
Introduction

This book deals with computable analysis. The subject, as its name suggests,
represents a marriage between analysis and physics on the one hand, and comput-
ability on the other. Computability, of course, brings to mind computers, which are
playing an ever larger role in analysis and physical theory. Thus it becomes useful
to know, at least theoretically, which computations in analysis and physics are
possible and which are not.

In this book, we attempt to develop a coherent framework for solving problems
in this area. We will see that a variety of questions in computable analysis can be
answered within this framework. For example, we will deal with computability for
classical analysis, mathematical physics, Hubert and Banach spaces, bounded and
unbounded linear operators, eigenvalues and eigenvectors, and a variety of other
topics. All of these are dealt with from the viewpoint of recursion theory, the theory
of computability as treated in mathematical logic. Classical recursion theory pro-
vides a definition of computable function from integers to integers. Starting from
this, the book develops corresponding notions of computability for real num-
bers, continuous functions, Hubert space, IΛspaces, and, more generally, arbitrary
Banach spaces.

The framework used in this book is axiomatic. We axiomatize the notion of a
"computability structure" on a Banach space. This allows a variety of applications
to be treated under one heading. It is worth mentioning that the concept axio-
matized is "computable sequence of vectors" of the Banach space. Then a point x is
computable if the sequence x9x9x9... is computable. However, it is natural, and in
fact necessary, to deal with sequences rather than individual points. For sequences
lie at the center, both of recursion theory and analysis. A cornerstone of recursion
theory is the notion of a recursive function, which is nothing more than a comput-
able sequence of integers. In analysis, the topology on a Banach space is given by
sequences.

We turn now to a discussion of some of the principal results in the book. These
results are contained in Parts II and III. (We will discuss the contents of the more
elementary Part I below.) There are three key results, the First and Second Main
Theorems and the Eigenvector Theorem.

The First Theorem (in Chapter 3) asserts that, with certain mild side conditions,
bounded operators preserve computability and unbounded operators do not. That
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is, a linear operator maps every computable element of its domain onto a comput-
able element if and only if it is bounded. The side conditions are satisfied by all of
the standard operators of analysis and physics. Hence we obtain a variety of
applications merely by taking various well known linear operators and asking
whether they are bounded or unbounded. Now, whether or not an operator is
bounded, is a classical fact, which is usually well known. Thus, although the
conclusion of the First Main Theorem is recursion-theoretic, the boundedness/
unboundedness hypothesis is not dealt with in a recursion-theoretic manner. For
this reason, the First Main Theorem is easy to apply.

Of course it is common practice for an analyst who is studying a particular linear
operator to seek norms for which the operator is bounded. Our discussion indicates
that this practice is not merely prudent, but necessary. In fact, the device of tailoring
the norm to the problem at hand is seen—in a precise and not merely heuristic
sense—as a necessary and sufficient means of preserving computability.

The Second Main Theorem (in Chapter 4) asserts that, under mild side conditions,
a self-adjoint operator has computable eigenvalues, although the sequence of eigen-
values need not be computable. That is, although for each eigenvalue there is a
program which computes it, different eigenvalues may require different programs.
There is no master program which computes the entire sequence.

On the other hand, the Second Main Theorem does provide an explicit algorithm
for computing individual eigenvalues. This algorithm applies to both bounded and
unbounded self-adjoint operators. In particular, it applies to the standard operators
of analysis and physics.

Incidentally, the side conditions needed for the Second Main Theorem are
given in Chapter 4. Operators which satisfy these conditions are called effectively
determined.

The Eigenvector Theorem (in Chapter 4), our third major result, asserts that there
exists an effectively determined bounded self-adjoint operator T such that 0 is an
eigenvalue of T of multiplicity one, but none of the eigenvectors corresponding to
0 is computable.

Relating the three major theorems, we note several contrasts. Begin with the First
and Second Main Theorems. The first theorem asserts, in part, that unbounded
operators do not preserve computability—i.e. that they map certain computable
functions onto noncomputable functions. It may seem surprising, therefore, that all
of the eigenvalues of an effectively determined unbounded self-adjoint operator are
computable. In fact, the authors were surprised by this result. We had originally
suspected that there should exist an effectively determined self-adjoint operator with
noncomputable eigenvalues. In this connection, the fact that the eigenvalues are
computable answers a question raised by Kreisel [1974].

There is a similar contrast between the Second Main Theorem and the Eigen-
vector Theorem, relating to the manner in which self-adjoint operators are used in
quantum mechanics. As is well known, in quantum mechanics the operators corre-
spond to "observables", the eigenvectors are associated with the states of the system,
and the eigenvalues are related to the values actually measured. The Second Main
Theorem asserts that the eigenvalues are computable, whereas the Eigenvector
Theorem tells us that the eigenvectors need not be.
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It is time to spell out a little more fully the contents of the book. We begin with
Chapter 2, which deals with the axioms, still postponing our discussion of the
elementary Chapters 0 and 1. The axioms play an important role throughout the
book. As noted above, the concept axiomatized is "computable sequence of vectors".
The axioms relate to the principal structures on a Banach space. We recall that a
Banach space is a linear space, which is endowed with a norm and which is complete
in terms of this norm. The axioms relate the notion of computability to the three
basic concepts of Banach space theory. Thus there are three axioms—one for
linearity, one for limits, and one for the norm. When viewed in this light, the axioms
appear to be minimal. It turns our that, in most of the interesting cases, the axioms
are also maximal. That is, under mild side conditions, the axioms determine the
computability structure uniquely. We emphasize that these axioms define a "com-
putability structure" on a preexisting Banach space. We do not define a "comput-
able Banach space". All of these matters are discussed fully in the introduction to
Chapter 2.

In Chapter 3 we prove the First Main Theorem and give a variety of applications
of it. These applications are of two types. In the first type, we apply the First Main
Theorem directly to some linear operator. For example, by this means, we show that
the heat and potential equations preserve computability, but that the wave equation
does not. Similarly, we determine precisely the cases in which the Fourier transform
preserves computability and the cases in which it does not. (In particular, the
Fourier transform preserves computability from L2 to L2, giving an effective version
of the Plancherel Theorem.) A host of other applications can be given, merely by
taking various standard linear operators of analysis or physics and applying the
First Main Theorem to them. The second type of application deals with problems
which do not appear to involve linear operators at all. An example is the clasification
of those step functions which are //-computable (p < oo). Here, although the
Statement of the theorem does not involve linear operators, the proof does. In fact,
in these cases, the introduction of a suitable linear operator—to which the First
Main Theorem can be applied—provides the key to the proof.

Chapter 4 deals with topics surrounding the Second Main Theorem and the
pigenvector Theorem. These two theorems have been discussed at some length
^bove. The Second Main Theorem has a number of corollaries. For example, under
the hypotheses of that theorem, there exists a bounded operator whose norm is a
noncomputable real. However, if in addition the operator is compact, then the norm
is computable, and moreover the entire sequence of eigenvalues is computable. It
could be asked whether the Second Main Theorem extends to operators which are
not self-adjoint, or to Banach spaces other than Hubert space. The answer is no.
We show by an example that even on Hubert space, when the operator is not
self-adjoint, then noncomputable eigenvalues can occur. The chapter contains a
number of other results. Several of these are related to the Eigenvector Theo-
rem. In particular, the lemmas used in proving that theorem provide a variety of
techniques for dealing with computability questions for Hubert and Banach
spaces.

We remark that, although the Second Main Theorem is stated in Chapter 4, its
proof is postponed until Chapter 5.
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So far we have mostly discussed Parts II and III, which are the main parts of the
book. Now we turn to the introductory Part I. Chapter 0 develops the computability
theory of all of the topics, except differentiation, which occur in a standard under-
graduate course in real analysis. It provides the basic prerequisites for reading
research papers in computable analysis—at least in those cases where the reasoning
is classical (see below). Chapter 1 treats differentiation, analytic functions, and a
variety of more advanced topics. Both of these chapters are based on the standard
Grzegorczyk/Lacombe definition of a computable continuous function, and they
make no use of Banach spaces or axioms. Nevertheless, as we will see in Chapter 2,
the Grzegorczyk/Lacombe definition does fit naturally into the Banach space
framework of Parts II and III.

The book contains a brief Addendum which discusses some open problems.
Reviewing the contents of these chapters as outlined above, we observe that most

of the results are not simply effectivizations of classical theorems. Nor are they
counterexamples to such effectivizations. In this sense, our results have no classical
analog. Of course, there are exceptions. For example, the effective Plancherel
theorem, mentioned above, is clearly the effectivization of a classical theorem. In
the same vein, the noncomputability of solutions of the wave equation means that
a certain existence theorem fails to effectivize. However, most of our results do not
fit this format. For instance, as we saw above, the First Main Theorem involves a
combination of classical and recursion theoretic hypotheses, although it leads to
recursion theoretic conclusions. The same can be said of the Second Main Theorem,
the Eigenvector Theorem, and, in fact, most of the results in the book.

We observe that the reasoning in this book is classical. Recall that, at the outset,
we mentioned the general problem of deciding which computations in analysis and
physics are possible and which are not. From this perspective, it is natural to reason
classically, as analysts and physicists do. In particular, we do not work within the
intuitionist or constructivist framework—e.g. the framework of Brouwer or Bishop.
For, just as classical recursion theory allows the use of nonconstructive methods to
study computability, our approach to recursive analysis does likewise. Our objective
is to delineate the class of computable processes within the larger class of all
processes. In this, our viewpoint is analogous to that of the complex analyst, who
regards the analytic functions as a special case of the class of all functions, but
regards all functions as existing mathematical objects. Of course, we do not wish to
deny the value of constructive modes of reasoning. Our purpose here is simply to
state, as clearly as possible, the viewpoint adopted in this book.

We have deliberately written the book so as to require a minimal list of pre-
requisites. As noted above, all of the work in the book is based on the standard
notion of a recursive function from N to IU From logic, we require only a few
standard facts about recursive functions. These facts are spelled out in a section
entitled Prerequisites from Logic and Analysis. All further recursion-theoretic no-
tions, such as the Grzegorczyk/Lacombe definition of computability for continuous
functions, are developed from scratch. From analysis we need the following. In
Part I, we require only standard calculus. In Parts II and III, some familiarity with
the ί/ spaces, Hubert space, and Banach space is required. While the analysis which
we use goes further than this, all additional analytic concepts are defined, frequently
with discussion and examples. In the same vein, because the book is written for
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a mixed audience—including analysts and logicians—we have taken great pains to
make our proofs clear and complete.

It may seen surprising to see an axiomatic approach used in connection with
computability. Of course, axioms provide generality. The question is whether, by
adopting an axiomatic approach, we lose the intrinsic quality traditionally associated
with computability. In traditional recursion theory, for example, the notion of
a recursive function from 1̂1 to N is intrinsic. Although many different formulations
have been given, they all lead to the same definition of computability. Actually,
this intrinsic quality is largely preserved under the axiomatic approach. For, as
mentioned above, under mild side conditions, the axioms determine the comput-
ability structure uniquely. Of course, the structure will be different for different
Banach spaces. Yet, in each case, the axiomatic structure coincides with the natural
one which has been extensively studied. For example, when applied to the Banach
space of continuous functions on a closed interval, the axiomatic structure coincides
with the classical Grzegorczyk/Lacombe definition of computability. For the Lp-
spaces, p a computable real, 1 ^ p < oo, the axiomatic structure coincides with the
natural definition of Z/-computability. (IZ-computability is defined in the obvious
way—by taking the effective closure in ί/-norm of the Grzegorczyk/Lacombe
computable functions.) Even in cases where relatively little work has been done up
to now (e.g. Sobolev spaces) the axioms seem to provide a natural starting point.
For more details, cf. Chapters 2 and 3.

Returning to Lp-computability, it turns out that certain discontinuous functions,
and in particular certain step functions, are //-computable. At first glance, this
seems to contradict a long standing perception that a computable function must be
continuous. However, this perception depends implicitly on the assumption that the
function is to be evaluated pointwise. In Lp theory—even classically—a function is
never evaluated at a single point. For, as is well known, an U function is only defined
up to sets of measure zero. So, instead of using pointwise evaluation, we use the LP
norm. Then the ZZ-computability of certain step functions emerges, not as an ad hoc
postulate, but as a consequence of the basic definition.

Although so far we have mainly discussed Lp spaces, many other computability
structures on Banach spaces are related in a similar way to the standard Grzegorczyk-
Lacombe definition. This holds, for example, for the energy norm and Sobolev
spaces discussed in Chapter 3. However, there are other cases, e.g. those involving
"ad hoc" computability structures, which bear no relationship to the Grzegorczyk-
Lacombe definition. All of these cases, whether intrinsic or ad hoc, satisfy the axioms
for a computability structure.

Although self-contained, the work in this monograph does not appear in a
vacuum. There is a long tradition of research in recursive analysis using classical
reasoning. Among those who have worked within this tradition are: Aberth, Grze-
gorczyk, Kreisel, Lachlan, Lacombe, Mazur, Metakides, Moschovakis, Mostowski,
Myhill, Nerode, Rice, Robinson, Rogers, Shepherdson, Shore, Simpson, and Spec-
ker. Their work is cited in various places in the text, and also in the bibliography.

In the opinion of the authors, the field of computable analysis is in its infancy.
There are numerous open problems, some hard and some easier. A small sample of
these is given in the Addendum. Our hope is that this brief monograph will provide
an easy introduction to the subject.




