
Chapter III

Countable Fragments of L
00 CO

In this chapter the student is introduced to the infinitary logic Laoω and its
countable fragments. The reason for treating infinitary logic so early in the book
is two-fold. In the first place it offers a nice application of the very notion of
admissible set, since the fragments of Laoω most like ordinary logic are those
given by countable admissible sets. More important, however, is the powerful
tool that infinitary logic gives us in our study of admissible sets. The results
from model theory presented in this chapter are all chosen because of their
applicability to the theory of admissible sets and generalized recursion theory.

1. Formalizing Syntax and Semantics in KPU

In § 1.3 we formalized informal notions of mathematics in KPU, notions like
"function", "natural number", and "ordinal". In this section we do the same
thing for informal notions of logic, notions like "language", "structure", "formula".

In this section we work in KPU but we suppose that among the atomic
predicates of our metalanguage L* are the following:

Relation-symbol (x),

Function-symbol (x),

Constant-symbol (x),

Variable (x)

and among the operation symbols of our metalanguage are two unary ones:

v and # .

We use r , r 1 ? . . . to vary over objects x satisfying Relation-symboΓ(x). Sin>
ilarly h , h l 9 . . . for function symbols and c,c1 ?d,... for constant symbols. We
also assume that among the constant symbols of our metalanguage L* are

-i, Λ> V' V, 3, = .



1. Formalizing Syntax and Semantics in KPU 79

These twelve symbols may be part of our original metalanguage L* or they
may be defined symbols introduced into KPU as in §1.5. In applications, the
latter is almost always the case.

We assume the following axioms on syntax:

(1) An axiom asserting that the classes of variables, function symbols, relation
symbols, contant symbols are all disjoint, and that none of the six constants
displayed above are in any of these classes.

(2) An axiom on variables which asserts, writing VΛ for v(α),

Var iab le (x) <=> 3α (x = va)

(3) An axiom on # , which tells us the "arity" of relation and function symbols :

if x is a relation or function symbol then # (x) is a positive natural
number.

A set L is a language if L is a set of relation, function, and constant symbols.
The predicates "t is a term" and "ί is a term of L" are defined by recursion

on TC(ί):

1.1 Definition, t is a term (of !_)<-> ί is a variable, or ί is a constant symbol (in L),
or ί = <h,y> where h is a function symbol (in L), ^ = <yι,...,^#(Λ )> and each
yt is a term (of L).

These two definitions ("ί is a term", and "ί is a term of L") are of the type
permitted by 1.6.6 so they define Δ predicates. (The only sticky point comes in
checking that the predicates P(y,n) iff "y is a sequence of length n" and Q(y9n9x9i)
iff "P(y9 n) and i^i^n and x is the ith term in the sequence y" are Δ predicates.
This also follows from 1.6.6 by recursion on n. For example, P(y,n) iff n is a na-
tural number ^1 and, if n>i then there exist zl9z2eΎC(y) such that y = <z1?z2>
and P(z2,rc-l).)

1.2 Definition. An atomic formula (of L) is a set of one of the following forms:

(i) < = , f l 5 r 2 > where tί9t2 are terms (of L); we write (t1 = t2) or even (tl=t2).
(ii) <r,ί l 5 ..., O where r is a relation symbol (in L), n=#(ή and tί9...9tn

are terms (of L); we write r( f 1 ? ..., ίj for <r,ί l s ..., ίn>.

1.3 Definition. A set φ is a finite formula (of L) iff

φ is an atomic formula (of L), or
φ is <~ι,^> and ψ is a finite formula (of L), or

φ is </\»{^'0}) OΓ <V'{^'^}) wnere *A>0 are finite formulas (of L), or
φ is <3,y,^> or <V,ι;,<p> where y is a variable and φ is a finite formula (of L).
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We write ~Ί\// for <—ι,^>, ij/Aθ for /\{ψ,θ} and 3vψ for <3,ι;,ι/^>; similarly
for v,V. We use the usual abbreviations like φ-+ψ for ((—\φ)vψ). All of the
above predicates are Δ predicates, the last again by 1.6.6.

1.4 Proposition. // Infinity is true then for any language L there is a set

Lωω = {φ\φ a finite formula of L with only variables of the form vn

occurring in φ,n<ω}.

Proof. We first show that

Terms = { t \ t a term of L with only variables of the form vn in t}

is a set. Define

7erras(0) = {ce l_ |c a constant symbol} u {v ( w ) |n<ω},

Terms(n + l)={(h,tl9...,tky\heL, h a constant symbol,
fc= #(h), tl9..., tkeΓerms(n)} u Γerms(n).

by induction on n. This makes sense if ω exists, by replacement for Terms (0),
as does

Terms = \Jn<(0 Terms(n).

A similar proof shows that Lωω is a set. D

For the past twenty years, and more, logicians have been working to find
manageable strengthenings of Lωω. It has turned out that languages with ex-
pressions of infinite length are one of the best lines of attack. These languages
allow us to form expressions like the following

which says that every element is of the form c,h(c\ h(h(c)\ etc.; or

which says that every x is definable by some finite formula; or φΛ(x) defined by
recursion on α by:

φQυQ s

φ>α) is Vy(y<vΛ++\/β<Λφβ(y/vβ)).

Then φα(x) is going to be true in a linearly ordered structure iff the predecessors
of x have order type exactly α.
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1.5 Definition. A set φ is an infinitary formula if one of the following hold:

φ is a finite formula,
φis—\ψ where ψ is an infinitary formula,
φ is Ίvψ or Vvψ where v is a variable and ψ is an infinitary formula,
φ is </\,Φ> or φ is <\/»Φ) where Φ is a nonempty set of infinitary formulas.

Again this definition is justified by 1.6.6. We write

for <Λ,ΦX

for <V>φ>;

/\Φ is called the conjunction of the formulas in Φ, \/Φ the disjunction. The notion
of infinitary formula of a language L is defined in a parallel way.

We assume that the reader can carry out all the syntactic definitions (free
and bound variable, substitution of a term t for a free variable in φ, for example)
only noting that substitution must be defined by recursion over ΊC(φ). We
denote the result of substituting ί for v in φ by φ(t/v). A sentence is a formula
with no free variables.

We define the set sub(φ) of subformulas of φ by recursion over TC as follows:

sub(φ) = {φ} if φ is atomic

= {<p} u sub(^) if φ is — \ψ, 3vψ or

if <? is φ or

1.6 Lemma. // φ /ιαs a finite number of free variables so does any ^esub(φ).
In particular, if ψ is a subformula of some sentence then ψ has a finite number
of free variables.

Lemma 1.6 is proved by a routine induction on formulas, and motivates the
following definition.

A proper infinitary formula is one with only a finite number of free variables.
The notion of "proper infinitary formula" is a Δ notion, since

φ is proper iff {v\v a free variable in φ} is finite

iff (α|rα is free in φ} is finite,

and the notion "α is a finite set of ordinals" is Δ by Exercise 1.7.6. Since we will
only be discussing proper infinitary formulas, we might just as well drop the
adjective "proper" once and for all. We use the symbol Looω to denote the class
of all (proper) infinitary formulas of L.

1.7 Definition. A structure SOΐ for a language L is a pair 9W = <M,/> such that,
writing x*®1 for f(x) we have :
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(i) M is a nonempty set,
(ii) / is a function with dom(/)= L,

(iii) r e l _ implies r*01 is a subset of M#(r),
(iv) h e l _ implies h9^ is a function with domain M#(h) and range c=M,
(v) if ceL then cmeM.

This too is a Δ predicate of 951 and L
An assignment in 9JI is a function s with dom(s) a finite set of variables and

rng(s)^M. Given a structure 9JΪ for L, a term t of L and an assignment s in $R
with the variables of t contained in dom(s), we let tm(s) be the value of t in 9JI
at s. This is defined by recursion:

1**(s) = c** if ί is the constant symbol c

= s(v) if t is the variable v

(s),...,ί?(s)) if ί is h(ί 1 ?...,ί k).

Our next goal is to formalize the notion of satisfaction:

where 9Jί is a structure for L, φ is a formula of L and s is an assignment to the
free variables of φ. In order to make the definition fit into the form of definition
by recursion available to us, we have to be a little awkward. Since there is no
set of all variables, there can't be a set of all assignments to 9JI. There is, how-
ever, a Σ operation G such that for all L, all L structures $R and all φeLaoω

G(5ϋl, φ) = {s I s an assignment in 501 with dom(s) = free variables of φ} .

We outline the definition of G in Exercise 1.11. It is then a routine matter to
define

for languages L, structures $R for L and formulas φ of L^, by recursion over
TC(φ). We give some of the clauses of this recursive definition:

SatL(9W, -iφ) = {SE G(9Jί, -\φ) \ sφ SatL(9K, φ)} ,

l for all φeΦ, stFree-Var(φ)eSatL(aW,φ)},

rsome xeM,su{<ι?,x>}eSatL(SDl,φ)}

if v is free in φ

= SatL(ΪR,φ) if v is not free in φ.
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We can now define, for L-structures $R, formulas φ of L, and assignments s,
the predicate 9Jtt=φ[s] by

iff

For sentences φ we have Wl\=φ if the empty function 0 is in SatL(9W,(p). Since
•SatL(SDΪ,φ) is a Σ operation, by 1.6.4, we see that $RNφ[s] is a Δ predicate of
9JΪ, φ, s and the suppressed L (Note that L can be recovered from 50Ϊ
L = dom(2nd$R).) If the free variables of φ are among vί9...,vn we write

for 3Ά\=φ[s] where s = {(v1,aly,...,(vn,any}.

Given structures 9Jl, $1 for a language L we write

m = yi (LωJ if, for all finite sentences φ, Wl\=φ iff 9lNφ; and

9W = 9l (L^J if, for all sentences φ of L^, 9W^φ iff

As written both of these are Π1 predicates of 501,91 (and L). By Proposition 1.1,
Lωω is a set if Infinity holds; in fact the operation which takes L to the set Lωω

is a Σ operation on L. Thus, in the presence of the axiom of infinity we can
rewrite $RΞ$ft(Lωω) to see that it is an absolute predicate of $R,9l and L In
the presence of Σί Separation ^Jl = yi(L^ω) also becomes absolute, but for
entirely different reasons. More on that in Chapter VII.

1.8—1.12 Exercises. Work in KPU

1.8. Show that an ( = a x a x ••• x α, M-times) is a Σ operation of α and n.

1.9. Prove that the predicate Q, defined in the parenthetical remark following
Definition 1.1, is indeed a Δ predicate.

1.10. Show that the operation α ->card(α), defined on finite sets a of variables,
is a Σ operation. [Use the collapsing lemma.]

1.11. Using 1.10 and the Σ operation

S(α, n) = {b c a \ card(fc) = n} ,

show that the operation G used above is a Σ operation.

1.12. Write out the few remaining details needed for the definition of SatL(9JΪ,φ).
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2. Consistency Properties

There is a very general method for constructing models which has evolved into
what Keisler [1971] calls the "Model Existence Theorem". We will prove this
theorem here in KPU + Infinity. To prove it in this weak metatheory we must
be a little more careful than usual. Among notions which are equivalent in ZF
we must choose those which avoid unnecessary uses of Power and Choice. This
explains why our presentation must diverge in minor ways from Keisler s.

The collection of infinitary formulas of a language L never forms a set but
we must usually deal with a set of formulas. Hence the next definition. We
repeat, for emphasis, that we work in KPU + Infinity in this section.

2.1 Definition. Let L be a language. A fragment of L^ is a set LA of infinitary
formulas and variables such that

(i) every finite formula of Lωω is in L^ ,
(ii) if φe LA then every subformula and variable of φ is in LA,

(iii) if φ(v)E\-A and t is a term of L all of whose variables lie in LA then
φ(t/v) is in LA, and

(iv) if φ, ψ,v are in LA so are

~~ιφ, ~ φ, 3ι; φ, Vv φ, φ v ψ, φ Λ ψ .

At this stage, the subscript A serves merely as an index. It will serve a more
useful purpose later.

We have used an undefined notion in 2.1, a silly technical device ~φ. It is
defined by:

~φ is -\φ if φ is atomic,

~(~ιφ) is φ,

is

is

is

is

We see that ~ has an explicit Σ definition, not a recursive one, since ~ does
not occur on the right hand side of the above. Note that ~φ is logically equiv-
alent to —\φ. (Keisler uses φ— \ for our ~φ.)

Let K be a language and C = {cn: n<ω] a countable set of constant symbols
not in K. We keep K, C and L = K u C fixed for the rest of this section.

If K^ is a fragment of K,aoω then there is a natural fragment L^= K^(C) of
L^ associated with it; namely the set of all formulas of the form φ(ciί9..., cln)ι
which result by replacing a finite number of free variables by constants from C.
Fix these fragments KΛ and LA = K^(C) for the rest of this section. A term t of
LA is basic if it is in Cor if it's of the form h(c ί l ? ..., cfn) for h e K and the c/s in C.
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Next comes the cumbersome but crucial definition.

2.2 Definition. A consistency property for L^ is a set S of sets s such that each
seS is a set of sentences of LA and such that all the following hold for every seS:

(CO) (Triviality rule) OeS; if s<=s'eS then su{φ}eS for each φεs'.
(Cl) (Consistency rule) If φes then ~Ίφφs.
(C2) (—\-rule) If ~~ιφes then sul^φjeS.
(C3) (Λ-™k) If Λφ e s then for all φeΦ, su{φ}eS.
(C4) (V-rule) If (Vι;<p(ι;))es then for each ceC, su {<p(c/ι?)}eS.
(C5) (\/-rule) If \/Φes then for some φeΦ, su{(p}eS.
(C6) (B-rule) If (3uφ(z;))es then for some ceC, 5U {<p(c/ι?)}eS.
(C7) (Equality rules). Let ί be a basic term of L^ and c,deC.

i) If (c = d)es then su {(d
ii) If φ(t), (c = t)es then su {φ(c)}εS.

iii) For some eeC, sv {e = t}eS.

The rule (CO) was not included in Keisler's definition. It really is a triviality
though.

2.3 Lemma. If S satisfies all of 2.2 except (CO) then there is a smallest consistency
property S'^S.

Proof. Define

This is easily seen to be a consistency property. If S c S" and S" is a consistency
property then f(n)^S" by induction on n. D

2.4 Lemma. Lef S be a consistency property, seS.

i) φ,(φ^nl/)es implies s
ii) ceC implies su {(c = c)}eS.

iii) c,d,θEC, (c^d)65, (d^e)es implies s^>{c = e}eS.

Proof. These are all similar. Assume φ, (φ^φ)es. Since (φ^φ) is really (— \φ v ι/^)
we see by (C5) that either su{~ \φ}eS or sv{ψ}eS. The first possibility is
ruled out by (Cl). Next assume the hypothesis of (iii). By (C7i) we have
5' = 5u{eΞd}65. By (C 7 ii) we have s'v{c = e}eS so, by (CO), su{c = e}eS.
To prove (ii) let ceC. By (C7iii) there is an eeC with su (c = e}e£. By (C7i),
su (CΞΘ, Q = C}ES. Applying (iii) we have su {CΞΘ, e = c, c = c}eS, so,
by (CO), 5u{cΞC}e5. D
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The point of Definition 2.2 is that it exactly isolates the principles needed 
to carry out the "Henkin argument". To be more specific, it allows us to prove 
the Model Existence Theorem. A structure $332 for L is a canonical structure if 
every element of 93 is of the form cm for some C E  C. 

2.5 Model Existence Theorem. Let LA he a countuble fragment and let S he a 
consistency property for LA. For ecery S E S  there is a canonical structure YJI ,for 
L such that YJI is a model of s, i. e., fbr every y E s, YJ1 k y . 

Proof. We can't be quite as free wheeling as Keisler [1971, p. 131 since we have 
a rather limited metatheory. We have already taken care of most of the diffi- 
culties, though, by careful choice of definitions and by the wording of the theo- 
rem. Since LA is countable we can enumerate its sentences: 

and the terms occurring in LA: 

We shall construct a sequence 

of elements of S as follows. We take s, to be the s of the theorem. Given s, we 
define s,, , by adding on one, two, or three sentences of LA. 

Step 1. Find the first constant symbol c of C, in the list of terms, such that 
S,U { c - - t , ) ~ S  and let s: ,=s,u{c-t ,} .  

Step 2. If sLu jy,) $ S  let s,, , =s i .  If sAu ( ~ , ) E S  then let s i  = s h u  (9,). 

There now are three distinct cases to consider, depending on the principal con- 
nective in y,. 

Step 3. If y ,  does not begin with 3 or V let s,, , =s;.  

Step 4. If y ,  is 3c$ then find the first C E C  in the list (2) ,  by (C6), such that 
si u { $ ( c / v ) )  E S  and let s,, , be this element of S.  

Step 5. If y ,  is V@ then use (C5)  to find the least $ E @ ,  least in the list ( I ) ,  
such that s : u  { $ ) E S  and let s,, , be this element of S. 

Now let s, = U,,, s, The rest of the proof is exactly as in Keisler [1971]. 
We define an equivalence relation on C by 

c = d  iff ( c - - ~ ) E s ,  
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and let M={c/^:ceC}. By (C7), if φ(cί9 ..., cjesω and c^d, then
φ(d1 ?...,dn)esω. This tells us how to interpret the relation and function sym-
bols of L:

<c1/^,...,c / J/^>erα n iff r(c l 9 ..., cn)εsω,

h^C!/^, ...,<:„/«) is d/w for that d such that (h(c1?...,cπ)Ξd)e5ω.

A simple proof by induction on formulas of L^ shows that y)l\=φ for every
φεsω. One uses the properties (CO)— (C7) of course. D

2.6 Extended Model Existence Theorem. Let \-A and S be as in the model existence
theorem. If T is a set of sentences of LA such that

seS, φeT implies s

then for any seS, Tus has a canonical model.

Proof. Let S' = {Tus:seS}. While S' is not a consistency property, it almost
is one. It satisfies (Cl) — (C7) so we can apply Lemma 2.3 to get a consistency
property S"=>Sf. Apply the Model Existence Theorem to (Tus)eS". D

Note, in passing, that canonical structures for countable fragments are
countable structures.

2.7—2.8 Exercises

2.7. Prove, in KPU + Infinity, that if φ is an infinitary sentence with sub(φ)
countable then there is a countable fragment LA with φ e LA .

2.8. Use the Model Existence Theorem to show that if LA is a countable frag-
ment and if φe\-A has a model then it has a countable model.

2.9 Notes. A history of the Model Existence Theorem can be found in the Pre-
face and Lecture 3 of Keisler [1971].

The completeness and compactness theorems of §5 cannot be proved in
KPU + Infinity. The main reason for working in KPU + Infinity in this section
is that it allows us to pinpoint the exact place where stronger principles are
needed in these other theorems.

3. Wl-Logic and the Omitting Types Theorem

As a first, and important, application of the Model Existence Theorem, we prove
a general version of the Henkin-Orey ω-Completeness Theorem. We then use
the same proof to obtain the Omitting Types Theorem for countable fragments.
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Let $R = <M,/> be a structure for a countable language L and let L+ be
some language containing L, a unary relation symbol M, and for each weM
a constant symbol m, and possibly other symbols.

3.1 Definition. An ^-structure for L+ is a structure 9t = <Af,#> satisfying

i) The interpretation of M in 91 is M
ii) The interpretation of m in 91 is m, for all raeM; and

iii) 9JΪ is a substructure of <W,gfl_).

3.2 Examples, i) ω-logic: Let M = ω={0,l,...} and 9Jl = <M>. In this case
$0ϊ-logic is usually called ω-logic. Thus, in ω-logic one adds a symbol ω(x), and
constant symbols 0,1,2,... An ω-model is a structure 91 with αr^ω and ~ns{ = n.
To study ω-logic one adds the ω-rule to the usual rules of proof:

// you can prove φ(n/v0) for each n<ω then conclude

Vu0[ω(i70)-χp(ι;o)] -

The ΪR-rule below is the natural generalization of this.
ii) Let $R = <M, ---> be a fixed structure for L and let L* = L(e,...) be as

usual. Treat L* as a single sorted language with a symbol U for the collection
of urelements (as we have done from time to time). Among structures 21̂  for
L* we want to single out those with 9l = 90ϊ. Let M be U and add a constant
symbol p for each peM. Let L+= L*u {p|peM}. An 9JΪ-structure for L+ has,
by 3.1, the form

(with p interpreted by p for peM), for some A9E,.... If it is a model of that
part of KPU contained in the definition of L*-structure (cf. 1.2.6) then we can
write it as (9JI; A9£,...). In particular, any Wl-structure for L+ which is a model
of KPU has the form ^^^(W; A,E,...), with p interpreted by p for each peM.

These two examples are the most important ones but what we do in this
section is entirely general.

Thus let 9JΪ be a structure for L and let L+ be as described prior to Defini-
tion 3.1. We wish to find a set of axioms and rules which generate the finite sen-
tences of L+ which hold in all ΪR-structures or, more generally, in all models of
some theory T which are 9Jΐ-structures. We can do this only if 501 is countable.
Given a set of sentences T we write T\=mφ if φ holds in all $R-structures which
are models of T and \=mφ if φ is true in all 9JΪ-structures.

The results of this section must be carried out in a set theory a little more
powerful than KPU. Our metatheory is discussed in the notes for this section.

3.3 Axioms for SR-logic. Let L and L+ be as above,
i) M(m) is an axiom of $Uΐ-logic, for all m in $R.

ii) Every atomic or negated atomic sentence of Lu {m: we9Jl} true in $R
is an axiom of ΪR-logic.

iii) The usual axioms for L^ω are all axioms of ΪR-logic.



3. 9Ji-Logic and the Omitting Types Theorem 89

3.4 Definition. Let T be a set of finitary sentences of L+. A finite formula φ is
a consequence of T by the 9JΪ-rule, written

if φ is in the smallest set of formulas containing T and the axioms of 90ΐ-logic
and closed under the following rules:

i) (Modus ponens) If TV^φ and T[-m(φ-+ψ) then T\-mψ.
ii) (Generalization) If Tt— wi^^ΨΨn)) and ty, not free in φ then

iii) (9W-rM/e) If TK^m/ro) for every we9Jl then TI-TOVι;0(M(ι;0)->φ(ι;0)).
A sentence is provable by the SOΪ-rule, written \-mφ, if T\-mφ for 7=0.

Notice that we have made no mention of the phrase "proof by the 9Jί-rule".
Instead we gave an inductive definition of T\—^φ directly. A straightforward
proof by induction shows that

T\-mφ(vl,...,vn) implies Tt=9ΛVvl9...,Vvnφ(v1,...,υn).

If 9JΪ and L+ are countable, then the converse holds. It is known as the ω-Com-
pleteness, or 9Jl-Completeness, Theorem.

A set of sentences T is consistent in $R-logic if

is false for all formulas φ of L+. (Note the 1-̂  as opposed to 1=^.)

3.5 SDΪ-Completeness Theorem. Let L+ and SOΪ be countable and let T be a set
of finitary sentences of L+. If φ is a finite sentence of L+ then

T\-mV tff T^mΨ-

Proof. We can assume L+ has a countable set {cn: n<ω} of constant symbols
not in Lu (m: we^UΪ} and not mentioned in Γ for otherwise we simply enlarge
L+ a little more. This enlargement would not enlarge the set of theorems of
9W-logic of the original L+. Suppose φ is not a theorem of T in 901-logic. Our
goal is to construct, via the Model Existence Theorem, an 9W-structure 91 which
is a model of T and ~\φ.

Let L^ be a countable fragment of Lr^ω with the sentence

V^o VmeM [-IM (l>0) V VQ = ffi]

in L^. Let S consist of all sets s of the form
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where s0 is a set of finitary sentences of L+ such that Tus0 is consistent in
501-logic, and s1 is a finite set of infinitary sentences of the form

(1) V«eM[-πffl(cJvcB = ffi].

Note that s = {-ιφ}eS by hypothesis. The only nontrivial step in showing that
S is a consistency property is to show that S satisfies the \/-rule, (C 5). Suppose
\/ΦeseS where s = s0^>sί is partitioned as above. If \/Φ is in s0 then it is
just a binary disjunction ψ v θ. If neither ψ nor θ were consistent in SJMogic
with Tu s0 then —iψ Λ —\θ would be a consequence of Tu s0 in 501-logic, hence
T0us0 would not be consistent, since ^vθes 0 . If \/Φes1 then it is of the
form (1) for some n<ω. We need to show that either

(2)

or one of

(3)m

for some meM, is consistent in ΪR-logic so that one of

is in S. Suppose that none of the (3)m are consistent in 9Jί-logic. Write ψ(cn) for
the conjunction of s0. It follows that

for each meM, so, by the ΪR-rule

and hence

Taking the contrapositive we get

so — ιM(cn) is a consequence of Tus0 in 9)l-logic, so (2) is consistent in ΪR-logic.
This completes the proof of (C5). Let T/ = T+all sentences of the form (1).
Then if seS and ψeT' then su {ψ}eS. Thus by the Extended Model Existence
Theorem, T'u {s} has a canonical model whenever seS. But a canonical model
of all of (1) is isomorphic to an W-structure so every seS is true in some
^-structure, in particular s = {— ιφ}. D

3.6 Corollary. // 9JΪ and L+ are countable then a theory T of L+ has an ^-struc-

ture for a model iff T is consistent in Wl-logic. D
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3.7 Corollary. // 9JI and L+ are countable and φ is a sentence of L+ then

iff

In applications in this book, L+ will usually be as given in Example 3.2(ii)
and T will usually be KPU or KPU + .

The fraternal twin of the ω-Completeness Theorem is the so-called Omitting
Types Theorem, a result which helps us construct models which "omit" ele-
ments not satisfying certain infinite disjunctions.

3.8 Omitting Types Theorem. Let LA be a countable fragment of Looω, and let
T be a set of sentences of LA which has a model For each n let Φn be a set of
formulas of LA with free variables among vί9 ..., vkn. Assume that for each n and
each formula ψ(vίy . .., vkn) of LA: if

? 1 ? . . . , vknφ

has a model, so does

T+3vί9...9vkn(\l/Λ<ρ)

for some <p(υί9 ..., vkr)eΦn. Given this hypothesis, there is a model 501 of T such
that for each n<ω,

Proof. A simple modification of the proof of the Sϋl-Completeness Theorem
suffices. We first expand L to a language L'= Lu (cn: n<ω}. Let LB be a count-
able fragment containing L^ and each of the sentences

Vvί9...9vknVφeΦnφ(vί9...9vkn)

and let L'A, L'B be the natural fragment of L/

ooω associated with LA and Lβ as in
§ 2. Let S consist of all finite sets s of the form

where s0 is a finite set of sentences of L'A with Tu s0 having a model and where
Si is a finite set of sentences of the form

(1) \/φeΦnφ(Cil/Vί9...9CiJvkn).

The proof that S is a consistency property is just like the proof in 3.5 except
we use "has a model" for "consistent in 9JΪ-logic". If φεT or φ is of the form (1)
then for each seS, su {φ}eS so there is a canonical model 501 of T and each
of (1). The student who has trouble filling in the details is referred to Lecture 11
of Keisler [1971]. D
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3.9 Exercise. Show how the ΪR-completeness theorem can be derived from the
Omitting Types Theorem.

3.10 Notes. The ω-Completeness Theorem goes back to Henkin [1954], [1957]
and Orey [1956]. The extension of the Omitting Types Theorem to arbitrary
countable fragments is due to Keisler [1971].

We cannot carry out the $R-Completeness Theorem in KPU or KPU + In-
finity. The problems arises from the definition of "the set of consequences / of
T by the ΪR-rule". This inductive definition would need something like Σ^ Sep-
aration to justify it by proving that there is a smallest set of the kind described
in 3.4. In Chapter VI we will step back and look at such inductive definitions.

4. A Weak Completeness Theorem
for Countable Fragments

Let LA be a fragment of L^. A sentence φ of LA is valid, written Nφ, if

ΪRt-φ

for every structure ΪR for L. We would like to prove a generalization of the
ordinary completeness theorem for L by showing that

1= φ iff 3P [P is a proof of φ]

for some notion of "proof. For such a result to be of any use there must be
something "effective" about the notion of proof (otherwise we could take as
proofs all valid sentences) and there should be a relation between LA and the
"size" of proofs of sentences in LA.

We approach the notion of "proof in a tentative fashion so that we can see
exactly what it is that forces us to consider admissible fragments for the eventual
result, Theorem 5.5.

After the brief respite of § 3 we return to use KPU +Infinity as our meta-
theory in this section.

4.1 Definition. Let L^ be a fragment of L. A set Γ of formulas of L^ is a validity
property for LA if Γ contains (Al)—(A7) below, is closed under (Rl)—(R3),
and does not contain φ/\—\φ, for any φeLA.

(Al) Any instance of a tautology of finitary propositional logic.
(A2) (-up)<->(~φ).
(A3) /\Φ^φ, if φeΦ.
(A4) VΛ = VΛ.
(A5) Vz = vβ->vβ = v0ί.
(A 6) Vι? φ(v) -> φ(t/v), t any term free for v in φ(v).
(A7) φ(v)Λ v = t-+φ(t/v), t any term free for v in φ(v).
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(Rl) (Modus Ponens). If φ and (φ->ψ) are in Γ so is ^.
(R2) (Generalization). If ((/>-> ̂ (t;)) is in Γ and t; is not free in φ then (φ-ΛΛ ^(r))

is in Γ.
(R3) (Conjunction). If /\ΦeL A and (ψ^xp) is in Γ for each (/>eΦ, then

OA->/\Φ) is in Γ.

All formulas in the above are assumed to be elements of LA.

4.2 Example, (i) Let $JΪ be a structure for L and let ΓOT be the set of all
φ(vl9...9vn)e\-A such that

is a set by \ Separation. It is clearly a validity property.
(ii) If 9C is a set of validity properties then

is a validity property.

As one might guess from the way the definition and examples were given,
we cannot prove (in our current metatheory KPU + Infinity) that there is a
smallest validity property, though it is very instructive to try. It is also useful
to think of the members of Γ as the "provable" formulas in the next lemma.

Let us fix for the rest of this section, a fragment LA, a set C = {cn: n<ω} of
new constant symbols, and let K = L u C and K^=LA(C) be the natural frag-
ment of Kooω associated with LA:φeKA iff there is a \j/e LA such that φ results
from φ by replacing some free variables by constant symbols throughout,

We say that φ is a free substitution instance of ψ. We have purposely interchanged
the roles of K and L from § 2.

The following proposition allows us to apply the Extended Model Existence
Theorem.

4.3 Proposition. Let Γ0 be a validity property for LA and let Γ be the set of all
free substitution instances of formulas in Γ0.
Define

S = { s \ s a finite set of ^-sentences, (~]/\s)φΓ}

Then:
(i) S is a consistency property for K^ .

(ii) if φeΓ, seS, then sv{φ}eS.

Proof. We first observe that Γ is a validity property for KA. Two examples should
suffice.
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(A 7) Consider a sentence of K^ of the form

(1) φ(cί,...,cn9v)Λv = t-+φ(cί,...,cn,t/v)9

where t also may contain c^...,^. Now this is a free substitution of some
formula of the form

(2) φ(w1? . . . , wπ, υ) Λ v = t' -> φ(wl5 . . . , W Λ , ί'/i?)

where f = f'(c1/w1,...,c l l/w l l). By (A 7) for Γ0, (2) is in Γ0 so (1) is in Γ.

(R3) Suppose (ψ^>/\Φ)εKA and that (ψ^κp)eΓ for each φeΦ. We need
to see that (^->/\Φ)eΓ. Now (ι/^->/\Φ) is a free substitution instance of
some formula in LA, say it is of the form

ι)e Φ0} .

Since (^(c1)-^φ(c1))eΓ it is a free substitution instance of, say,

where ψ(vβ}-+φ(vβ)<EΓ0. But then using (Rl), (R2) and (A 6) for Γ0 we get
OWtfι)-»<Pfaι))eΓ0, for each φfyJeΦQ. By(R3)forΓ0, (A^J^Λί^i)!^)6^}
is in Γ0, and hence ψ^>/\Φ is in Γ. We leave the other clauses to the student,
and assume Γ is a validity property for K^. The verification of (ii) is entirely
routine, for suppose φeΓ, sεS but su{φ}φS. Then —\(/\s/\φ)eΓ, so by
(Al) and (Rl), (φ->-ι/\s). But then, by (Rl), -|/\S6Γ, so sφS, which is a
contradiction. The various cases in the verification that S is a consistency prop-
erty are similar, with one slight twist for (C6). Suppose 3vφ(v)eseS but that
for each ceC, su{φ(c/ι;)}^S. Hence f\s—>~\φ(c/v) is in Γ for each ceC and,
in particular, for some c not appearing in S. Since c does not appear in S,

/\s-+-\φ(v)

is also a free substitution instance of something in Γ0, so it is in Γ, and hence,
so are all the following:

(by(R2)),

which contradicts seS. The other clauses are left to the student. D

4.4 Definition. A sentence φ of L^ is a theorem of LA if φ is in every validity
property Γ for LA.
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A word of warning: The predicate

φ is a theorem of LA

is Πi in KPU but not in general Δx in KPU. Thus we cannot assert (in KPU)
that there is a set of all theorems of LA.

4.5 Weak Completeness Theorem for Countable Fragments. Let LA be a countable
fragment. A sentence φ of LA is valid iff it is a theorem of LA.

Proof. Assume φ is a theorem of L .̂ Let 9W be any model and let Γ^ be as in
Example 4.2(i). Γ^ is a validity property for LA so φeΓOT, i.e. Sf f lNφ.

Now assume φ is not a theorem of LA. Hence there is a validity property Γ0

with φφΓ0. Let Γ0^Γ and S be as in 4.3. Then {—iφjeS by 4.3 (ii) and S is
a consistency property so ~\φ has a model, by the Model Existence Theorem. D

The word "weak" in Theorem 4.5 is there because we still have no notions of
proof compatable with LA such that

(3) 1= φ iff 3P [P is a proof of φ] .

All we have managed to do so far is replace one Γ^ notion (\=φ) with another
H! notion (φ is a theorem of L^). We want a Aί notion of proof so that line (3)
gives a Σ: form for \=φ, and we want a proof of φ to be essentially the same
"size" as the members of LA.

4.6 Exercise. Define: φ is a theorem of T iff φ is in every validity property con-
taining T as a subset. Show that if TC \_A where LA is countable, then φ is a
theorem of T iff every model of T is a model of φ.

4.7 Note. The weak completeness theorem is one form of the Karp Completeness
Theorem for Lωιω.

5. Completeness and Compactness
for Countable Admissible Fragments

In this section we prove the completeness theorem alluded to in the previous
section. We have reduced the task to finding a suitable notion of LA-proof to
go along with the notion of theorem of LA introduced in Definition 4.4.

The first notion of proof one thinks of in this setting is: an L^-proof is a
well-ordered sequence
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such that each φα, for α^β, is either an axiom (Al) — (A 7) of LA or is a con-
sequence of earlier φy's (y<α) by one of the rules (Rl), (R2) or (R3). We can
of course prove (given a strong enough metatheory) that φ is a theorem of L^
iff there is such a sequence with φβ = φ. This notion of proof is too restrictive,
however, and does not have the nice properties we need for applications. We
need a notion which does not have the axiom of choice built into its very de-
finition. There are many ways of doing this. We simply choose one.

5.1 Definition. An ordered pair P is an ίnfίnίtary proof iff one of the following
holds:

(Al) — (A 7)

(Rl)

P = <Xφ> where i^n^l and φ is an axiom of L^ by Arc of
Definition 4.1.

P = (f^y where f is a function, dom(/) = {0,l}, /(O) is an in-
finitary proof P0 with 2nd P0 of the form (φ-*\l/), and /(I) is an
infinitary proof P! with 2ndPί=φ.
P = <(P0,(φ— > Vι;α^(ι;α))> where P0 is an infinitary proof with 2nd P0

of the form (φ-*ψ(vΛ)) where VΛ is not free in φ.
^> = <Λ(1A-^Λ^)) where / is a function with domain Φ such that
for each φeΦ, f ( φ ) is a nonempty set of infinitary proofs, and for
each P

(R2)

(R3)

If P is an infinitary proof and φ = 2ndP then P is said to be a proof of φ. See
Fig. 5 A, B, C.

Fig. 5 A. A proof P ending with an application of Rl

(υΛ not free in φ)

Fig. 5B. A proof P ending with an application of R2
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(for all iel)

Fig. 5C. A proof P ending with an application of R3

Definition 5.1 can be given in KPU by recursion over TC(P) and conse-
quently results in a Δt predicate in KPU. Consequently,

3P [P is an inβnitary proof of φ]

is a Σ! predicate of φ.

We now leave our weak metatheory and step out into the universe VM of
all sets on M (which is of course a "model" of KPU). It is the interplay between
this universe and admissible sets which is of interest.

Let A = Am be an admissible set with constants /\, \J, —ι, 3, V, =, and
the predicates and functions (v, # ) mentioned in § 1 satisfying the axioms on
syntax found there. We can interpret the results of § 1 and Definition 5.1 in
either AOT or Vg^. As long as we are dealing with Δj notions, we know that the
results are the same, by absoluteness. For example, we have, for φeA^

"φ is an infinitary formula"

true in A^ iff it is true (in V^). If, moreover, 91 eA^ then 91 ϊ=φ holds in A^
iff it is true (in V^) and, if PeA^ then

"P is an infinitary proof of φ"

is true interpreted in A^ iff it is true (in V^).

5.2 Definition, (i) If A=A a R = ($R; A,e, ...) is admissible and L is a language
which is Δj on A then

is an infinitary formula of Looω}

= {φeA| A 1= "φ is an infinitary formula of L^J'}

is called the admissible fragment of L x ω given by A.
(ii) If PeA and P is an infinitary proof then P is said to be an L^-proof.
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It is a trivial matter to check that an admissible fragment LA really is a
fragment in the sense of Definition 2.1.

5.3 Theorem. Let LA be an admissible fragment of Looω and let φ be a sentence
of LA. The following are equivalent:

(i) 3P [P is an LA-proof of φ],
(ii) 3P [P is an infinitary proof of φ],

(iii) φ is a theorem of LA, L e., φ is in every validity property for LA.

(Warning: One cannot in general add a (iv) asserting that φ is in every validity
property which is an element of A. This (iv) is usually much weaker than (iii).)

Proof, (i) => (ii) is trivial.
(ii) => (iii). Let Γ be any validity property for LA. A routine proof by induc-

tion on TC(P) shows that if

P is a proof of φ

then φeΓ since Γ contains (Al) — (A 7) and is closed under (Rl) — (R3).
(iii) => (i). We need to show that the set

Γ={^eL A |3PeA (P a proof of φ}}

is a validity property for LA, for then φeΓ since φ is in all validity properties.
We need to see, then, that Γ contains (Al) — (A 7) and is closed under (Rl) — (R3).
The first part is obvious so let us check (Rl) and (R3), (R2) being similar to (Rl).
(Rl) Suppose φ, (φ-n^)eΓ. There are P0, P teA with

2ndP0 = (φ^), 2nάPί=φ.

Let /(0) = P05/(1) = Λ τhen ^ = </»eA and P is a proof of (A, hence ^eΓ.

(R3) This is where admissibility and our careful choice of the notion of proof
come into play. Suppose (ι//-»/\Φ)el_A and that (ψ->φ)eΓ for all φeΦ.
Thus, for each φeΦ there is a PeA such that P is a proof of (ψ-+φ). Apply
strong Σ Replacement in A to get a function /eA, dom(/) = Φ so that for
each φeΦ:

and

if Pe/(φ) then P is a proof of (ψ^κρ).

Then </,(^-*/\Φ)>eA and it is a proof of (^-*/\Φ). Thus (\I/-+/\Φ) is
in Γ. D

5.4 Corollary. // LA is an admissible fragment then the set of theorems of LA is
a Σ! subset of A. Moreover, the Σ1 definition has no parameters in it and is in-
dependent of A.
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Proof. The Σ^ formula is

3P [P is a proof of φ] . D

Let us write

for the Σ! formula

3P [P is a proof of φ] .

By combining 5.3 with the Weak Completeness Theorem of 4.5, we obtain the
desired result.

5.5 Barwise Completeness Theorem. Let LA be a countable admissible fragment.
Then for all φeL A , the following are equivalent:

(i) Nφ,
(ii) h-φ,

(iii) A satisfies \-φ.
Thus the set of valid sentences of LA is Σί on A. D

It is this completeness theorem which accounts for the tractable nature of
countable, admissible fragments. It is used to prove many of the results in this
book. Before going on though, we pause to point out one thing that the theorem
most emphatically does not say, but which is sometimes mistaken for the con-
clusion of the theorem. It does not say that the sentence

\=φ iff \-φ

is true in the countable admissible set A. This, together with 5.5, would imply
that if φeL A and φ has a model then φ has a model 9Ϊ, 9leA. This is false
for most A. See Exercises 5.11 — 5.14.

Now we turn to our first application of the completeness theorem.

5.6 Barwise Compactness Theorem. Let LA be a countable admissible fragment
°f Looω Let T be a set of sentences of LA which is Σx on A. If every T0^T which
is an element of A has a model, then T has a model

Proof. Expand L to K=Lu{c w | n<ω} as usual but do it so that K remains Δj
on A. Let KA = LA(C) be the usual fragment of LA associated with K. Thus KA

is the set of all sentences of Kooω which are elements of A and have only a finite
number of c's in them. We use the Model Existence Theorem for KA.

Let S be the set of all finite sets s of sentences of KA such that for all TG^T
with T^eA,

7^ us has a model.
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Note that if seS and φeT then su{φ}eS so we are all set to apply the
Extended Model Existence Theorem to get a model of T once we show that S
is a consistence property. As usual it is (C 5) that causes the problems. So suppose
yΦeseS but that for each φeΦ, sv{φ}φS. Thus, for each φeΦ there is a
T0cT, T0eA such that

has no model.

Let θ(x) be the Σλ definition of T on A. The following Σ sentence is true in A
by the Completeness Theorem for K A :

(1)

By Σ Reflection there is a set 06 A such that (1) holds relativized to a. We can
assume a is transitive by 1.4.2. Let

by Δ0 Separation. Then T^eA, T^T by 1.4.2 and, for each φeΦ,

since there is some 7^ c 7J with

But then suTJ can have no model since \/Φes. This contradicts the assump-
tion that seS. D

Combining Completeness and Compactness we obtain the following extension
of the Completeness Theorem. We use T\=φ to indicate that every model of T
is a model of φ.

5.7 Extended Completeness Theorem. Let LA be a countable admissible fragment.
Let T be a set of sentences of LA which is Σ! on A. The set

is Σ! on A.

Proof. If φ is a sentence of LA then

T\=φ iff 3T

by the Barwise Compactness Theorem (applied to Tu{— \φ}) so T\=φ iff the
following is true in A, where θ(x) defines T,
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which gives a Σ definition of T\=φ. Note that it depends only on the defini-
tion θ of T, not on A, and that is has only the same parameters occuring in it
that occur in θ. Π

One peculiar instance of the Compactness Theorem deserves special mention
because it comes up frequently. It applies, for example, to A = HYP<tri when 9W
is recursively saturated.

5.8 Theorem. Let A = ASOΪ be a countable admissible set with o(Am) = ω. Let
T, T be theories of LA which are Σί on Am such that every φeT is a pure set.
(Hence T is a set of finitary sentences.) If for each finite T0<^T,

T0uT' has a model,

then TuT' has a model.

Proof. If Tu T' has no model then, by the Compactness Theorem, N~ ι/\Φ,
for some ΦeA, Φc ΓuT. Now, if we write Θl9 Θ2 for the Σ! definitions of T
and T', respectively, then we have VxeΦ[θ1(x) v Θ2M]> so by Σ Reflection there
is an aeA such that VxeΦ[θ< f l)(x) v $>fl)(x)].

Thus, if we use Δ0 Separation to form

then Φ = Φ1vΦ2, Φ^T, Φ2^T' and Φ^uΦ2 has no model. But Φx is a set
of pure sets, hence a pure set, hence finite since o(A) = ω. D

There is a question that often comes up. Let Aαrί = ΉF2R. To what extent
does the Compactness Theorem 5.6 give us the full compactness theorem for
LA = Lωω? In other words, how does the requirement that T be Σ: on A^ affect
us. If HFjOT is countable (i. e. if 9JI is countable) then 5.6 gives us the full com-
pactness for Lωω. For let T be any theory of Lωω. T is Σ: on (9Jί; HFM,e,Γ)
which is admissible by Theorem Π.2.1 so we can apply 5.6 to this admissible set.

5.9- 5.14 Exercises

5.9. Define "P is a proof from axioms in T' parallel to Definition 5.1. You must
build in a Σ! definition of T. Use this to prove the Extended Completeness
Theorem and Compactness Theorem in one fell swoop, without using the Com-
pleteness Theorem. [You will need to use Exercise 4.6.]

5.10. Let LA be an admissible fragment. Show that if P is an LA-proof then all
formulas in the proof P are LA-formulas.



102 III. Countable Fragments of LQoω

5.11. Let A, IB be admissible sets with AeB and

"A is countable"

true in B. Let LA be an admissible fragment given by A. Show that

Bt= > is valid"
iff

A 1= 3P [P is a proof of φ\ .

Conclude that if φel_ A has a model then it has a model in B.

5.12. Let A be admissible and satisfy the following:
(i) (locally countable). A\=Va (a is countable)

(ii) (recursively inaccessible). VαeA there is an admissible Be A with αeB.
Show that for any sentence φ of LA

holds in A. Show that HC^ is locally countable and recursively inaccessible.
(Of course, for HC^ the conclusion is trivial since every countable structure for
a countable language is isomorphic to a structure in HC^.)

5.13. Let A be a countable transitive model of ZFC (or enough of it to insure
that A is admissible and prove that K t exists). Let α be the ordinal of A which
satisfies

A 1= "α is the first uncountable ordinal".

Write a sentence φ of LA which asserts that α is countable. Thus φ has a model
but does not have a model 9leA. In other words, —\φ is valid in the sense of A
but it is not provable since φ does indeed have a model.

5.14. Let α be the first admissible ordinal >ω. Let A = L(α). Unlike the A
in 5.13, this A is a model of

Vα [a is countable].

Find a sentence φ of LA which has a model but none in A.

5.15 Notes. The completeness and compactness theorems of this section are due
to Barwise [1967] and appeared in Barwise [1969], The terminology "Barwise
Completeness Theorem" and "Barwise Compactness Theorem" have become so
standard that it would be false modesty (and confusing) to give them some other
name here.

The observation that these theorems go through unchanged in the presence
of urelements was first made in Barwise [1973], though it was really clear all
along. The odd 5.8 first appears in Barwise [1973].
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6. The Interpolation Theorem

The Interpolation Theorem is one of the results which holds for countable ad-
missible fragments but not for arbitrary countable fragments; the proof requires
the Completeness Theorem of § 5.

6.1 Theorem. Let LA be a countable admissible fragment, φ, ψ sentences of LA

such that
\=φ-*\l/.

There is a sentence θ of LA whose relation, function and constant symbols are
common to those of both φ and ψ such that

\=φ-+θ and \=θ^ψ.

Note. Equality is not treated as a relation symbol. It may appear in θ while
appearing in only one of φ, ψ.

Proof. Let L° be the set of those symbols occurring in φ and let L1 be the set
of those symbols occurring in φ. Let C be a countable set of new constant sym-
bols coded as a Δί subset of A and let LA(C) be the set of free substitution in-
stances of formulas of LA by a finite number of symbols from C. Define LA(C)
and LA(C) similarly. We define the consistency property S to be the set of all
finite sets s of LA(C) which can be written as a union S^SQUSJ satisfying the
following conditions:

(1) s0 is a set of sentences of LA(C), and similarly for sίι
(2) If 00, ^eL^QnL^C) are such that SQ^O and s^θ^ then the sen-

tence ΘQ Λ θl has a model.

The verification that S is indeed a consistency property is routine (indeed, it
is just like the Lωιω case in Keisler [1971]) except for the \/-rule, (C5). It is in
the verification of this rule that we need the Completeness Theorem for LA(C).
So suppose s = s0usl is as above and that \/Φes. Since the two cases are sym-
metric, we may assume that \/Φes0. We want to prove that for some σeΦ,

Suppose this is not the case. Then for every σeΦ, there is a pair Θ0, θ± such that

(3) t=/\s 0Λσ->θ 0, ^=/\s1-^θ1, and l=— I^QΛ^), and the constants from
C in Θ0 and Θ1 are in s0 u s1 .

Let us indulge in a little wishful thinking and suppose that there are functions
/, g which are elements of our admissible set A with dom(/) = dom(g) = Φ such
that, for each σeΦ, </(σ),^(σ)> is a pair <00>0i> satisfying (3). Then we can let

θ'0 = \ / { f ( σ ) \ σ ε Φ } , θ\= /\{g(σ)\σεΦ} .
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By Σ Replacement, θ'0 and θ\ are elements of A so they are both sentences of
the languages LA(C) and LA(C). Furthermore, s0l=θ'0, s^θi and l= — ι(θ'0Λ #i),
which contradicts s0us1eS. But what about our bit of wishful thinking? At
first it seems exactly that, since we have no choice principle holding in A. Once
again is it Strong Σ Replacement which which comes to the rescue. By the Com-
pleteness Theorem for LA(C), line (3) can be expressed by a Σ^ formula. By Strong
Σ Replacement there is a function he A with dom(/z) = Φ such that, for each
σeΦ, h(σ) is a nonempty set of pairs <00>0i> satisfying (3). Define / and g by

g(σ) = /\{2«dh(σ)\σeΦ}.

Then /, geA and our wish has come true since Θ0 = f(σ) and θl=g(σ) also
satisfy (3). Thus S is a consistency property.

The conclusion of the theorem now follows easily from the observation that
{φ,~ \ψ}φS. Just quantify out the finite number of new constant symbols in the
sentence Θ(cί9...9cj ( = ΘQ in the notation used above):

..9ΌHθ(υl9...9Όj^ψ. D

We could use the interpolation theorem for LA to prove Beth' s Theorem for
LA, but we will not be needing this result.

6.2-6.6 Exercises

6.2 (Hard). Let /19 12 be interpretations of a language L° in consistent infinitary
theories, 7^, T2 formulated in languages L1, L2 respectively, and suppose that
there are no two models 3Λί9 $0Ϊ2 of 7J, T2 respectively such that SDlf / 1 =9K2 / 2

If L°, L1, L2 are Δt on the countable admissible A, Tl9 T2 are Σi theories of
Li and LA and the interpretation I ί 9 12 are Σx functions on A then there is a
sentence φ of LA such that

implies ϊR-^Nφ, for all L1 -structures SR^

m2\=T2 implies Wl2

l2\=-ιφ, for all L2 -structures 50Ϊ2.

6.3. Let LA, KA be countable admissible fragments and let / be an interpretation
of L into a theory T of KA, T and / being Σx on A. Let φ be a sentence of KA

such that for all models 911? 912 of T with SRΓ^Ϊl^, ^i^^ iff ^2^^, Then
there is a ιAeL A such that

6.4. Let / be an interpretation of a complete theory T of Lωω in an incomplete
theory 7J of Kωω. Show that if φeKω ω is not decided by 7Ϊ then there are
models 9tR, 91 of Γ with 9K^φ, 9l^-πφ and arr'^ΪΓ'.
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6.5. Show that there are models <3ll = (N,+,x1y9 9i2 = <AΓ, +,x2>
 of Peano

arithmetic, with the same integers and addition, but 9

6.6. Show that there are models 9W = <M,£>, SR = <JV,F> of ZF + V = L with
the same ordinals, <Ord9CR,£fOrd9[ίί>-<Ord9i,FίOrd9ί>, but with different sets
of hereditarily finite sets. [Use GδdeΓs Incompleteness Theorem, 6.4 and the fact
that every true sentence about the ordinals (with <) is provable in ZF.]

6.7 Notes. The interpolation theorem for Lωω is due to Craig [1957]. For the
full Lωιω it is due to Lopez-Escobar [1965]. Theorem 6.1 is due to Barwise [1969].
Exercise 6.2, a generalization of 6.1, is useful in abstract logic and is due to
Barwise [1973]. References for the other exercises can be found there.

7. Definable Well-Orderings

In this section we prove a model theoretic result which will have applications
to HYP^ in Chapter IV. The basic question is: What ordinals can be define in
an admissible fragment? We solve this problem here for countable fragments.
The uncountable case is taken up in Chapters VII and VIII.

7.1 Example. Define 0α(x) by recursion over α as follows:

00(x) is Vy-\(y<x),

ΘJix) is Vy(y<x~\/β<Λθβ(y/x)).

Let 9W = <M, <> be a linear ordering. A simple proof by induction shows that
if 9JΪNθα[x] then {ye$R\y<x} is well ordered and has order type α. Hence
Wl\=Vx\/ β < Λ θ β ( x ) iff 9ΪI is well ordered and has order type ^α. Thus, if we set
σα equal to

V* V0 < α θβ(x) Λ /\p < α 3X θβ(x)

then 5Ht=σα iff $0ΐ has order type exactly α. D

The formulas from Example 7.1 were defined by recursion on α so the de-
finition can be phrased as a Σ recursion in KPU. Hence, if α is in an admissible
set A then φα(x), σ α el_ A (as long as the symbol < is in L and A).

7.2 Definition. Let L have a binary symbol < and possible other symbols. A
sentence φ( < ) of an admissible fragment LA pins down the ordinal α if

(i) yi\=φ implies < w is a well-ordering of its field.
(ii) φ has a model $1 with <* of order type α.

A theory T of LA pins down α if /\T pins down α.
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The example above shows that every ordinal in the admissible set A can be
pinned down by a sentence of LA; in fact,

("< is a linear ordering") Λ σα

has only models of order type α. For countable admissible fragments, no other
ordinal can be pinned down, as we show below.

For uncountable admissible fragments one can often pin down an ordinal
α > o(A) (though one cannot give an explicit definition like σα above). The least
ordinal which cannot be pinned down plays a key role in the model theory of
uncountable fragments. We will go into this further in Chapter VII.

Note that if φ(<i) pins down α then ^(<1? <,f) defined by

φ(<1) Λ "f maps < into <q in an order preserving fashion",

as a sentence about <, pins down all ordinals ^α. Thus we can always work
with sentences which pin down an initial segment of the ordinals. We will use
this implicitly in the proof of the next theorem and several times in Chapter VII.

7.3 Theorem. Let I_Δ be a countable admissible fragment, φ(<) a sentence which
pins down ordinals. There is an ordinal α in the admissible set A such that every
ordinal pinned down by φ is less than α.

Proof. Suppose, to prove the contrapositive, that for every αeA, φ«) has a
model ϊt with -<** of order type α. We prove that φ(<) has a model 91 where
-<** is not well ordered. It is instructive to split into cases, though not really
necessary.

Case 1. o(A) = ω. If A^ΉF^ then φ(<) is just a finitary sentence and the
result is well known to follow from the compactness theorem. But even if
A^HF^, the proof goes through. Let <, C0,c1 ?... be new symbols in the pure
part of A and let T be the theory

Let ψ be

Λ "f maps < order preserving into -<".

We need only show T + ψ has a model. Since T is a set of pure sets and
o(A) = ω we need (by 5.8) only see that ψ is consistent with every finite subset
of T, which is obvious.

Case 2 o(A)>ω. The basic idea is the same, but we must work a little
harder. Let a0=ΎC(φ). We may assume that A is the smallest admissible set
with α0 as an element. Introduce the following new symbols into L: e, unary
U, S, N for urelement, set and member of N respectively, a function symbol f,
a constant c and, for each xeA a constant x. Let T be the following set of
sentences of LA :
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(0) "U, S, N are disjoint and their union is everything",
(1) φN, the relativization of φ«) to N,
(2) KPU formulated in terms of U, S, e,
(3) diagram (A),
(4) Vx[xea->\/ b e α.χΞΞb], for each αeA,
(5) " β e C Λ C is an ordinaΐ\ for each β<o(A),

(6) Vx^cV^κPiP<AL(α°'x)>
(7) "f maps the e predecessors of c mίo -< so ί/iαί

This theory is Σ! (in fact Δ0) on A so we can apply the Compactness Theorem.
If T0^T, T0eA then T0 will have a model of the form

where βeA, / maps the ordinals <β into -<*, and 9lt=φ. Let

be a model of the whole theory T. By (1), ϊlNφ. By (2)— (5), A^end93, but,
by (6), c is not in the well-founded part of 23. Hence, by (7), -<** cannot be a
well-ordering. D

7.4 Corollary. Lei LA be α countable admissible fragment, T a Σί theory of LA

which pins down ordinals. There is an α<o(A) such that every ordinal pinned
down by T is less than α.

Proof. If not, then every T0^T, T0eA would be consistent with

by 7.3 and hence T would also be consistent with this set by the Barwise Com-
pactness Theorem. D

We can use Theorem 7.4 to prove a general version of a theorem of Friedman
on models of set theories T^KP. Note that if < is a linear ordering then, by
the definition in II.8.3, i^/(<) is the largest well-ordered initial segment of <.
We can identify Wf(<] with an ordinal without confusion. In Theorem 7.5, L is
a language containing a binary symbol < among its symbols.

7.5 Theorem. Let LA be a countable admissible fragment of LX)ω and let α = o(A).
Let T be a Σ{ theory of LA such that:

i) T N " < is a linear ordering"
ii) for each β<α, T has a model 9JΪ with

/*7(<w)>0.

Then T has a model M with



108 III. Countable Fragments of LQoω

Proof. Notice that T is consistent with the set

where θβ is as in 7.1, by the Barwise Compactness Theorem, so we may as well
assume that the sentences are actually in T. This insures that any model 9JI
of T has ιT/(<αίl)^α. By Theorem 7.4, T also has a model 9ϊί where <m is
not well ordered. Let T' be the theory

where {dn\n<ω} is a new set of constant symbols. Thus T is consistent. Let
K=Lu{dJ«<ω} and let KA be the corresponding admissible fragment. Let K£
be the set of formulas in which at most a finite member of dπ's occur. Thus T'
is a theory of K£. We are going to use the Omitting Types Theorem for K£ to
find a model (StR,^,...,^,...) of T' and the sentence

where "vφ Field (<)" stands for \/x(v^x Λ X ^ V ) . Such a model 9K must have
^y(<9W) = α. Suppose there were no such model. Then by the Omitting Types
Theorem there is a σ(v,d^...,dn)e\(% such that T' + 3vσ(v,d^...,dn) is con-
sistent, but such that all the following are theorems of T'\

(8) \fv [<J(Ό, d)^υe Field (<)],
(9) VϋCφ.dH-iθXi;)],

(10) Vu[σ(ι?,d)-»ι;<dm], for all m<ω.

Note that, by (10),

is consistent. Let c be a new constant symbol and let T" be

Γu{σ(c,d 1,...,dn)ΛC<dn< <d1}

which is consistent since T^T'. We claim that

(11) For every model 9Jί of T", the <αrί predecessors of c = c5" are well ordered.

If not, then there is a descending sequence below c, so we can name its
members dπ+1,..., giving us

which makes (9W,J1 ?...,rfn,...)^T', where the element c violates (10).
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From (11) and Theorem 7.4 we obtain

(12) there is a y<α such that

(To see this consider τf" = T" + "~< = <\ the predecessors of c" and apply
Theorem 7.4 to T'" as a theory about -<.)

Thus we have

and hence

contradicting (9). D

7.6 — 7.7 Exercises

7.6 (Friedman). Assume ZF has an uncountable transitive model. Show that the
order types of the ordinals in countable nonstandard ω-models of ZF are exactly
the order types α(l+τ/) for α a countable admissible ordinal, α>ω, and η the
order type of the rationals. [Use Theorem 7.5.]

7.7. Let α be nonadmissible. Let T = KP + "< is ef ordinals". Show that there
can be no model 9JΪ of T with α = i

7.8 Notes. Theorem 7.3 is from Barwise [1969]. It refines older results of Lopez-
Escobar [1966] and Morley [1965]. Theorem 7.5 is new here. It generalizes a
result in Friedman [1973].

8. Another Look at Consistency Properties

There is room for a lot of creativity inside the proof of the Model Existence
Theorem. Let S be a consistency property, s0eS, and recall the way we con-
structed a model of s0. As we built our sequence s0^sl^" ^sn^'"^sω (and
in so doing built a canonical model) there was freedom in defining sπ+1 that we
didn't use. At the nth stage, after defining sn we could first enlarge sn to some
other 5*^5Π before going on to get sπ + 1^s*, as long as s*eS. The resulting

with

Sω ~ \Jn <ωsn = \Jn <
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would give rise to a canonical model $R of each sn and each s*. We give a modest
illustration of this technique here, just to illustrate the general method. We will
return to it in § IV.4.

Let l_4 c Kβ be fragments. A theory T of Kβ is complete for LA if for each
sentence φ of LA, Tϊ=φ or T\=~Ίφ, but not both. Given a structure 9Jί for
K we define

) = (φε LA \ φ is a sentence true in 9W} .

Note that this is a complete L^-theory.

8.1 Theorem. Let L^^Kβ be countable fragments, T a consistent set of sen-
tences of KB such that for each sentence ψ of KB, Tu{ι/^} is not complete for LA.

There are 2K° distinct LA theories of the form ThL^(50l) for models 9JΪ of T.

Proof. Let K' = KuC = Ku{cπ: n<ω} and let K^ be the set of free substitution
instances of φ's in Kβ. Note that there is no sentence ι//(c l 5...,cJeK^ such that
T + φ(cl5...,cπ) is complete for LA, for if it were then Γ + 3ι;l5...,3ι;π i/^,...,^)
would be complete for L^. Consequently there is no finite set s of K^ such that
Tus is complete for LA (for otherwise we would form ψ = /\s). Define

SQ = {TUS\S a finite set of sentences of Kβ such that Tus is consistent}.

The set S0 obviously satisfies (Cl) — (C7) so let S be the smallest consistency
property containing S0, by 2.3. To simplify notation let us suppress T altogether
and write s for Tus in what follows. We wish to construct a "tree" of members
of S such that

(1) any "branch" through the tree gives us a theory 7^ of L^ consistent with T,
(2) distinct branches lead to incompatible theories, and
(3) there are 2K° distinct branches.

Since this is our first tree argument, and since this is an important kind of
argument, we give the proof in more detail than is usual. Our tree consists of
all finite sequences d of O's and 1's arranged as illustrated below.

V V
000 001

V V
101 110
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A branch through this tree is just an infinite sequence b of O's and 1's. (The
branch <01000...> has its nodes circled in the tree drawn above.) We wish to
place at each node d of length n an element sdeS which is one of the s*'s
referred to in the introduction to this section. At the empty node place T and
let s0 = T in the notation from the proof of the Model Existence Theorem.
Before defining s1? pick some φe\-A not decided by s0, i.e.

and sg*

are consistent and hence in 8. Let sd = s$ for d = <0>, sd = s$* for d = <l>.
Given d of length n we go on to find sn + ί^sd just as in the proof of the

Model Existence Theorem. Then, given sw + 1, choose a φeLA such that

are in S, and let

j*'=s*+ί9 if d'=dO

— <?** if A' — A\~ 5 n + l > Π M — αl,

where dO is the sequence d followed by 0. Now let b be any branch through the
tree. The set sb = (J{sd\d a node on b} is one of our sω's so it has a model 9Wfc.
Since s0 = T, $)lb\=T. If b l9 b2

 are distinct branches then there is a φeLA such
that we have put φesbl, ~Ίφesb2 at the point where bί and b2 split. Thus

and 9Jlb2^~Ίφ, where φeLA. There are 2K° branches so the sets

form 2N° distinct complete theories of LA. D

We will apply the following corollary of Theorem 8.1 in Chapter IV. Let LA

be an admissible fragment of L^. A structure 9JI is decidαble for LA if ThLA(^)
is Δ! on A. The structure 9P1 could be a structure for some language K properly
containing L.

8.2 Corollary. Let L A <=K A be countable admissible fragments, let T be a con-
sistent theory of KA which is Σί on the admissible set A such that T has no model
which is decidable for LA. There are 2K° distinct theories of the form ThLA(9JΪ)
with Wl\=T.

Proof. If there are fewer than 2N° such sets then there is a ^eKA such that
T + ψ is complete for LA. But then any model $R of T + ψ is decidable for LA since

Wl\=φ iff T\=ψ-+φ,

iff

which makes ThLA(9M) a ΔA set by the Extended Completeness Theorem. D
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For Lωω and Kωω the theorem and its corollary are old indeed. Here the
proof of the theorem is even easier since one no longer has to go back to the
Model Existence Theorem but can use the Compactness Theorem for Kωω.

8.3—8.4 Exercises

8.3. Show that if KB=Kω ω, LA=l_ω ω then the hypothesis of Theorem 8.1 can
be weakened to:

_A (T + ψ not complete for LA).

Prove this directly from the Compactness Theorem for Kωω.

8.4. Let L have constant symbols 0,1,..., n,... and a unary predicate P. Find
a consistent theory T = {φ} of a countable fragment LA such that ψ has only
NO non-isomorphic models, but for each ψe Lωω, T+ψ is not complete for Lωω.
This shows that the strengthening of 8.1 carried out in 8.3 is not possible in general.

8.5 Notes. The results of this section are new here. They are suggested by, and
imply, the theorem of recursion theory that any Σ} set of subsets of ω with less
than 2K° members is actually a subset of HYP. See § IV.4 for proofs of this and
related results.




