Chapter X
Jumps of Minimal Degrees

Jump inversion theorems are used to characterize the range of the jump operator on
various classes of degrees. In Chap. III, we proved two such theorems. The
Friedberg Jump Inversion Theorem classified J[0, co), the range of the jump
operator on DJ|0, c0), as D|0’, o). And the Shoenfield Jump Inversion Theorem
classified J[0, 0], the range of the jump operator on D|0, 0], as D[0’, 0] ~ {d: d is
recursively enumerable in 0’}. This chapter is devoted to a proof of the Cooper
Jump Inversion Theorem which classifies J(M), the range of the jump operator on
the class of minimal degrees, as D[0’, c0). This result contrasts sharply with the
classification problem for J(M]0, 0’]), the range of the jump operator on the class of
minimal degrees below 0’, a problem which is still unsolved. The natural analogy
would be to guess that J(MJ0, 0']) = D[0’,0®] ~ {d: d is recursively enumerable in
0’}. However, by IV.3.6, if de J(M]0, 0']) then d’' = 0'®, so this guess is incorrect.
Jockusch has conjectured that J(MJ[0,0]) = {d:d > 0’ & d’ = 0® & d is recursively
enumerable in 0'}.

1. Targets

The strategy for proving the Cooper Jump Inversion Theorem is to combine the
construction of a minimal degree using partial trees with the ideas introduced in the
proof of the Friedberg Jump Inversion Theorem (111.4.2), making certain
important modifications. One of these modifications involves defining a jump
target function, which we do 'in this section. The proof of Cooper’s theorem is
presented in Sect. 2.

Given C < N, we build a set 4 such that 4’ = C @ ' as the union of a sequence
{os: s€ N} of binary strings, through the use of an oracle of degree 0’. At stage e of
the construction, we try to resolve whether or not ®2(e)]. As, for s > e, a, will be
constrained to lie on certain partial recursive trees, we will not be able to ask an
oracle of degree 0’ the same question as we asked in the proof of the Friedberg Jump
Inversion Theorem. For with most reasonable recursively defined conditions, the
search for a string which satisfies these conditions and which is not terminal on a
given partial recursive tree requires an appeal to an oracle of degree 0. We
therefore ask a different question, and insure that the answer to the new question at
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stage e of the construction will be the same as the answer to the question “®#(e)| 7.
We ask if we can find an extension o of o, for which ®%(e)| and which is potentially
on a certain tree 7. Potentially will mean that we are looking at a recursive
approximation {7,: s€ N} to Tand we seek s N and a of length < s which is either
on T or extends a terminal branch ¢ of T. In order to insure that the answers to the
two questions are the same, we require that if ¢ = 4 then « = 4. Thus we define a
target function for T which, when given ¢ and e, outputs the e-target o towards
which any extension of ¢ on T'must head at stages > e. The use of targets is similar
to that in IIL.5.6.

Given an index i for a partial recursive tree T;, a recursive approximation
{T;s: se N} to T; is generated in a natural way, where T; = U{T;: se N}, T+,
extends 7, and T; ; is finite for all se N. Similarly, A€ .% (the set of strings) can be
thought of as coding recursive approximations to {7;: i < lh(1)} where A(i) is an
index for the partial recursive tree T;. Each tree used in this chapter is specified
through a particular recursive enumeration. Hence no confusion should arise when
we identify a partial recursive tree with an index for one of its enumerations, or if we
identify a finite sequence of partial recursive trees with A€ % coding indices for the
trees in the sequence.

The following definition will be useful in defining the jump target function.

1.1 Definition. Let 7 be a tree and let f € % be given. Then f is compatible with T if
either = T(¢) for some ¢ € & such that T(&)], or § o ¢ for some terminal 0 < T.

Target functions point the way to leave a tree T if 4 must leave 7. However, T
may be a subtree of another partial tree 7* which 4 may also be forced to leave, so
T* must have its own target function. In order to successfully combine the use of
partial trees with target functions in this setting, these target functions will have to
be mutually consistent. Thus a target function for 7 cannot consider T in isolation.
Rather, it will depend on a finite sequence of treesId, = To 2T, 2 - 2 T, = T.
We will need to specify an index for computing T, = Id, in order to begin the
construction. Thus we specify the particular recursive approximation {Id, ;: se N}
to Id, defined by

o if lh(e)<s
1 otherwise.

Id, ((0) = {

The target function used to prove the Cooper Jump Inversion Theorem is now
introduced. Recall that for all Ae % for which Ih(1) > 0, A~ = A ! (Ih(4) — 1). We
will also use 4;to denote A [ j + 1 for j < lh(4). Thus if A codes the sequence of trees
To,Ty,..., T, and j < m, then A; codes Ty, Ty,...,T;.

1.2 Definition. The jump target function f:% x & x N* - % is defined by
induction on lh(A) — 1 for those Ae ¥ coding sequences of trees {T;: i < m =
Ih(4) — 1} such that T;, ; , < T for all se N and i < m, and then by subinduction
on {s: se N}. f(o, 4,n,s) produces the n-target for ¢ at stage s with respect to the
sequence of trees coded by A. This n-target will specify a string © which forces n into
the jump, i.e., ®(n)|. Fix a recursive one-one correspondence {o;: ie N} of ¥ with
N such that for all i,je N, if Ih(s;) < lh(g;) then i <.
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Stage 0.1h(A) = 1 and A codes {Id, ,: se N}. We proceed by induction on s, defining
f(o, A, n,s) = f(6,A,n,s — 1)if s > 0 and f(0, 4, n,s — 1)|. Otherwise, we search for
the least i such thato; = Id, 5, 0 = 0, and ®%(n)|, and set f(o, A, n, 5) = o;. If no such
i exists, then f(o, A, n, s)T. Thus at stage 0, we have defined targets for all strings of
length < s for which a potential target of length < s exists, as T, ; = Id, ;. By our
compatibility constraints, we will always choose targets at subsequent stages from
the list of targets already found, and so will only have to worry about making our
choices consistently at later stages.

Stagem > 0.1h(A) = m + 1 and Acodes {T;: i < m}. If thereis a £ € &% such that for
all ¢, if T,,, # 0 then T,,, = PExty(T,,—1,, &), let f(o, 4,n,5) = f(0,4",n,s) for all
o,nand ssuch that 6 = T, ;and f(6, 17, n, 5)|. Otherwise, we assume by induction
that f(a, A~, n, s) has been defined for all 6 € % and n, se N such that f(c, 17, n,s)|.

Substage s. Proceed by induction on lh(e). If ¢ ¢ T, ; (in which case a definition is
irrelevant) or either n > s or Ih(¢) > s (and so a definition is premature), then
f(o,A,n,5)1. Thus fix ¢ = T, such that lh(6) < s and ne N such that n < 5. We
proceed by cases.

Case 1. f(o,A,n,s —1)| and is compatible with T;; for all j<m. Let
flo,A,n,s) =f(0,4,n,5s — 1). In this case, we preserve the previous definition,
which remains compatible with all trees of sufficiently high priority.

Case 2. Case 1 is not followed, lh(s) > 0, and there is a 6 = ¢ such that
f(6,A,n,5)] 2 0. Fixsuch a § of shortest length, and let (o, 4, n, s) = f(0, 4,1, s). In
this case, we define the n-target of ¢ at stage s to be the same as the n-target specified
by some 6 < o.

Case 3. Neither Case 1 nor Case 2 is followed and there is a 7 = ¢ such that
f(z, A,n,s — 1)] and is compatible with T ; for all j < m. Fix the least such 7 and let
flo,A,n,s) = f(t,A,n,5s — 1). In this case, we will later define f(z,4,n,s) =
f(z, 4,n,s — 1) through Case 1, and will want ¢ and 7 to have the same n-target.

Case 4. None of the first three cases is followed and thereisay < T,,-, ; such that
f(y,A7,n,5)] 2 0 and is compatible with T, ;. Fix the least such y and let
flo,A,n,5) = f(y,47,n,s). In this case, we choose a suitable n-target from the »-
targets of the previous tree.

Case 5. Otherwise. Then f(o, 4, n, 5)1. No definition is possible here if the n-target of
o is to force the jump on n and be compatible with T; for all j < m.

For the remainder of this chapter, we fix f as the jump target function
introduced in Definition 1.2.

The next lemma summarizes the important properties of the jump target
function.

1.3 Lemma. The jump target function fis a partial recursive function with recursive
domain. Fix 6 € $,n,s€ N and Ae & such that A codes {T;: i < m}. If f(0,2,n,s)|,
then:

(i) @/*)m)| & n<s & lh(e)<s & o T,, & o< f(0,ns) &
flo, Ao, n,5) = Ty 5. (This condition places an effective bound on the domain of f, and
stipulates that the n-target of a string always extends that string and is on T,.)
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(i) 1h(d) > 1 » Iye A(flo, A, n,s) = f(y,A7,n,5)). (Thus the range of f on
T,.s is contained in the range of fon T,_, s.)

(i) Vj < m(f(o, A,n,s) is compatible with T;). (Thus the n-target for o for a
particular tree is eligible to be placed on all previous trees in the sequence of trees.)

@iv) f(z,A,n,5 — 1)| and is compatible with T for all j < m — f(z, A, n,s)| =
f(z,A,n,s — 1). (Thus once defined, n-targets do not change unless an incompatibility
with a previous tree in the sequence of trees is discovered.)

) VoeAHh(OWsa&d c T, f(0,4,n,5)]). (Thus the property of having an
n-target is closed under inclusion for strings on a given tree. Warning : It is possible for
dcoc T, andyet § & Ty, For 6 = T, says that § is in the range of T,, s, but
0 <o c T, says that § is compatible with the range of T, .)

(vi) V1t < T,, (Pi(n)| — f(z, A,n,5)| = ). (Thus if T forces the jump on n, then t
has itself as an n-target.)

(vii) V1 < T, (6 < 7 < flo, 4,1, 5) > f(z, A, n,5)| = f(0,A,n,5)). (This con-
dition stipulates that if 1 is contained in the n-target of o, then t has the same n-target
as o.)

(viii) m > 0 - f(g,A7,n,s)|. (Thus the assignment of n-targets to strings must
proceed tree by tree in the sequence of trees.)

(ix) 1h(4) > 1 & o terminal on T,, ; — f(0,A,n,s) = f(0, A7, n,s). (Thus we can
specify y in (i) when o is terminal on T,,.)

(X) 35 € 'SPZ Vt(Tm,t # ® - Tm,t = PEXtZ(Tm -1, 5))—>f(6’ )'3 n, S) =f(as ;L_ 1, S).

Also, if m > 0 and f(o,4",n,s)| and 6 = ¢ and é = T,,, then:

(xi) If flo,A",n,s) is compatible with T, s then f(J,A,n,s)|. (This condition
asserts that if there is an n-target of a string on T,, _ | which is a suitable choice for the
n-target of d, then such an n-target from T,,_, is chosen as the n-target for 6. There
may be many possible choices for the n-target for 6 coming from T,,_ , so we cannot
specify this n-target.)

Proof. The proof is by induction, first on 1h(4), then on s, and finally on lh(s). Fix
m,a,n,s, A and {1;: j < m} as in the hypothesis of the lemma. If f(g, 4,7,s)|, then
@/@4m9(p)| by induction and the definition of f at stage 0.

(i)—(xi) are easily verified if for some (€% and all teN, if T,,, # 0 then
Ty = PExty(T,,— 1, &). Assume this not to be the case, and assume that
flo, A, n,s)].

(i) Immediate from Definition 1.2 and induction. It thus also follows that f is
partial recursive with recursive domain.

(i1) Assume that Ih(A) > 1. If f(g, A, n, 5) is defined through Case 1 or Case 3 of
Definition 1.2, then there is a t 2 ¢ such that f(o,4,n,s) = f(t,4,n,s — 1). By
induction on s applied to (ii), there is a y = T,,_, ;—; such that f(z,4,n,s — 1) =
f(y,A",n,s — 1). By Cases 1 and 3, f(y, 27, n,s — 1) = f(z, A, n, s) is compatible with
T;, for all j<m, hence applying (iv) by induction on A, f(y,A ,n,s)=
f(y, A7 ,n,s — 1) = f(a, A,n,s). If f(0, A, n, s) is defined through Case 2 of Definition
1.2, then there is a § = ¢ such that f(g,4,n,s)=f(5, 4,n,s). By induction,
f(6,4,n,8) = f(y,A,n,s) for some y<T,_,, Finally, (ii) is immediate if
f(0,A,n,s) is defined through Case 4 of Definition 1.2.

(iil) If we perform a case by case analysis of Definition 1.2, it will follow by
induction that f(a, 4,n, s) is compatible with T for all j < m.
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(iv) Immediate from Case 1 of Definition 1.2.

(v) Clear if 1h(1) = 1. Otherwise, we note that by (i), (ii) and (iii), there is a
9 < Ty such that 6 € o < f(g,4,n,5) = f(y,A",n,s) and f(y,A",n,s) is com-
patible with T, ;. Hence f(a, 4, n, s) will be defined through Case 4 of Definition 1.2
if it is not defined through an earlier case.

(vii) Let t = T,,; be given such that ¢ = 7 < f(0, 4,1, s). We note that f(t, 4, n, 5)
will be defined through Case 2 of Definition 1.2 if it is not defined
through Case 1 of Definition 1.2, and, for Case 2, there will be a § = T,, ; such that
é6<1t and f(1,4,n,5) = f(0,,n,s). Since § =0 <1< f(0,4,n,5) = f(z,4,n,s),
applying (vii) by induction we see that f(a, 4, 1, 5) = (0, 4, n,5) = f(1, 4, n, s). It thus
remains to consider the case where f(z,/,n,s) is defined through Case 1 of
Definition 1.2, and so f(z, 4,1, s) = f(1, 4,n,5 — 1). We must now consider the case
which was used to define f(o, 4, n, 5).

Suppose that f(o, A, n,s) was defined through Case 1 of Definition 1.2. Then
flo,A,n,5) = f(o,A,n,s — 1). Hence ¢ = t = f(0, 4,n,5) = f(5,A,n,5s — 1). By in-
duction on s, f(t,4,n,s — 1) = f(0, A4,n,s — 1). Hence f(z, A, n,s) = f(z, A, n,s — 1)
= flo,A,n,s — 1) = f(o, 4,1, s).

Suppose that f(o, 4,n,s) was defined through Case 2 of Definition 1.2. Then
there is a <= ¢ of shortest length such that 6 = T, ; and f(0, 4,1, 5) = f(J, 4, n, 5).
Thus § c 6 = 1 < f(0, 4,1, 5) = f(0, 4, 1, 5), s0 by induction, we apply (vii) to 6 and
7 to obtain f(z, 4,n,5) = f(0, 4, n,5) = f(0, A, n, ).

Otherwise, we note that since f(z, 4, n, 5) is defined through Case 1 of Definition
1.2, 7 can be used to define f(o, 4, n, s) through Case 3 of Definition 1.2. Hence
flo,A,n,s) will be defined through Case 3 of Definition 1.2, and
flo,4,n,5) = f(7',A,n,s — 1) for some least 7' > ¢ such that f(7', 4,n,s — 1)]. By (i)
and the hypothesis for this case, 7',7 < f(0,4,n,5) = f(z', A,n,s — 1), s0 1 = 7’ or
7" < 7. Since t’ was chosen to define f(g, 4,1, s), v’ = 1. Hence 7’ < t < f(0, 4,1, )
= f(’, A,n,s — 1), so applying (vii) by induction on s, f(o, 4,1, 5) = f(t', A, n,s — 1)
= f(z,A,n,s — 1) = f(z,A,n,s).

(vi) Suppose that ®i(n)|. Fix the least ¢ such that t < T,,. It suffices to show
that f(t,A,n, 1) = t; for if r > t and f(z, A,n,r — 1) =1, then by (i), 1 < Tp,—1 S
T, so T is compatible with T, for all j < m. Thus by (iv), f(z, 4, n,r) is defined in
Case 1 of Definition 1.2 and f(z, A, n,r) = f(t,A,n,r — 1) = 1.

(vi) follows easily if Ih(4) = 1. Assume that 1h(4) > 1. Fix the least r < ¢ such
that for some 6 < T,,,, f(1,4,n,t) = f(, A,n,r), and the least 6 = T,,, such that
6 < 1 and f(6, 4,n,r) = f(1, A, n, t). We verify (vi) by showing that f(d, A, n,r) = 1.
By choice of r, f(d, 4, n, r) cannot be defined through Cases 1 or 3 of Definition 1.2.
By choice of 8, f(J, 4,n,r) cannot be defined through Case 2 of Definition 1.2.
Hence f(6,4,n,r) is defined through Case 4 of Definition 1.2, and
f(0,A,n,r) = f(y,A",n,r) for the least y for which f(y,A ,n,r) 2 4. Since
ft, A,n,8) = f(6,A,n,r) = f(y,A",n,r) 27,7 by (i), y and 7 are comparable. If
T < vy, thensincey < T,,_,,andt = T, , < T,,— 1, Weconclude thatt = T,,_ ,. By
induction, f(z, A7 ,n,r) = t. By the minimality of y and since § < 1, it follows that
y &1, a contradiction. Hence y = 7. But then by (i), y =t < f(1,4,n,1) =
f(y, A7, n,r) so applying (vii), f(y,A7,n,r) = f(z,A",n,r) = 7. Hence f(z, A,n,1) =
fly, A", n,r) =1.
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(viii) Assume that Ih(4) > 1. By (ii), there is a y = T, - ; ; such that f(a, 4,1, 5)
=f(y,A7,n,5).By(i), 0,y = f(0,4,n,5) = f(y, A7, n,s) so o and y are comparable. If
o < v, then since f(y, A7, n,s)|, it follows from (v) that f(o, A, n,s)|. Otherwise,
y< o< fl(y,A7,n,s), so by (vii), f(g,A",n,5)| = f(y,47,n,5).

Before proving (ix), we prove the following fact:

1) o terminal on T, ;= Vr<sV¥o < T, , Vic T, (6 Sc&
o < f(0, A, n,r) &7 is least such that f(6,4,n,r) = f(r,A7,n,r) >t S 0).

Fixr, d,and rasin (1). If f(, 4, n, r) is defined through Case 1 of Definition 1.2, then
thereisa v’ < T,,_;,- such that f(6, 4,n,r) = f(0, A, n,r — 1) = f(z', A", n,r — 1).
By (iii) applied to f(d, 4,1, 1), f(d, 4,n,r) = f(, A~ ,n,r — 1) is compatible with T,
for allj < m, so we will have defined f(t', A7, n,r) = f(z', A", n,r — 1) through Case
1 of Definition 1.2. If f(r,A",n,r) =f(5,4,n,r)=f(t',27,n,r), then by (i),
1,7 = f(t,A",n,r) =f(z,A",n,r) so t and 7' are comparable. Hence by the
minimality of 7,7 = t'. Since ' < ¢ by induction on lh(1), T = o.

We now proceed by induction on 1h(d), assuming (1) for all ' = § in place of §
and also all § such that f(5, 4, n,r) is defined through Case 1 of Definition 1.2.

Suppose that f(0, 4,n,r) is defined through Case 2 of Defintion 1.2. Then
f(6,A,n,r) = f(§', A,n,r) for some &' = 4. (1) for § now follows from (1) for &’ since
dcdcaoc flo,dnr)=f(0,4n,r).

Suppose that f(d, 4,n,r) is defined through Case 3 of Definition 1.2. Then
f(6,A,n,r) = f(B, A,n,r — 1) for some f§ o § such that f(, A, n,r) = f(B, A, n,r — 1)
is defined through Case 1 of Definition 1.2. By (i) and the hypothesis of (1),
B,a = f(3, A,n,r) = f(B, 4,n,r) so B and ¢ are comparable. It also follows from (i)
and since f(8, 4, n,r)| that § < T,,,. Since T,,, < T,, s and ¢ is terminal on T, ,, we
cannot have f > ¢; hence f < ¢. Thus f < 6 < f(9, 4,n,r) = f(B, A, n,1),s0 (1) for &
follows by induction from (1) for f.

Suppose that f(0, 4, n, r) is defined through Case 4 of Definition 1.2. Since é = o
and gisterminalon T, ,,if 6 < T,,,then by (i), if f(6, 17, n,r)|, then it is compatible
with T,, .. Hence by the minimality of 7 in Case 4 and (v), we cannot have t © ¢. By
(i) and the hypothesis of (1), 1,0 < f(d,4,n,r) =f(t,A ,n,r) so T and ¢ are
comparable. Hence © < 6. And if ¢ & T,,, then since t and ¢ are comparable,
tcT,,and o < T,,7cCo.

(ix) Suppose that lh(4)>1 and ¢ is terminal on T,, By (i),
f(o, A,n,s) = f(y, A”,n,s) for some least y = T,,_; ;. Applying (1) to 6 = g, we see
that y=o¢. Thus by (i), y< o< f(o,4,ns) =f(y,A ,ns), so by (vi),
flo, A7 ,n,s) =f(y, A ,n,s) = f(o,A,n,s).

(x) Immediate from the construction of Definition 1.2 at stage m > 0.

(xi) Fix 6,0, A and s as in the hypothesis of the lemma, and assume that m > 0
and f(o,47,n,s)| and is compatible with T, and 6 = ¢ and 6 < T, . Then
f(, A, n, s) will be defined through Case 4 of Definition 1.2 if it has not previously
been defined. |

The construction given in the next section depends on sequences of trees which
respect the jump target function. A preliminary definition is needed.

1.4 Definition. Fix e %, n,se N and 1€ such that A codes {T;: i < m} and
o < T, . Wesay that o is n-active on {T;: i < m} at stage sif ¢ < f(a, 4,n,s)| and for
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all e < n, either f(a, 4,¢,5)1 or ¢ = f(a, 4, e,5). sis {a,n)-good on {T;: i < m} if for
all e < n, o is not e-active on {7;: i < m} at stage s.

The n-active strings at a given stage are those for which action can be taken at
that stage to force n into the jump without ignoring similar desires for e < n. A stage
is (o, n)-good if its desire to force # into the jump will not be injured by forcing e
into the jump for some e < n. The next definition tells us that a sequence of trees
respects the jump target function if it always acts to force the smallest possible
number into the jump, while not violating the properties needed to prove a
computation lemma.

1.5 Definition. Let 1€ ¥ code {T;: i < m}. We say that {T;: i < m} respects fif the
following conditions hold:
(i) To = 1d,.
(i) Vi<mVseN(T;+1,< T; & T; 541 extends T; ).
(ili) Yoe S Vj,n,se N(j < m&n < s&o is terminal on T ;& ¢ is not terminal
on T, & o is n-active on {T;: i < j} at stage s — f(o, 4;, n, 5) is compatible with
T;s+q for all i <j). (Recall that 4; =41+ 1.)

The crucial property of Definition 1.5 is (iii). This property states that if we
extend a tree in the sequence at a terminal string ¢ which is n-active, then we must
follow the n-target of that string with our extension. It is this property which will
allow us to show that lim, f(o, A, n, 5) exists for suitably chosen ¢, 4 and n.

Given a sequence of trees {T;: i < m} which respects f, the sequence will have to
be extended in various ways to sequences {7;: i < m + 1} which also respect f.
Extensions letting 7, + ; be PExt,(T,,, &) or PDiff,(T,,, ¢) for some ¢ € 5 oree N are
easily obtained.

1.6 Definition. Let {7} ;: s€ N} be a recursive sequence of finite trees such that for all
seN, T; s+ extends T; ;and let T; = U{T;s: s€ N}. We define the approximation to
PExt,(T}, §) for {e % by

PExt; (T, &) = PExty(T;s, ).

1.7 Remark. Let {T;: i < m} be a sequence of trees which respects f. Let T,,,; =
PExt,(T,, &) for some £ € % such that T,,(£)| and let the approximation to 7, ,, be
given as in Definition 1.6. Then {T;:i < m + 1} respects f. (Note that 1.5(iii) follows
from 1.3(1) and (iii).)

Since e-differentiating trees are just extension trees for which T, . () is
carefully chosen, Remark 1.7 applies also to PDiff,(T,, e). Splitting trees, however,
require more delicate approximations. We now indicate how to construct such
approximations for e-splitting trees.

1.8 Lemma. Let ec N be given. Let {T;: i < m} be a sequence of trees which respects f.
Then there is an e-splitting tree Ty, = PSp,({T;: i < m}, e,f) = U{Tp415: SEN}
such that {T;:i < m + 1} respects f. The approximation {T,, ., ;: s€ N} is recursive,
and an index for this approximation can be obtained uniformly and recursively from a
string A which codes {T;: i < m}.
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Proof. We proceed by induction on {s: seN}. If s >0, define T, ., (&) =
T 1,5-1(8) if Tv 15— 1(€)]. Suppose that either s = 0 or T+ s 1(€)1. There are
three cases.

Case 1. s > 0 and T, (9)| and if s > 0 then T, ,_;(0)1. In this case, T, (@) =
Tm,s(@)'

Case 2. s>0 and 1h(¢) >0 and T,+;-1(E7)] and Tpiq-1(6)1. Let 6* =
Tpi15-1(£7). Fix the least n < s, if any, such that ¢* is n-active at stage s — 1 for
{T;:i <m + 1}. If suchan nexists, let 6* = f(6*, 4, n,s — 1) and if no such » exists,
let 6* = ¢*. Search for the least {1, 7y, Xx) €3 x N (under some fixed recursive
one-one correspondence of &3 x N with N) such that x <s, lh(z;)) <s, and
o* <1, Tpeeq for i< 1, and (74,7, forms an e-splitting on x. If no such
{To,T1,Xx) exists, then T, ., ((£)T. Otherwise, fix {7¢,7;,x) and let T, (&) = 1;
where & = &7 xj.

Case 3. Otherwise. Then T, ., ((&)1.

The lemma is now easily verified. (The proof that 1.5(iii) holds follows by
induction from the choice of ¢* and 1.3(i) and (ix).) |

It follows from the proof of the Computation Lemma (V.2.6) that for all
branches g of PSp,({T;:i < m}, e, ), g <r P9. It also follows from the definition of
PSp,({T;: i < m}, e, f) that:

) If g is terminal on PSp,({T;: i < m}, e, f) and o is e-active for {T;: i < m}
at all sufficiently large stages and A codes {T;: i < m} and lim, (o, 4, ¢, 5)|,
then there is no e-splitting of lim, f(a, 4, ¢,s) on T,,.

The next remark notes that if we have a sequence of trees which respects f, then
every subsequence also respects f.

1.9 Remark. Let {T;:i < m + 2} be a sequence of trees which respects f. Let TF = T;
fori<mand T*, = T+, Then {T¥:i<m + 1} respects f.

The final lemmas of this section will be used to show that there is a question
which can be asked of an oracle of degree 0, the answer to which will determine
whether or not ®#(e)| where A is the set of minimal degree which is constructed in
the next section. The following definition will be useful.

1.10 Definition. Let {7;: i < m} be a sequence of trees which respects f. Let o, f € S5
and n,se N be given such that « = T, and a = B. Then S is n-desirable for o on
{T;: i < m} at stage s if there are j < m and y < T such that:

@ K ehB =T ()&, 4;,n,5)] = p).
(i1) 36j41 30,,,( /m\ (0; is terminal on T; ) &

i=j+1

agamgom_lg"'gaj+1§y§ﬁ>.

In the construction of Section 2, ®#(n) will converge if, and only if
f(a,, A, 1, t(n))], which will be the case if, and only if , has an n-desirable extension
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on {T;: i < k(n)} coded by A (a, and k(n) are defined during the construction). The
equivalence of these conditions will follow from the remaining lemmas of this
section.

1.11 Lemma. Let {T;: i < m} be a sequence of trees which respects f. Fix ne N and
e such thato = T, . Let se N and [ € % be given such that f(o, A, n,s) = p. Then
B is n-desirable for a on {T;: i < m} at stage s. Furthermore, there are j < m and
y < T such that 1.10(i) is satisfied as well as:

m

@ dgj - Ela,,,( /\ (o; is terminal on T, ) &

m
XE O S Op-1 S " S0 /\ f(6;, 2,1, 8) = ﬁ)

Proof. Fix the greatest j < msuch that f < T (&) for some e 5. By 1.5(), such a j
must exist. For all i < m, fix the longest string ¢; = T} ; such that ¢; < . By 1.3(iii),
p is compatible with T; for all i < m, hence o; must exist for all i < m and if

J < i< m then ¢; must be terminal on T;,. Since T;; =2 Tj+1 ;=2 * D T, and
S Ty €S 0, S Op—1 S * - < 0; < f. By 1.3(vii) and (1x), p=f(a,An,s) =
f(am,i,n,s) =f(o'm9im—1’n,s) =f(o-m—1’lm—lan’s) =" =f(aj,lj,n,s). Hence

B is n-desirable for on {T;: i < m} at stage s as witnessed by y = o;, and (i)
holds. 1

1.12 Lemma. Let {T;: i < m} be a sequence of trees which respects f. Fix n,se N and
oaeS such that o = T,, ;. Let fe S5 be given such that [ is n-desirable for o on
{T;: i < m} at stage s. Then f(a,,n,1)].

Proof. Fix j<m and y = g}, 6j+1,...,0, as in Definition 1.10. We proceed by
induction on {i:j < i < m}, showing thatf(al, Ai,n, 5)]. Since y = o, it follows from
1.10(i) that f(o;, A;, 1, 5)|. Assume by induction, that i < m and f(g;, A;, 1, 5)|. By
1.10(i1), 6; = a;+; so by 1.3(v) and (xi), f(6;+1, A+ 1,1, 5)|. Hence we conclude that
SO ms Ams 1 5) .

By 1.10(ii), « < o,,. Hence by 1.3(v), f(a, A,n,5)|. [

1.13 Remarks. The targets which we have used in this section are called followers in
the literature. They were used by Cooper [1973] to prove a jump inversion theorem
for minimal degrees. Cooper defined the followers, the trees, and the set of minimal
degree stage by stage in a full approximation construction, and did not separate the
various definitions. We have separated the various definitions, and this will enable
us to give an oracle construction proof of the Cooper Jump Inversion Theorem.

2. Jumps of Minimal Degrees

We now characterize the range of the jump operator restricted to the set of minimal
degrees.
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2.1 Cooper Jump Inversion Theorem. Let c € D be given such that ¢ = 0. Then there is
a minimal degree a such that ' =au 0 = c.

Proof. Recursively in ¢, we will construct sequences of strings {«,: se N} and
{a}:se N}, functions k,k*,t: N - N, and an array of trees {T5: se N & i < k(s)} by
inductionon {s: se N}. «¥ and k* play roles similar to those played by o, and k in the
proof of Theorem IX.2.1, except that they consider the targets of the strings rather
than the strings themselves. Thus there are two steps in the construction. Given a,
and k(s), the s-target of o, determines o and k*(s) which are then used to determine
os+1 and k(s + 1).

Fix a set C of degree ¢. 4 = U{a,: se N} will be a set of minimal degree. Recall
that fis the jump target function.

The following induction hypotheses will be satisfied at the end of stage s of the
construction, where 4} will code {T7: i <j} for all j < k(s):

) szloo_; caX cao,
2) s < Ty

3) Vse N(Tj = 1d,).

4 Vi< k(s)(T},, < T)).

%) s> 1-Vi<k(s)(Ti=T:Y).
(6) {T3: i < k(s)} respects f.

The construction proceeds as follows:
Stage 0. Set k(0) = 0, TJ = Id, coded by 13 = 4, and a, = 0.
Stage s + 1. For allj < k(s), let A;code {T7:1 < j}. Let #(s) be the least stage ¢ such
that:
@ t=ts—1) if s>0,
® @ T,
) If s>0 then of | < Th |,
(10)  flos, &g 5, D1

if such a stage exists, and let #(s) be the least stage ¢ satisfying (7)-(9) otherwise.
Define

o = {f(as, Ay $18) 1 fla, A 5, Us))]

o otherwise.

Find the greatest k < k(s) such that for some &%, a¥ = T3(&). (By (3), k£ must
exist.) Let k*(s) =k. Let o' be the string of shortest length such that
¥ S o S Th

Let r(s) be the greatest r < k*(s) such that o is not terminal on T7. (Again by
(3), r must exist.) Define k(s + 1) = r(s) + 1, and T3*! = T for all i < k(s + 1).
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Fix n,e % such that T3 (n,) = o". Let X*"! = PExt,(T;", 7,) and let

Ts+! if i<k(s+1)
Ys+1 = J PDiff,(X** 1, 5) if i=k(s+D&e=0
PExt,(X**1,C(s)  if i=k(s+ 1)&e> 0.

Let o5, ; = Y51 ,,(@), and define

e {Yz;in i r(s) < k(s)
st T PSp, (Y3l i < k(s + D)}, r(s), ) if r(s) = k(s).

The construction is now complete. Induction hypotheses (1)-(5) are easily verified.

And (6) follows from Lemma 1.8 and Remarks 1.7 and 1.9; again we note that

PDIff,(T, e) = PExt,(T, &) for some choice of € 5. By (1), 4 = U{os: s€e N} = N.
Given e < se N, we will show that one of the following conditions holds:

(11) vt = 1(s)(f(as, j’i(s)’ e, )] = a).
(12) Vi = 1(s)(fos, A5 € D).

Furthermore, we will have to show that (11) holds if, and only if (11) holds for s + 1
in place of s. It will then follow that A4 forces e into the jump whenever possible, and
so we will be able to compute 4’ from an oracle of degree a U 0'. We will verify (11)
or (12) by induction on s, introducing an intermediate step wherein one of these
conditions is verified for " in place of «, and r(s) in place of k(s) for each e < 5. The
next lemma will be used to show that (11) is inherited by o, ; from o.

2.2 Lemma. Let A’ code a sequence of trees {T;:i < m;} whichrespects ffor j < 1. Let
a, B,y €S be given such that o = < vy, let e,ue N be given such that « = T,,, , and
Y & Ty, . and assume thatVt > u(f(a, A°, e, )| = B). ThenVt = u(f(y, ', e,1)| = 7).

Proof. Fix t > u. Since f(«, Ao, e, ) = B, it follows from 1.3(i) that ®#(e)|. Hence by
the Enumeration Theorem (I1.3.1(i)), ®!(e)|. It now follows from 1.3(vi) that

f(’YSAIQe’t)=‘y‘ u

We now show that a condition of the same type as (12) is inherited by o’
from o

2.3 Lemma. Let ¢ < se N be given and assume that (12) holds. Fix t = t(s), ke
{r: k*(s) < r < k(s)} and y = T}, such that y is the longest string on Ty , which is
contained in o and assume that if k > k*(s) then y is terminal on T; . Let A code
{T¢: i< k}. Then f(y,A,e,t)]. Furthermore,

(13)  VuZ i), Apwspp € 7).

Proof. We first assume that f(y,4,e,f)] =96 and obtain a contradiction. If
S 45,07, then of = oy which is on T;, for all i<k(s). And if
Sas, > S, )] = o = B, then it follows from 1.3(iii) that § is compatible with T3,
for all i < k(s). Hence for all i such that k < i < k(s), there is a unique ¢; < o* such
that g; is terminal on 773 ,. By Lemma 1.11, 6 is e-desirable for y on {7}: i < k},
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producing a sequence {0;: k* < i < k} satisfying 1.11(i). Since o; is terminal on T,
for all i such that k < i < k(s),

OCSEO'k(S,_O'k(S) 19"‘EGk+1E))EO'k§"'§O‘k*,

s0 {o;: k* < i< k(s)} witnesses the fact that § is e-desirable for a; at stage ¢. By
Lemma 1.12, f(as, 4, €, 1)|, contradicting (12). Hence f(y, 4, e, t)T

Let k = k*(s). Then by 1.3(v), since f(y, 4,e, )T and y < a* < a, f(o, 4, €, )1.
Hence (13) follows. 1

Lemma 2.3 yields no information when e = s. This case is covered in the next
lemma, where we show that one of the following conditions holds:

(14) Ve = t(s + D(f(a), A sy S DL = g ).
(15) Vi > t(s + D0, ey 5 D)

2.4 Lemma. Let s € N be given, and assume that either (11) or (12) holds for eache < s.
Then either (14) or (15) holds.

Proof. IfVt = t(s)( S0, Aysyr S5 1), then the lemma follows immediately (note that,
in this case, o = o = o, k*(s) = k(s) and #(s + 1) > #(s)). Otherwise, we may fix
the least ¢ > 1(s) such that f(as, 45, 5, )| = B. We proceed by induction, showing
that for all r > ¢, f(a, 45, 5, )| = B. It follows from (7) and (10) that z < #(s + 1).

Assume, by induction, that r >  and f(o, 4, 5,7)| = B. By Lemma 1.11, there
is a sequence {o;: k*(s) < i < k(s)} satisfying 1.11(i). By 1.11(i), a5 S o« < f and
for each i such that k*(s) <i < k(s), o S 0; S B, o; is terminal on T; and
floi, A%,5,8)| = B. For each e < s and i such that k*(s) < i < k(s), it follows from
(11), (12) and Lemmas 2.2 and 2.3 that g; is not e-active on {T7j: j < i} at stage r.
Hence either = a; or for all i such that k*(s) < i < k(s), 0;1s s-active on{Tj:j<i}
at stage r. Since, for each such i, {T5:j < i} respects f, § is compatible with T, ,
for all j < i, so by 1.3(iv), f(as, A4s)» 5,7 + 1)} = B Thus the induction is complete.

Since, Vr > t(f(as, Ay 5, 7)) = B, wemust have f = a* < «. Hence by Lemma
2.2 and (9), (14) must hold. 1

We now move from T3, to T, showing that conditions (13) and (15) are
inherited.

2.5 Lemma. Fix e < se N and suppose that either (13) or (15) holds. Then

(16) Vi > t(s + D(f(0], Ay e, D7).

Proof. Fix t = t(s + 1), and assume that f(o", ,(s),e 1)} = B in order to obtain a
contradiction. Since o is terminal on T, for all j such that r(s) <j < k*(s), B is
compatible with T3, for all such j. Applymg 1.3(xi) repeatedly, we see that
S, K DL, contradxctmg (13) or (15). 1

We now move from T7

2.6 Lemma. Fix e < se N, and assume that (16) holds. Then (12) holds for s + 1 in
place of s.

to T} 1 ), showing that (16) is inherited.
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Proof. Since k(s + 1) = r(s) + 1, it follows from (5) that 7% = 73" ! for all j < r(s).
Hence by (16), Vi = (s + 1)(f(o,, 455, e, )1). Suppose that for some ¢ > #(s + 1),
Sfass 1, 4454 1), )) for the sake of obtaining a contradiction. By 1.3(viii),
floga1, A5 e, 1)) Since af < oy, it follows from 1.3(v) that f(a", 45" e, 1)1,

yielding the desired contradiction. [
The next lemma summarizes the facts proved relating to (11) and (12).

2.7 Lemma. Fix ec N. Then one of the following conditions holds:

(1) Vs > eVt = Hs)(f (0, Ay € D = ).
(i1) Vs > eVt = 1(s)(f (s Aoy € DT)-

Proof. Fix ee N. We assume, by induction, that the lemma holds for ¢, in place of e
for each e, < e. We then proceed by induction on {s: s > e}.

First assume that s = ¢ + 1. By Lemma 2.4, either (14) or (15) holds. If (14)
holds, then by Lemma 2.2 and (8), (11) holds. If (15) holds, then by Lemma 2.5, (16)
holds; hence by Lemma 2.6, (12) holds for s + 1 in place of s.

Assume that s > ¢ + 1. By induction, either (11) or (12) holds for s — 1 in place
of 5. If (11) holds for s — 1in place of s, then by Lemma 2.2 and (8), (11) holds for s.
Suppose that (12) holds for s — 1 in place of s. By Lemma 2.3, (13) must hold for
s — 1 in place of s. By Lemma 2.5, (16) must hold for s — 1 in place of 5. Hence by
Lemma 2.6, (12) must hold for s. This completes the induction step. [

We use Lemma 2.7 to show that a’ = a U 0’ = ¢. Note that #(s) can be obtained
from o |, o, and 4} through the use of an oracle of degree 0". For to determine
whether a string is on a tree at a given stage is a question of degree < 0. Thus by
Lemma 2.7, once we have a stage ¢ such that o, and o satisfy (7)~(9), then #(s) is
the least r > ¢ such that f(a, 45 ), 5, 7)| if such an r exists, and #(s) = #(s — 1) (0 if
s = 0) otherwise. And we can determine whether 3r > #(f(as, 45, 5, 7)) from an
oracle of degree 0'. Hence 4, k, k*,r, tand {T5:se N & i < k(s)} are recursivein a set
of degree ¢. Furthermore, the only use of a C oracle which cannot be replaced by an
appeal to an oracle of degree 0’ is the use of C(s) in defining Y31,

We show that ¢ < au 0’ < a’ < ¢. C can be computed from 4 and an oracle K
of degree 0'. If ¢ = (', then there is nothing to show. Assume that ¢ > 0'. Suppose
that foralln < e, a,, k(n), {T%: i < k(n)} and t(n) have been computed. Then o,
and X, can be computed from K. Now C(e) = i if, and only if, X.(i) = 4, so C(e) is
determined by 4. To complete the induction, a,, k(e), {T5: i < k(e)} and #(e) are
now determined by an appeal to the oracle K. Since this procedure is uniform in e,
c<avul.

By II1.2.3(iv) and (v), and since ¢ > 0', 2,0’ < a’soau 0’ < a'.

It has already been noted that a,, k(n), {T7: i < k(n)}, k*(n) and t(n) can be
computed recursively in C uniformly in #. Thus in order to show that a’ < ¢, it
suffices to verify the following fact:

a7 2Xe) o P (e)l.

Since ®#(e)| if, and only if ®*(e)| for some se N, (17) follows from Lemma 2.7.
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The next lemma is the heart of the proof that A is a set of minimal degree.

2.8 Lemma. Let e,se€ N be given such that k(s) = e and k(¢) > e for all t > s. Then
(1) Vt = s(o, = T3).

Furthermore, k(s + 1) = e + 1 and

(ii) Ts%) is an e-splitting tree.

If there is a u > s + 1 such that k(u) = e + 1, then

(iii) there is a terminal y = T | such that either
f(%i,u— lat(u_ 1))T or f(}’,'{,u“ 1,[(“— 1))l§au

where A codes {T*"':i<e+ 1}, and
(iv) Vit > uk(t) > e + 1).

Sketch of proof. With the exception of (iii), the proof of Lemma 2.8 is similar to the
proof of Lemma I1X.2.2. The proof of (iii) follows from 1.3(vii). We leave the proof
of Lemma 2.8 to the reader. |

It follows from Lemma 2.8(iv) that lim, k(¢) = co. Hence by 2.8(i)-(iii) and
condition (2) of the previous section, for all ee N, if @ is total then either & is
recursive or 4 = ®2. Also, if ¢ = 0, then it follows from the definition of o, . ; that
A # ®,, so A is not recursive. This completes the proof of Theorem 2.1. |

We now characterize the jumps of minimal degrees. The characterization
follows from Lemma I11.2.3(v) and Theorem 2.1.

2.9 Corollary. The following are equivalent:

@) c is the jump of a minimal degree.

(ii) c=0.
The following corollary follows immediately from Theorem 2.1.

2.10 Corollary. There is a minimal degree acL,. Also, there are continuum many
minimal degrees in GL; — L.

2.11 Remarks. Yates [1970a] constructed a minimal degree a such that a’ = 0’ as a
corollary to his theorem that every recursively enumerable degree bounds a
minimal degree. Yates’ result is proved in the next chapter. Cooper [1973] proved
Theorem 2.1. Both Yates’ and Cooper’s proofs are full approximation style proofs
in that they do not use an oracle during the construction (which is recursively
performed).

2.12 Exercise. Let ¢,de D be given such that ¢ > d’. Show that there is a minimal
cover a of d such that a’ =aud =c.





