stationary in X for every ¢ < «. (Hint:
Use 2C))

Deduce that, if V= L, then for each cardinal x there is a set 4 < x such that
neither 4 nor k — A contains a closed set of order-type w,. (See also the Notes
on this chapter.)

3. The Failure of O, and Large Cardinals

Show that if ¥ * is not Mahlo in L, then O, holds. (Hint: Let C € L be a club subset
of k* consisting of singular cardinals in L. By 6.1, (J holds in L, so there is a
“O-sequence” on C. Using the ideas from the proof of 6.2, modify this sequence
to a [J,-sequence.)

Deduce that if [, fails, then k™ is Mahlo in L.

Notice that the above result provides an alternative solution to Exercise IV.5.

4. The Principles U (E)
Prove Theorem VI.6.1". (Use the argument of IX.2 as a starting point.)





