
Chapter XVIII

Vaught and Morley Conjectures for
u -Stable Countable Theories

In this chapter we complete the proof of two of the most important results
about the spectrum problem. We prove Vaught's conjecture for countable
α -stable T: A countable α -stable theory has either countably many or 2**°
countable models. Furthermore, we prove Morley's conjecture for countable
α -stable T: If NI < /c < λ, /(AC, AT) < I(λ,AT).

For Vaught's conjecture the assumption that T is α -stable is made be-
cause it allows us to prove the theorem. The conjecture has not been re-
solved for any other class in the stability hierarchy although there are
partial results by [Lascar 1981] and [Shelah 1978a]. In contrast, for Mor-
ley's conjecture the assumption that T is α -stable is part of a systematic
program. If T is not superstable then T has 2λ models in power λ for
all uncountable λ. Although we did not prove this result for singular λ in
Section IX.6, we did prove the function was increasing for stable but not
superstable T. Thus, the only omissions in our treatment of Morley's con-
jecture for countable theories are the unstable case and the superstable but
not α -stable case. The first of these cases is handled in the first edition of
[Shelah 1978] while both are solved in the second edition.

For each problem we know by Section XVI.3 that T does not have the
appropiate version ̂ )f the dimensional order property. That is, if T has the
DOP then T has 2λ models of power λ for λ > NO- In addition, if the α -stable
theory Γ has the ENI-DOP then T has 2*° countable models. In Chapter
XVII, we completed the solution of the spectrum problem in uncountable
cardinalities for α -stable T except for shallow theories with finite depth.
For theories with finite depth we did not resolve the difficulties which arise
when there are ENI-types on the leaves of the representing tree of a model.
The resolution of this difficulty is closely connected to the analysis of depth
two types which is necessary to prove Vaught's conjecture for countable
α -stable Γ.

In Section 1 of this chapter we begin the analysis of types of low depth
by considering what it means for one type to support another and some
transfer properties of this notion. We justify this study of types with low
depth in Section 2 by showing that if there is an α -stable counterexample to
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Vaught's conjecture then it has depth two. We also compute lower bounds
on the number of models in uncountable powers under certain conditions
on the theory T. In Section 3 we give a detailed analysis of types of depth
two which meet the conditions we discussed in Section 2 and prove Vaught's
conjecture for u -stable T. Section 4 contains an example of Shelah which
shows the necessity of some of the more complicated steps in the argument.
Finally, in Section 5 we complete the proof of Morley's conjecture for u -
stable T.

There are many partial results on Vaught's conjecture. The first signifi-
cant general result was Morley's proof that a sentence in Lωι,ω has either
2**° or at most NI countable models. That proof is essentially a result in
descriptive set theory. Most arguments in that field would extend to pseu-
doelementary classes in Lω i ) W. But Morley's result does not. Most of the
other work not reported here concentrates on particular theories, usually
with an ordering of some kind. Thus, Rubin [Rubin 1974] showed that any
complete first order theory of a linear order with monadic predicates had
either finitely many or 2^° countable models. Further work along this line
in [Miller 1981] and [Marcus 1980] culminated in the proof by Steel [Steel
1978] that Vaught's conjecture holds for any Lωitω sentence all of whose
models are trees. Shelah [Shelah 1978a] shows that if the theory T has
Skolem functions and admits a linear order of an infinite set then T has
2**° countable models. Lascar [Lascar 1981] proved Vaught's conjecture for
stable theories with Skolem functions. Lascar and Boucaren [Bouscaren &
Lascar 1983], [Bouscaren 1983] made substantial progress on the u -stable
case before it was completed by Shelah [Shelah, Harrington, & Makkai
1984].

For ease of reading we adopt the convention of writing single letters to
represent finite sequences rather than littering the text with bars.

In this chapter T is a countable ω-stable theory with NDOP. Moreover,
T is shallow and when dealing with Vaught's conjecture T has ENI-NDOP.
Thus, throughout the chapter we consider only the acceptable class AT
and all notions (e.g. prime, isolation) are with respect to that class.

1. Supportive Types

In this section we work with a type p G S(A) and a realization a of p. The
major task is to analyze the types which 'depend' on A U a either directly
by being over A U a or in the slightly less direct fashion discussed in this
section. The next definition describes in more detail the situation that we
must analyze. We then prove a number of technical lemmas which allow us
to pursue this analysis.

1.1 Definition. The type p needs the finite sequence a over the set A,
written p needs α/A, if
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i) p -\ A and p 7! A U a.
ii) p is stationary and strongly regular,

iii) t(a\ A) is stationary and has weight one.

Of course, condition i) is the active part of the definition. We differ
from [Harrington & Makkai 1985] in not requiring that p be ENI. They
make this requirement because for the Vaught conjecture only the ENI
case is required. For the Morley conjecture we must discuss persistently
isolated types which need specific α. The type q E S (A) is supportive if
for some a realizing q and some type /?, p needs a/A. In this situation we
sometimes say q supports p. We say p needs q E S (A) if for some realization
b of </, p needs b/A. The type q € S(A) is ENI-supportiυe if for some a
realizing q and some ENI type p, p needs a/A. We extend these notions
to global types by saying a type p G S'(Λl) is ENI-supportive if for some
A, p does not fork over A and p\A is ENI-supportive. Note that if T is
an ENI-depth two theory, every ENI-supportive type has depth one and
the ENI-types which need supportive types have depth zero. This notion
of needing is somewhat more restrictive than what the word need might
bring to mind. In particular, needing is not transitive. That is, if q £ S(c),
b realizes p € S(a), q needs δ/α, and p needs α/0 it does not follow that q
needs α/0.

1.2 Exercise. Show that if p needs a/A then for some finite AQ C A, p
needs a/A®. (Remember that throughout this chapter we assume that T is
ω-stable.)

1.3 Exercise. Show that when T is a depth two theory, every supportive
type is not orthogonal to the empty set.

1.4 Exercise. Find the supportive types in the theory of an equivalence re-
lation with infinitely many infinite classes. Do the same for ENI-supportive
types if each class contains a model of Ύh(Z,S). Show the ENI-depth of
the first example is one (the minimum for any theory) while the second has
ENI-depth two.

The next two exercises explore the preservation of needing to supersets
of A which are independent from a.

1.5 Exercise. Show that if q needs c/A and c [A B then q needs c/B.

If a theory does not have the ENI-DOP use the triviality of H to show

1.6 Exercise. If T has ENI-NDOP, q is ENI, q needs c/B and c [A B then
q needs c/A. Contrast this exercise with Lemma XΠI.3.11.

We prove the following results simultaneously for various properties
which may or may not be modified by ENI, e.g. NDOP and ENI-NDOP.
As usual, this dual purpose is indicated by parentheses around ΈNΓ. For
Vaught's conjecture we are interested in the ENI-NDOP case while for Mor-
ley's conjecture we need both versions. Our principal goal in the following
few paragraphs is the analysis of supportive types of depth one. However,
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the following notation slightly generalizes that situation to the study of
the relation between pairs of types whose depth differs by one. This added
generality is needed for the study of the Morley conjecture in Section 5.

1.7 Notation. A type s is ENI-constrained by q if eni-dp(s) < eni-dp(^) +
1.

If the definition is made for depth rather than eni-depth one just says
q constrains s. Note that r needs p does not imply that r constrains p but
there will be some s which constrains p and needs p. If the (ENI)-depth of
s is less than or equal one, s is (ENI)-constrained by any q which needs it.

1.8 Theorem. Suppose T satisfies the (ENI)-NDOP, q is a stationary
(ENI)-type, and q (ENI)-constrains s. For any c realizing s ifq~\AUc and
d>Ad then q H A U d.

Proof. Choose a strongly \A\ + /c(T)-saturated model M with M [A c^d.
Then d IA\JC M U c so we can choose a copy M[c] of the S-prime model
over M U c with d [A\JC M[c}. Assume for contradiction that q -fl A U d.
Now, q -f( A U c U d implies by Theorem XIΠ.3.11 that q H M[c]. Then,
clearly, q / M[c][d]. The models M, M[c], M[c, d] give us the situation of
a three model theorem. Since q H M [c], M[c] is a proper subset of Λf[c,d].
If £(M[c, d\; M [c]) H M, the depth of £(c; M) is at least two more than the
depth of q contrary to hypothesis. Thus, by Theorem XIΠ.3.4 there is a
b E M [c, d] — M[c] which is independent from c over M. But since c >M d
this implies b [M c^d. But this is absurd since b £ M[c,d].

We draw a useful conclusion from this result.

1.9 Corollary. Suppose T is an (ENI)-depth 2 theory which satisfies the
(ENI)-NDOP and q is a stationary, (ENI)-type. I f q - \ M ( J c then q H M[c].

The next exercise provides a simpler proof of a weak version of Theorem
XVI.1.11.

1.10 Exercise. Suppose T is an (ENI)-depth two theory satisfying the
(ENI)-NDOP and q is a stationary (ENI)-type. Show that if C = A Π B,
A lc β, q H A, and q H B then q H A U B.

1.11 Exercise. Show that requiring eni-dp(s) < eni-dp((j) +1 is needed to
prove Theorem 1.8. (Hint: Consider the theory of two refining equivalence
relations with an additive structure on the classes of the coarser equivalence
relation.)

We now analyze in more detail the situation when a type q needs b/B
and t(b', B) has (ENI)-depth one. We can 'slightly' enlarge both b and B
to find a base for a strongly regular type which is not orthogonal to s. The
next lemma makes 'slightly' precise and gives a normal form for depth one
types.

1.12 Lemma. Suppose s E S(B) is (ENI)-constrained by q and q needs s
over B. There is a finite set D which is atomic over B and a pair of types
s and si in S(D) which satisfy the following conditions. Ifb realizes s there
is a d realizing si with b C. d and a c C d which realizes s such that
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i) £(c; D) is strongly regular.
ii) t(d;DUc) is isolated.

iii) For some strongly regular q £ S(D\Jd), q JL q and q needs d/D.
iv) c >D d.

Proof. Suppose q needs b/B. Choose M prime over B with M [B b. Since
q has weight one Lemma XIΠ.3.11 implies q H M. Applying monotonicity,
q -fl B\Jb implies <? τ( M[b]. Choose c G M[6] with ί(c; M) strongly regular.
By Exercise XIΠ.4.8 and since b has weight one, CD>M M[6]. By Lemma 1.8
q -ft M U c. Thus, for some strongly regular </' e S(M[c]), <? / </'. Choose
D C M and c? C M [c] — M with 6 U c C d so that q1 is strongly based on
D\Jd. Let <? = q'\D U d. Setting s as ί(c; D) and $ι as ί(d; P), conditions ii)
and iii) are satisfied. We can invoke Lemma VI.3.12 and possibily increase
the size of D to guarantee condition iv). This completes the proof.

This result refines Corollary XIII.3.4. There, we showed that if p / M and
M (= T then p / q for some strongly regular q E S(M). While we can not
relax the requirement that M be a model to show this for an arbitrary set
B we find the strongly regular type by only slightly extending B. Buechler
[Buechler 1986] shows that if T is superstable and Ί-based' then we can
find the regular type in S(B). In the light of Lemma 1.12 we can establish
a normal form for each depth one type. Actually, this normal form will
depend on q. In this section we exploit the normal form separately for each
choice of q. Later we will reduce to the case that s supports only finitely
many types. Then we can choose a single si to work for all of them.

1.13 Notation. For any depth one type s and any q which needs s we fix
a pair of types s and si satisfying Lemma 1.12. Without loss of generality
we may assume each of s, s, si have domain D. Now, s is strongly regular
and if d realizes si, there is a c C d realizing s such that t(d;D U c) is
atomic.

We want to show that if q is nonorthogonal to one realization of s it is
nonorthogonal to all realizations which depend on the first. This kind of
transfer requires some relation between the depth of s and that of q-, for
example, q constrains s. An easy counter example to the conclusion of the
following lemma but with dp(£(c; A)) = 2 and dp(q) = 0 can be found in
the theory REF2.

1.14 Lemma. Suppose T satisfies the (ENI)-NDOP and q is a stationary
(ENI)-type. Suppose both t(c;A) andt(c';A) are stationary with weight one
and that q (ENI)-constrains ί(c'; A). If q H A and c 1A c' then q / A U c
implies q yf A Uc'.

Proof. Let B — doing and choose an S-model M with B U c U c1 I A M.
Then q H M, q -ft M U c, and c 1M c1. Choose an independent set X of
realizations of strongly regular types over M so that both X U c and X U c'
are maximal independent sets of realizations in M [c, c'} of weight one types.
The existence of X is guaranteed by c 1M c'. Now, q 7? M U c implies



370 XVIII. Vaught and Morley Conjectures

two facts. First, q -/ M[c, c1]. Second, since c [M χ f°r eacn a: € X, we
have c [M M[X\. Applying Theorem XIΠ.3.11, we conclude q H M[J\Γ].
By the (ENI)NDOP, q H M[X,d] if and only if q H M[c'\. Now suppose
q H M[X,c?\. Consider the three models M[X] C M[X,c'} C Af[c,c;]. If
£(M[c,c'];Mpf,c']) H M[X] the (ENI)-depth of t(cf\M[X\) which equals
the (ENI)-depth of ί(c'; M) is greater than the depth of q plus two. Thus,
Theorem XIΠ.4.3 yields a b E M [c, c'] — M[c', X] which is independent from
M [c', X]. Because this contradicts the choice of X, </ yfM[X, c']; whence, <? 7!
M[c']. By Theorem 1.8, this implies q yf MUc' and thus, since 5 j^uc' Af [c'],
<?7M(Jc'.

The next lemma is a further transfer property for needing.

1.15 Lemma. Let T be anω-stable theory with the (ENI)-NDOP. Suppose
*(δ;0) and £(6';0) have (ENI)-depth < 1. Ifp needs c/b, pf needs c'/bf, and
t(c',b) _U(c';6') thenptp'.

Proof. Suppose first that c j& b' and c' [# b. Then, p H b U 6' and since
f (c; 6) -L *(c'; b'}, c |6U6/ c'. Thus, by Theorem XIΠ.3.11, p -f b U 6' U c7. But,
if p JL p' then p1 yί &' U c' implies by Theorem XΠI.2.24 iii) that pjb'U c'.
So p -f( b U &' U c' and we have the result. Thus, the major task of the proof
is to replace 6, c, &', c' by 6, c, έ7, c' which satisfy the following conditions.

i) stp(c^b; 0) = stp(c^b', 0) and stp(c'^V; 0) = stp(c'~V\ 0).

ii) ^c δjl^c' έ').
iii) p needs c/έ and p' needs c'/ft7.

iv) c J£ έ' and c' ig, b.

For this, choose first 6,6' so that {b^c^b',b, b'} is independent over the
empty set. Let q = ί(c;6) and <?' = ^(c' δ'). Since ί(&;0) has (ENI)-depth
at most one, ̂  yί 0. Writing ^ for </g, we have by Corollary VI.2.22 that

q / g. Let M be an S-model containing {6, έ',έ} with c |6g,g M; witness
the nonorthogonality of q and <? by choosing c realizing q with c |g M and
c /M c. By transitivity of independence, c |& M. Thus, p needs c/b implies p
needs c/M. By Lemma 1.14 since c /M c, p needs c/M and thus p needs c/b.
Since 67 G M, c |g 6;. Similarly, we can choose c' realizing the nonforking

extension to S(M] of <ήf and verify that p1 needs c'/b' and c' [y b. Then
we complete the proof as outlined.

The following theorem plays a key role in the proof of Vaught's conjec-
ture (cf. Lemma 3.3).

1.16 Theorem. Let ACM and suppose s £ S(A) is a trivial (ENI)-depth
one type. If q E S(M) needs s then there is a b G M such that q needs b/A.

Proof. By definition of needing s, q needs d/A for some realization d of s.
Suppose for contradiction that d I A M. By Theorem XIII. 3.11, this implies
q H M U d contrary to the choice of d. Thus, d 1A M. Applying Theorem
1.12, choose c1 Cd which realizes the strongly regular type s € S (A) and so
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that d is atomic over A U c. Since nonorthogonality preserves triviality, s is
also trivial. By Theorem XVI.2.12 and the triviality of s, s is realized in M
by some c with c 1A cr. Now, choose b C M so that £(&; A U c) = £(d; A U c7).
Since 6 1A d, Lemma 1.14 implies q needs b/A.

1.17 Historical Notes. Most of this material is from the first two sec-
tions of [Shelah, Harrington, &; Makkai 1984]. We have benefited greatly
from discussions about this material with Buechler, Harrington, and Saffe.

2. Toward the Vaught and Morley Conjectures

In this section we obtain sufficient conditions on the type structure of a
theory to compute certain lower bounds on the number of models of T.
We prove first that if the countable ω-stable theory T has fewer than 2**°
countable models then it has ENI-depth at most two. We refine this analysis
to show that T has only finitely many nonorthogonality classes of types in
each of the following categories.

i) Re: ENI-types which are orthogonal to the empty set.
ii) Se: Types which support ENI-types.

iii) Ql\ ENI-types which need a fixed realization b of a supportive type.

As a step toward the Morley conjecture, we then make a similar analysis
of the types which depend on an (ENI)-depth two type p over a set X. We
introduce the notion of a frame (RpιSp,Qp,3) for p. A frame is a triple
of sets of types which form a basis for those types which need a specific
realization of p over X or need some type which needs that realization
over X. We prove a lower bound for the number of models of T in an
uncountable power if for some p and s, βp, Sp, or Qp^s is infinite.

We begin now to restrict the possibilities for a countable ω-stable theory
which has fewer than 2**° countable models. At first glance the following
theorem seems to be too weak. It is easy to see that what appears to be a
typical example of an ENI-type which is orthogonal to the empty set (an
equivalence relation with infinitely many classes, each a model of (Z,S))
(cf. XVΠ.3.8) leads immediately to 2**° models. Thus, one might hope to
prove that any countable α -stable theory with fewer than 2**° models has
ENI-depth one. However, the example in Section 4 shows this intuition is
incorrect.

2.1 Theorem. Let T be a countable ω-stable theory without ENI-DOP. If
T has ENI-depth greater than 2 then T has 2**° countable models.

Proof. If T has ENI-depth greater than 2 then there is a type q with ENI-
depth 2. Without loss of generality, we may assume q is over the empty
set and choose a to realize q. Then there exist finite sequences a C b C c
and a nonisolated p £ S(c] such that p H b and £(c; 6) H α; moreover p can
be chosen stationary and strongly regular while r = t(b; α), and t(c; b) are
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stationary weight one types. Thus, both p and r have weight one. Without
loss of generality we can absorb a into the language and work over the
empty set.

For each X C ω we define a model MX as follows. Let B = {bn : n £ X} be
an independent sequence of realizations of £(6; 0). For each n € X, choose
a sequence Cn = {cf : i < n} of sequences which are independent over
bn such that cf^bn realizes t(c^b\ 0). Since ί(c; b) H 0, {Cn : n E X} is an
independent sequence over 0. Let pf denote pcn and P denote the collection
of all the pf.

Use the choice of the Cn, the fact that £(c; b) is stationary and Corollary
VI.2.22 to show

2.2 Exercise. For n / m or i φ j, pf _L pj1.

Returning to the proof of Theorem 2.1, since the cf for i < n are inde-
pendent over 6n, if p^1 denotes the nonforking extension of pf to 5(Cn) then
for any M D Cn, dim(pf,M) = dim(pf,M). By Theorem XIV.2.4, there
is a model MX such that for each n £ X and each i < n, dim (pf, MX) < ω
and if q is ω-irrelevant to P then dim(^, MX) is infinite.

Since r = £(6; 0) has weight one, forking is mildly transitive on realiza-
tions of this type. Thus forking is an equivalence relation on r(M). By a
class B or [b] we mean an equivalence class under this relation. To show that
MX w MY implies X = Y we will assign an integer m([6]) to each class [b]
and prove that {m([6]): b G r(Mχ)} — X. Namely, m(B) is the supremum
over all b' E B of the m<ω such that there exists an independent sequence
c'i for i < m over b1 with £(c^6'; 0) = £(c^ί>; 0) and with dim(pc>, MX) < ω.

The following extension of Exercise 2.2 is the key to rest of the argument.
It is an immediate consequence of Lemma 1.15

2.3 Exercise. Consider any 6θ5 6i> ^o? ^i such that b0, &ι realize ί(6;0)
and t(efbύ 0) = ί(c~δ; 0) for i = 0,1 , and 60 10 &ι Then p€o _L pβl.

2.4 Exercise. Prove the preceding exercise directly rather than deriving
it from Lemma 1.15.

We use this fact to compute m(B) in several cases. If c^b realizes
£(c^ί>;0) and dim(pc',Mχ) < ω then for some p f , PC / p f . Applying the

contrapositive of Exercise 2.3, (6 / 6n;0) for some n. Thus, if B^[bn] for
some n G X, we have m(B) = 0.

Now we show ra([frn]) = n. By the construction, m([6n]) > n. Suppose
b E [bn] and for some k that (ci :i < k) is an independent sequence over b
with ί(ci~&;0) = ί(c^6;0). For every m ̂  n, 6 |0 6m so by Exercise 2.3,
letting PJ denote pδi, p» JL pf1 if m ̂  n. But dim(p», MX) < α; implies there

is some p € P with p» / p. So for each i < k there is an i < n with pi / p?.
Since the p^1 are pairwise orthogonal and nonorthogonality is transitive
on strongly regular types, the map i »-> i must be 1 — 1 and we conclude
m([b»]) = n.
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Thus, the isomorphism type of MX determines X and we finish the proof
of Theorem 2.1.

We have shown any ω-stable theory with fewer than 2**° countable mod-
els has ENI-depth at most two. We need a slightly stronger observation
than the assertion that Re is finite. The following lemma is an immediate
consequence of Theorem XV.3.21 ii).

2.5 Lemma. // T has less than 2**° countable models then for any finite
set A, there are only finitely many nonorthogonality classes of ENI-strongly
regular types which are not orthogonal to A.

This shows that Re is finite. Moreover, for each s £ Se and each realiza-
tion 6 of s, QI is finite. The following theorem shows we may assume Se is
finite.

2.6 Theorem. Let T have the ENI-NDOP. If there are infinitely many
pairwise orthogonal ENI-supportiυe types then T has 2**° countable models.

Proof. If there are infinitely many ENI-supportive types (sn:n <ω) which
are pairwise orthogonal then we will normalize them as in the proof of The-
orem XV.3.25. Let sn be strongly based on 6n, let cn realize sn and suppose
qn €ϊ S(dn) needs cn/bn. Without loss of generality, we can assume that
all conditions of Lemma 1.12 are satisfied. In particular, bn C cn C dn and
qn is not isolated. Construct an independent sequence (bn^cn^dn : n < ω)
realizing these types. As in Paragraph XV.3.4 we can require that for i φ j
either bi and bj have the same type over the empty set or every conjugate
of Si is orthogonal to Sj. (If some conjugate a(si) is not orthogonal to sy,
then α"1 of Sj could be chosen as s3 .) Since none of the s^ are orthogonal
to the empty set and Si J_ Sj, the first alternative implies bi and bj realize
distinct strong types over the empty set (Corollary VI.2.23). But, since T
is ω-stable t(ί^;0) has finite multiplicity. Thus, we can find a subsequence
S = (si: i < ω) such that if i φ j then every conjugate of Si is orthogonal
to 8j and ί(6i;0) ^t{bj',9).

By Theorem XIV.2.4, for any X C ω there is a model MX such that if
n G X, dim(gn, MX) < ω and if n £ X, dim(gn, MX) = ω. We claim n E X
if and only if there is a triple (6, c,ef) realizing t(bn^cn^dn Ί9) and with
dim(</d, MX) < ω, where q& is a copy of qn over d. Clearly, if n G X, we have
the claim by construction. Fix n such that (6, c, d) realizes t(bn^cn^dn\ 0).
For any m ̂  n, the choice of S guarantees t(c; b) _L £(cm; bm). Since q& needs
c/b and qm needs cm/6m, Lemma 1.15 implies q& -L qm. Thus, if n # X,
qd -L qm for every m G X. By Theorem XIV.2.4, dim(qd,Mχ) = ω as
required. Since we can recover X from the isomorphism type of MX, if
X ^ X' then MX 96 MX/ . We have proved the theorem.

This completes the contribution of this section to Vaught's conjecture.
We turn to the Morley conjecture. We now want to provide lower bounds
for the number of models in power K of an ω-stable theory which has finite
depth. We describe these bounds in terms of the height of a type.
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2.7 Definition. Let p G S(B) be strongly regular. If p yί 0 then ht(p) = 0.
If for some α and A, p needs a/A with p1 = t(a;A) and ht(p') = n then
ht(p) > n + 1. Finally, ht(p) is the least n such that ht(p) £ n + 1. We say
p' witnesses that the height of p is at least n +1.

Note that without loss of generality one may assume that A U a is con-
tained in domp. Thinking of p as occuring in a representation of a model
M, the height of p is the height of a realization of p, not the height of the
domain of p.

A major technical difficulty in establishing lower bounds arises from the
problem of ensuring that nonorthogonal types in different representations
of the same model have the same dimension. We solved this problem in
Chapter XVII by using NI-ample trees to guarantee that, at least often
enough, the types we were comparing could be based on the same set. The
trouble is that at the top levels we may need to preserve finite dimensions
but in a model prime over an NI -ample tree of height m there may be no
types with finite dimension. The solution is to construct trees which are
NI-ample up to height m — 2 or m — 1 and to label the top nodes of these
trees with the dimensions that we want to preserve at the top level. Using
the fact that the shorter trees are Ni-ample, we obtain an isomorphism
between the shorter trees. By applying the results of Chapter XIV and
Section 1 of this chapter, we are able to preserve the labels on the top
nodes.

Thus, the combinatorial principal underlying the counting below is the
following lemma, which is proved by induction as similar results were ear-
lier. In order to treat the problem uniformly in N/j, we must allow the
number of labels to depend on the subscript β.

2.8 Lemma. Let \ = λ(β). If β > ly there are at least ϋm(λ) partially
X-labeled trees of power #β which have height m and are #ι-ample.

Although Lemma 2.8 is proved by a routine induction, there is one im-
portant feature. In the first step, we do not try to calculate how many
times the various labels are realized. Rather, we observe that there are 2λ

subsets of λ and that any set X of labels can have the property that each
member of X is realized at least once and therefore at least NI times while
labels which are not in X are not realized. This is essentially the same idea
as the proof of Lemma XVΠ.4.11

The following definition defines the context for the detailed analysis of
depth two types. We formalize a situation analogous to the discussion of Re,
Se, and Ql earlier in this section. For the study of Morley's conjecture we
must consider types which are not ENI; thus, the superscript e's disappear.
The word set in this definition is not used in our technical sense (smaller
than |Λt |). In fact, if Sα, for example, is infinite then it will be a class in
the technical sense since it contains all depth one types based in M which
need a/X.

2.9 Definition. Let p E S(X) have depth two and let a realize p. A frame
at a for p consists of three sets of types: Ra Sa and Qa:
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i) Ra is the set of depth zero types which need a/X.
ii) Sa is the set of depth one types which need ajX.

iii) For each s G Sa, and any realization b of s, Qaj is the set of types

that need b/ dom s. Qa,s denotes an arbitrary conjugate over X U a

of <9α,& We write Qa for \J{Qa,s : s G Sa}
iv) Let Ra, Sα, and for each s £ Sa and each b realizing s, Qαj5 be max-

imal pairwise orthogonal subsets of Λα, Sα, and ζ)α?& respectively.

Although this definition refers to a specific realization α of p, there is
clearly an automorphism fixing X and taking the frame at a to the frame
at b for any other realization b of p. To emphasize the independence of
these notions from the specific realization of p, we write (Rp,Sp,Qp) to

denote an arbitrary conjugate over X of (Ra,Sa,Qa) and Qpjθ to denote
an arbitrary conjugate over X of Qa,s-

We can simplify the study of the frame for p by replacing Rp, Sp, and

for each s G 5P, <2p?θ by maximal pairwise orthogonal subsets Rp, Sp, and
for each s G Sp, <2P,S. As in the original case we write Qp for the union of
the Qp,s over s £ Sp. We may sometimes fix a realization α of p and speak,
for example, of Sa> In this section, since we are looking for lower bounds
we can work directly with (Rφ,Sp,Qp). In Section 5, to compute upper
bounds, we must rely on the results of Section 1 to show that controlling
(Rp, Sp,Qp) allows one to control (Rp, SP,QP).

In the next definition we distinguish three kinds of depth two type. In
the following theorem we give, for each kind, lower bounds on the number
of models of T if T has a depth two type with height r of that kind.

2.10 Definition. Let p G S(A) have depth two.

The type p has kind /if there is an s G Sp such that Qp,s is infinite.
The type p has kind II if Sp is infinite.
The type p has kind III if Rp is infinite.

Recall that in the construction of models over trees for a countable
ω-stable theory we are always considering types over countable sets. Thus,
the A in the following theorem can be taken to be countable.

2.11 Theorem. Let p G S(A) have height r and depth two.

i) Ifp has kind I then I(Kβ,AT) > lr+ι(\β + 1|M).
ii) Ifp has kind II then /(fy, AT) > Hr+ι(|/3 + u;|).

iii) Ifp has kind III then I(Kβ,AT) > lr(\β + 1|H).

Proof. For each of the three cases we will describe a 1 — 1 correspondence
between NI -ample labeled trees of height r or r + 1 (depending on the case)
and models of T. The exact labeling depends upon the kind of p, but the
construction of a core tree is the same in each case.

For any Ni-ample tree of height r, X, form a tree of models, Ax, as
follows. Choose pi for i < r by induction so that p = po and p^+i witnesses
that the height of pi is r - i. Note that these types are pairwise orthogonal.
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Now let the elements of AX with height i be prime models over realizations
of conjugates of pr-i> Depending upon the kind of p, we describe below the
method for completing the tree AX to a tree AX by adding elements of
height r + 1 and r + 2. In discussing kind I, we will label the nodes of height
r + 1. For kinds II and III we will label the top nodes (i.e. nodes of height
r) of X.

Let MX be prime over AX. Now, suppose MX « My. Then, we know
by Theorem XVII. 4.7 that X &q Y and since X and Y are Ni-ample that
X « y, as trees. It remains to show that this isomorphism preserves the
labels. However, this will be clear when we explain the assignment of labels
in each case. Then in each case we complete the proof of the theorem by
counting the labels and thus the labeled trees.

i) When p has kind I, we make the trees of height r + 1 be Ni-ample as
well. Thus, if MX w My there is an isomorphism a between the subtrees of
elements with height at most r + 1 of AX and AY . Since p has kind I, there is
an element B of AX which has height r + 1 and has infinitely many pairwise
orthogonal strongly regular types in S(B). That is, B is -X"[α][6] where b is
a realization of the s E Sp which supports infinitely many types. In fact,
without loss of generality, we can require all models of height r + 1 to have
this form. But now, for each φ E S(B), dim(^,Mχ) = dim(α(<^),My).
Thus, we can label a node B of height r + 1 by / G \β + l||ω| if for each
i < ω, there are i mutually orthogonal types in S(B) which are orthogonal
to B~ and satisfy: dim(^, MX) = f ( i ) . We force this last condition to hold
by putting f ( i ) independent realizations of <ft into AX. By Lemma 2.8, we
have Hr+ι(|/3 + l | l w l ) distinct models of power #β as required.

To see the labels are preserved, suppose AX and AY represent M. Then
there is an isomorphism between (Aχ)1 and (Ay)1 induced by nonorthog-
onality as in Theorem XVΠ.4.7. Moreover, continuing the notation of that
theorem, if q E S(B) and ht(B) — r + 1 then a(q) / q and both are strongly
based on Mβ?α(β). But then dim(</, M) = dim(α(^)M).

ii) If p has kind II, Sp is infinite. We will label the nodes of height r in
AX. Each such node corresponds to a realization α of p. We label the node
by telling for each s E 5α, the number of realizations of s which support a
type of dimension #Ί for ω < 7 < β. There are then

*
labels. If a is an isomorphism between the elements of height at most r in
AX and Ay, then a and α(α) have the same label. Applying Lemma 2.8,
there are at least 2r(\β + ω|l^+ω') = Hr+ι(|/? + ω\) models of power N/j as
required.

iii) If p has kind III, for each a realizing p and for each r € Ra^ there
are at least |/?+ 1| possible dimensions for r. Since Ra is infinite, there are
\β -h l|ω possible labels for α. Thus, by Lemma 2.8 again, there are at least
lr(\β + l| |u;|) models of T as required.

Apply Theorem XVII.3.19 to show the following exercise.
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2.12 Exercise. If T has depth r + 2 and some p of height r has kind I

In this section we have computed lower bounds on /*(N/?, AT) if one of
Rp, Sp, or Qp^s is infinite. When studying Vaught 's conjecture, β is zero.
By Theorem 2.1, we may assume that T has ENI-depth two. In that case
we found that if one of Re, Se or Qe

s is infinite the lower bound is 2ω. Thus,
for further analysis of Vaught's conjecture in Section 3 we may assume each
of J?e, Se, and Qe

s is finite. In Section 5 we improve the lower bounds in
uncountable cardinalities for this case and consider the upper bounds for
all cases.

2.13 Historical Notes. The discussion of Vaught's conjecture relies on
[Shelah, Harrington, & Makkai 1984] and [Bouscaren 1984]. The material
on Morley's conjecture appeared in [Baldwin & Harrington]. I was greatly
aided by discussions with Buechler and with Saffe, who gave the first proof
of the finite depth case of the Morley conjecture [Saffe 1983].

3. The Vaught Conjecture for ω-Stable Countable
Theories

In this section we complete the proof of Vaught's conjecture for an ω-stable
countable theory. With this in hand we finish in Section 5 the finite depth
case of the proof, outlined in Chapter XVII, that the spectrum function of a
countable α -stable theory is increasing on uncountable cardinals. Through-
out this section we assume T is a countable ω-stable theory with fewer than
2**° countable models. The following notion of a frame for T formalizes the
ideas introduced at the beginning of Section 2 but since T has ENI-depth
two it is less complex than the analogous notion of a frame for p introduced
in Definition 2.9.

3.1 Definition. A frame for Γ is a triple (Re,Se,Qe) satisfying the fol-
lowing conditions. Re is a maximal set of pairwise orthogonal, ENI-depth
zero, ENI-types which are each nonorthogonal to the empty set. Se is a
nonorthogonality basis for the ENI-supportive types. For each s G Se and
each 6 realizing s, Q\ is a nonorthogonality basis for the ENI-types which
need b over doms. We write Qe

s for an arbitrary representative of the con-
jugacy class of the Qe

s b and Qe for the union of the Qe

s over s E S.
Let MO be the prime model of Γ. Then, by Theorem XIII.3.4 each

p G Se U Re is nonorthogonal to some strongly regular type which is strongly
based on MQ. By Lemma 2.5 and Theorem 2.6, Re and Se are finite. Thus,
by choosing the right members of each nonorthogonality class we can as-
sume all members of Re U Se are based on the same finite subset A of MQ.
Moreover, we can assume the members of Re are nonisolated and strongly
regular.
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By Lemma 2.5 again there are only finitely many mutually orthogonal
ENI-types which are not orthogonal to A. Thus, we can choose a finite set
D with A C D C M so that if r -f\ A, there is an r G S(D) which is strongly
regular and not orthogonal to r. Perhaps enlarging our original choice, we
let Re denote a nonorthogonality basis for the set of all ENI-depth zero
types which are not orthogonal to D. For each realization b of s G Se, we
denote by Qt> a nonorthogonality basis for the types which need b/A. As
in the previous two cases, we can assume that all members of Qb are in
S(A U b'} where b' is a finite sequence which is atomic over A U b. There is
one slippery point in this specialization. There may be realizations of some
s £ Se which depend on D over A. Since there are only finitely many such
points we will see, in the proof Theorem 3.13, that they are harmless.

We now fix a particular model M and describe a 'basis' for M with
respect to a specific frame (Re,Se,Qe) for T. Recall that each s € Se is
associated with a strongly regular s given in Notation 1.13.

3.2 Notation. (Fig. 1). An ENI- extended basis or set of reference points
for M relative to (A, /}, Re, Se,Qe) consists of

ei) A basis Jr of r(M) for each r G Re

ii) A basis Is of s(M) for each s e Se.
iii) For each b E Is and each q G Qj;, a basis J^ for q(M).

Fig. 1. An extended basis

Since Qe
s is finite we are able to identify the si from Notation 1.13 with s.

Associated with Is is a set /§, a basis for s(M), such that for each b E Is

there is an α C b with a G Ig and t(b', A U α) is isolated.

We write Jb for \Jq€QeJq,b
 and J8 for U&e/s^6' we cal1 Λ a basis f°r Ql

in M. We write Ie for Urefl^ uUs<ESe^ uUsese^' we cal11& an extended

basis for M.
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Of course, some Jr and Is may be empty. If Is is empty, then no Q\
for b realizing s is even defined. Note that / is independent over A relative
to the partial ordering which places c above 6 if c G Jb and otherwise the
elements of Ie are incomparable.

The next lemma justifies the terminology 'extended basis'.

3.3 Lemma. If Ie is an ENI-extended basis for M then M is atomic over
D U Ie. Thus, if M is countable, M is prime over D U Ie.

Proof. Let TV be a maximal atomic model with P U D C N C M. The
existence of TV is guaranteed by Zorn's lemma since the union of atomic
models is atomic and if E C TV is atomic over D\JP then there is a model
TV' which is atomic over D U Ie with P U D U E C TV' C M.

We claim TV = M. In the ensuing two paragraphs we eliminate each
possibility for a strongly regular type q G S(N) which might be realized in
M — TV. The definition of a frame provides a classification of the possible

q
First, we show that no type q G S(N) which satisfies either of the follow-

ing two conditions can be realized in M — TV. i) q is ENI. ii) q is nonorthog-
onal to a type which has a realization b G M such that b supports an
ENI-type. For, if so, either q / r for some r G Re or q JL s for some s G Se

or q needs b/A for some b G Is. By Theorem 1.16 if q needs b/A, q / <?o
for some qo £ Qb Now in any case, since the appropropriate r, s, or #0 is
strongly regular, and not orthogonal to q, one of rN, SN, or QQN is realized
in M — TV contradicting the maximality of Ie.

Now suppose some persistently isolated q G S(N) is realized by some
c G M — TV. We will show TV U c is atomic over Ie U D and thus contradict
the maximality of TV. Let E be an arbitrary finite subset of TV and without
loss of generality assume q is strongly based on E and that D C E. (That
is, if necessary, expand E a little.) Then q\E is isolated. Since c [E TV and
t(c;E) is stationary, t ( c j E ) \— £(c;TV). Applying transitivity of atomicity
(Lemma IX.1.11) twice, TV U c is atomic over E U P and then over D U P.

The next step in the proof is a solution of the difficulty we encountered
in Chapter XVII. The decomposition tree describes Jb for only one member
b from each of the dependency classes under forking of the realizations of
the supportive types. But Jb and J&/ may vary drastically even when b and
b' are dependent. Rather than choosing a representative from each such
class (by choosing a basis), it is necessary to describe Jb for each member
of the class. Since in this case we are dealing with depth one types, this is
not too difficult.

For the present purposes of Vaught's conjecture the β in the following
definition and lemmas can be set at zero. However, it doesn't clutter the
definition or excessively complicate the proofs. So since we apply the more
general notion in Section 5 we obtain its properties at this time.

3.4 Definition. Let s G S(A) have depth one and let A C M with M\=T
and \M\ = Kβ.
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i) For c G s(M) the local β-con figuration of s at c is T>C,M> the vector
of dimensions in M of the types q G Qe

c.

ii) For fe G s(M), the β-configuration of s at 6 is V[b],M = {VC,M '• c I A b}
If β is fixed we speak of an s-configuration.

The following definitions will clarify the effect of a particular type s G Se.

iii) The model M is s-simple if M is prime over A, a basis for s in M
and for each b in this basis, a basis for Q^ in M.

Here is an even simpler model.

iv) The model M is s-trite if M is prime over A U 6 U J& where fc realizes
s and Jδ is a basis for Q\.

A ^-configuration of s at 6 in M is said to be trite or simple if M is trite
or simple.

Each /J-configuration is thus a set (not a sequence) of countable (finite in
the Vaught conjecture case) sequences of cardinals less than or equal ftp. We
write configuration for 0-configuration. Vectors denoted by s, t range over
local configurations; vectors denoted by S, T range over configurations.

In Section 5 we will rely on an obvious variant on the notion of an
s-configuration to include types s G Sa — S%. This variant is obtained by
allowing the types q in the definition of a local /^-configuration to range
over Qc rather than just Qe

c (i.e. we include isolated types.)
Given the dimension of each type in Re and for each s G Se and for

each vector ?, the number of members, 6, of a basis for s for which ΰb,M
should equal £, we may determine a model M of T. However, there may be
more than one such sequence which yields the same model. For, if ϋb,M = t
and VC,M = s and b / c, we may obtain the same model by choosing a
basis element with associated dimensions s as by choosing one with asso-
ciated dimensions t. This situation is illustrated by the example in Section
XVIII.4.

We now show that the /3-configurations which occur in trite models are
either equal or disjoint and then that any configuration is a union of trite
/^-configurations. This analysis is based on [Bouscaren 1984].

3.5 Proposition. Let 6, c realize s and suppose b 1A c. For any q G Qc,
there is a q G Qb with q JL q.

Proof. Since q needs c/A, Lemma 1.14 implies q needs b/A. But, Qb is a
nonorthogonality basis for the types which need b/A so we finish.

The following lemma employs the notation of 3.2. It is here that we make
crucial use of the choice of the strongly regular type s.

3.6 Lemma. Let M be s-simple. Suppose b G s(M) and J& is a basis for
Ql in M. Let MI C M be prime over A U b U Jf,. For any c G s(M) with
c 1A 6, there is a c1 G MI with VC,M = ?V,MI
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Proof. We first show that for each c E s(Mι) which depends on b over A,
^C,M = ^C,MI - Clearly, each component of VC,MI is less than the correspond-
ing component of VC,M- For the converse, choose any qξLQe

c. By Proposition
3.5 there is a qf E Q\ with q / q'. Now if q is realized in M - MI, so is
(<?')Ml. But this contradicts the assumption that J& is a basis for Q\ in M.

Note that V[&],MI is the same for every MI prime over A U 6 U J& (by
the uniqueness of prime models). Thus, it suffices to show that for every
c E s(M) with c 1A 6, there is a copy of MI which contains a c1 with
^C',MI = VC,M By the first paragraph of this proof, we need only find an
MI and a c1 E MI so that VC ,M = ^C,M Recall that by Lemma 1.12 there
is a strongly regular type s such that there is an α C 6 which realizes s and
such that i) a >A b and ii) £(6;α U A) is isolated. Let d C c realize S and
satisfy that i) dD>^ c and ii) t(c\d\jA) is isolated.

We now use the s-simplicity of M to find a copy of MI which contains
an appropriate c?'. Let Γs denote I3 — {α}, I§ denote I§ — {6}, and J'3 denote
Js — {Jb} Making essential use of the strong regularity of s we show

d I I's.
A\Jb\JJb

For, c 1A b implies c 1A b U J&. Since d >A c, d 1A b U J&. Now, by regularity,

t(d\A\Jb\JJb) J- SΛU6UJ*. Thus, d UU&UΛ /*•
Recall that for each / G /s, there is an 0 E I§ such that g>A f and that

/ >A «//- This implies that I'- >A (I's U J^). The displayed formula and the
independence of I'§ from b U J& imply d U 6 U J& [A I$ From domination we
get d U 6 U Jb I A I's U «/s -^ow monotonicity yields d j^ufru Λ Is U Js. Since
M is atomic over A U Is U Jθ, by the open mapping theorem t(d\ A U b U «/&)
is isolated. Choose a copy of MI prime over A U 6 U J& and containing d
and choose c7 E MI to realize s£p(c; A U d).

Now, both Qc and Q ,̂ form nonorthogonality bases for the ENI types
which need d/A. Thus, / defines a 1 — 1 correspondence between Qe

c and
Qe

c, sending, say, q to q. Since any member of Qe

c or Qe

c, is not orthogonal
to A U d while c and c' realize the same isolated type over A U d, Theorem
XIV.2.9 yields dim(<?,M) = dim(<7,M). Thus ϋc/ jM = VC,M•

3.7 Corollary, i) Every simple s-configuration is a trite s-con figuration.

ii) // S and f are trite s-configurations and S Π T ^ 0 then S = T.

Proof. In Lemma 3.6 we showed that any configuration realized in the
s-simple model M is also realized in the s-trite model MI. Thus we have
i). For ii), suppose two trite configurations, S and T, intersect in a tuple t.
There are trite models M and TV and an element b with ϋbtM = VI>,N = t,
but ϋ[b],M — § and V[&],ΛΓ = f. Let the model MI be prime over A\Jb\JJb.

By Lemma 3.6, S = V[b],M = ^[b],Mϊ = ^[b],N = T.

Two easy lemmas complete our analysis of ^-configurations. It remains
open whether, assuming for instance that T is α -stable with fewer than 2*°
countable models, one can prove that every ^-configuration is trite.
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3.8 Lemma. // S is a β-configuration for s then S is a union of trite
β-configurations for s.

Proof. Let M D A and suppose V[b],M — S. For any c G s(M) which depends
on 6, let Mc be prime over c U Jc where Jc is a basis for Ql m M. Then,
since s has weight one, if d G s(Mc), d 1A 6, so V[C],MC ^ 5 as required.

3.9 Lemma. For every depth one type s£S with \Qe

Q\ <ω, there are either
\β + ω\ or for some natural number k, \β + k\ distinct trite β-con figurations
of s.

Proof. Let C be the set of cardinals less than N/? and suppose \Qe

3\ — n.
Then each trite configuration W is a subset of Cn. For each i < n, there
is at most one infinite cardinal λ such that for some v G W, Vi = X. For,
Vi = dim(g, M) for some q G Qb> But, if c 1A b and q G Qc with q / ρ,
dim(</, M) = dim(g, M) modN0. Thus, if w = VC,M, Wί = λ as well. Thus,
there are at least \β + l\ distinct trite /3-configurations. There are at most
\β + ω\ since this number is attained when all finite dimensions can be
discriminated.

Since each /^-configuration is a union of trite configurations the number
of configurations will be 2\P+k\ or 2^+^L When β is finite the first case of
Lemma 3.9 gives 2'wl configurations; the second finitely many. The following
definition isolates the difficult case. In the next section we show that such
pathology actually exists.

3.10 Definition. For any B and any s G S(B) with depth one, let Qe

s be
the collection of depth zero types which are ENI and need some realization
of s. Suppose Qe

s is non-empty. If there are |/? + ω| distinct /^-configurations
of s realized in models of Γ which have power N^ we say s is normal. If
not, s is abnormal.

3.11 Definition. If T has no ENI-depth 2 types, the full configuration of
a model M is

{kr : kr = dim(r, M), r G Re} U
Oτ> h,* = \{b:be s(M) and ϋ[b]tM = T }|, s G Se}.

Recall that T ranges over configurations.

The key point of the following proof is the selection of an infinite set
of trite 0-configurations for a type s such that any subset of them can be
realized.

3.12 Theorem (Vaught's Conjecture for α -stable T). A countable ω stable
theory has either at most NO or 2**° countable models.

Proof. The successive reductions in this chapter have shown that if T has
fewer than 2**° countable models then each model is uniquely determined
by its full configuration. Let (Re, Se,Qe) be the ENI-frame for T. Suppose
some s G Se is normal. Let (Ti: i < ω) be a set of distinct trite configurations
for s. Since D — A is finite for each s G Se, given any infinite independent
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set of realizations of s, all but finitely many are independent from D over
A. For any W C ω, let MW be prime over an extended basis such that if b
realizes s and b I A D, \ Jb\ G fi for some i G W. Then Mυ w Mw implies
W = U so T has 2*° countable models.

If every s G Se is abnormal, every countable model of T is prime over
one of the countably many ENI-full configurations and we finish. There are
infinitely many full configurations since the full configuration counts the
number of times each ^-configuration is realized.

3.13 Historical Notes. The proof of Vaught's conjecture first appears in
[Shelah, Harrington, & Makkai 1984]. The proof here depends greatly on the
analysis of [Bouscaren 1984]. Numerous conversations with Steve Buechler
further aided the preparation of this section. Bouscaren [Bouscaren 1984]
has shown that the analysis expounded here yields Martin's conjecture for
ω-stable countable T. To state Martin's conjecture we must define a certain
extension of first order logic. The language L* is the fragment of iωι>ω

generated by the consistent types of T. Now, Martin's conjecture asserts
that if T has fewer than 2K° countable models then for every countable
model M of T, the L* theory of M is No-categorical. The next problem
is to show that an ω-stable countable theory T satisfies the strong Martin
conjecture: either T has fewer than 2**° countable models and for every
countable model M of T, the L* theory of M is No-categorical or T has
2**° distinct complete extensions in L*(T).

4> The Existence of Abnormal Types

In this section we describe Shelah's example of a countable theory which
has ENI-depth two but only N0 countable models. This phenomenon arises
from the existence of abnormal types. Thus, this example justifies the at-
tention paid to abnormal types in the proof of the Vaught and Morley con-
jectures for α -stable theories. This completes the survey in Section XVII.3
of prototypic depth 2 theories.

Locally the pathology we are investigating is manifested by the existence
of a type which is abnormal (Definition 3.10). From a more global and less
formal perspective the situation is this. We will find a countable ω-stable
theory which has only countably many countable models but which has a
non-principal type which is orthogonal to the empty set. At first blush, we
hope to be able to pick the dimensions of infinitely many copies of such a
type independently. In the example at hand we can not.

There are three parts to our description of the example. First, we will
informally describe the axioms of the theory and show they induce certain
definable relations in each model of the theory. Then, we will show that any
theory whose models admit these definable relations provides the required
example. Finally, we describe the prime model of the required theory.
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4.1 Definition. Let the language L contain unary relation symbols Pi for
i < ω, binary relations symbols £", /?, and a 5-ary relation symbol G.

The first part of the description (through Paragraph 4.5) contains an
informal partial axiomatization of the theory. On each model M of T, the
relation E will define an equivalence relation and R will be an asymmetric
relation on the structure M/E. We will denote the ^-equivalence classes
in M by α, β etc. and write β(α, β) if for one (and hence any) a E α,
b E /?, β(α, 6) holds. By a cycle in M/ί? we mean a finite sequence of points
(c*Ch <*n-ι) with n > 4 which are distinct except that c*o — c*n-ι and for
each i < n either #(0^,0^+1) or R(θίi+ι,θίi). If M [= T then Λf/J£ shall
contain no cycles. For each i < ω, there is a unary predicate P^ which inter-
sects each ^-equivalence class in an infinite set. The Pi shall be disjoint; if
Pi (a) holds, we say a has order i. We say a has finite order to mean Pi(ά)
holds for some i < ω without specifying the i. An element which satisfies
none of the Pi is said to have infinite order.

The relation between two Λ-adjacent classes α and β in a model of
T is determined by a map Ίa,β which depends on a point α from a and
a subset {b, c} from β. The graph of the function 7^/3 is defined by the
formula 0(α, 6, c, x, y). The relation G is symmetric in the second and third
coordinates; that is, <7(α, 6, c, x, y) <-»• G(α, c, 6, x, ?/).

4.2 Definition. (Fig. 2). The E equivalence classes α and β are properly
linked via (α, 6, c) with a € α and 6, c G /? if there exists a unique map 7^/3
such that

i) 7α /? is a 1 — 1 onto map from α — {α} to β — {6, c}.
ii) For every i < ω, ̂ -P» - ^(-^(&) Λ -.P, (c)).

iii) For every i < ω, P;(α) -» (P;(6) V P<(c)).
iv) For every j < ω,

Λ [(P,(6) Λ ̂ -(c)] V hPy(6) Λ P, (C)])].

v) For every j < α;,

(^(α) Λ F,(6) Λ -.Pyίc)) - ((Bl^hP^a;) Λ Pj(ia,β('W

v7) For every j < ω,

(P, (o) Λ Pj(c) Λ -πP, (6)) -H. ((ΞteJhPj ίϊ) Λ Pj(ia,β(x))})

vi) For every i,j < α;,

(Vx)((-.P<(ι) Λ P<(7α,/9(x)) Λ Pi(6)) -» [P, (c) ̂  P,^)]).

vi') For every i,j < α;,

(ViJί^Piίa:) Λ Pi(Ίa,β(x)) Λ P<(c)) - [P^fr) ~ P,-(a;)]).

It easily follows from ii) that if a has infinite order so do both 6 and c. It is
possible for b or c to have infinite order while a does not. If both b and c have
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α

Fig. 2. a and β are properly linked; α, 6, and c have finite order.

infinite order so does α. These axioms imply for all y, Pj(a ) <-» -Pj(7α,0(z))
holds with at most one exception. Moreover, this exception can occur only
if α and thus one of b or c has finite order. Note that the conditions in
Definition 4.2 are symmetric in b and c.

4.3 Uniqueness of Proper Linkings. i) There is a unique proper link
between a and β if they are .R-adjacent.

ii) If G(α, 6, c, x, y) defines a nonempty relation on a x /? then α; and /?
are properly linked via (α,6, c).

By condition 4.3 ii), the fact that a and β are properly linked by (α, 6, c)
can be expressed by a single first order sentence. Note however that the
properties of a proper linking described in Definition 4.2 can only be ex-
pressed by an infinite conjunction.

Each model of T is partitioned by the connected components of M/E.
In order to calculate the number of models we will analyze the possible
structure of a component. For this we require the following notation.

4.4 Notation, i) For any equivalence class α, qa denotes the type of an
element of α which is in no Pi ( has infinite order),

ii) We write dim(</α,M) for the cardinality of the set of elements of
infinite order in α.

When the choice of M is clear we write dim(qa) for
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After the fact we will justify the notation in Definition 4.4 ii) by show-
ing that for any model M of T and any α, the realizations of qa in M,
denoted ^α(M), form a set of indiscernibles. This indiscernibility will be a
special case of the proof that the isomorphism type of any component of a
model of T is determined by the dimensions of the equivalence classes in
that component. In fact, we will show that if dim(gα) = dim(^) then any
isomorphism between a and β extends to an isomorphism of the compo-
nents containing them. Such an isomorphism can be^easily constructed by
going back and forth between the components once the existence of enough
proper linkings is stipulated. We so stipulate in the next family of axioms.

4.5 Existence of Proper Linkings. 1) If a is Λ-adjacent to β then a.
and β are properly linked.

2) We must specify that each α has many β-successors.

i) For each equivalence class α, and each α £ α there exist infinitely
many β which are β-successors of a and for each β unique ele-
ments 6, c E β such that a and β are properly linked by (α, 6, c).

ii) When a has finite order i, we must make this requirement more
specific.

a) There are infinitely many β and for each β unique 6, c each
having order i so that a and β are properly linked by (α, 6, c).

b) For each d £ a with order j > i, there exist infinitely many
β which are β-successors of a and for each β unique elements
6, c € β such that a and β are properly linked by (α, 6, c) and

has order i.

3) We must specify that each β has many β-predecessors.

i) For each equivalence class β and each 6, c £ β there exist infinitely
many a which are β-predecessors of β and for each a. a unique
element a £ a such that a and β are properly linked by (α, 6, c).

ii) If b has finite order i, we must make this requirement more specific.
For every c φ b with order greater than or equal to i, and for every
e φ b £ β with order i, there are infinitely many a and for each
a a unique a with order i so that α and β are properly linked by
{α, 6, c) and 7~^(e) has the same order as c.
To achieve this effect with a single sentence even in the case that
the order of c differs from that of b note that in view of Definition
4.2 it suffices to assert ~I^(7^^(e))). The symmetry between b
and c makes it unnecessary to repeat condition 3 substituting c
for b.

The calculation of the number of countable models follows easily from
the following result.

4.6 Claim 1. Each countable component, C, of a model, M, of T falls
into exactly one of the following three classes.
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i) For each a C C, dim(</α) = 0.
ii) For each a C C, dim(gα) = N0

iii) For each a C (7, 1 < dim(qa) < N0

In the terminology of Definition 3.4, Claim 1 asserts that the unique type
over the empty set sets admits only three 0-configurations: {0},{N0}5ω.
The claim follows from the following more specific assertion.

4.7 Claim 2. Suppose R(a, β) and a and β are properly linked by (α, 6, c).

i) dim(<?α) < dim(qβ) < dim(qa) + 1.
ii) 7/dim(<7α) = 0 or dim(^) = 0 then dim(qa) = dim(qβ).

iii) If dim(qa) > 1 then for some β properly linked to a, R(a,β) holds
and dim(<70) = dim(qa) + 1.

iv) // dim(<7/?) > 1 then for some a properly linked to β, Λ(α, β) holds
and dim(qβ) = dim(^α) -hi.

Proof. We must examine the cases depending on which of α, 6, c have infinite
order.

a) All three have infinite order. Note that this case occurs if a has infinite
order. In this situation 7^/3 is a 1 — 1 onto map from qa(M) — {a} onto
qβ(M) - {b,c}. Thus, dιm(qβ) = dim(qa) + 1.

b) Suppose a and b have finite order, i, while c has infinite order. By
Definition 4.2 v) we can choose a d with ->Pi(d) Λ Pi(^0t^(d}). By vi) d has
infinite order. In this case 7^^ is a 1 — 1 onto map from qQ(M) — {d} onto
qβ(M) - {c}. Thus, dim(g/j) = dim(qa).

b') Suppose a and c have finite order, i, while b has infinite order. Now,
the analysis is just as in case b) interchanging the roles of b and c with
appeal to v') and vi') instead of v) and vi). We find dim(^) = dim(^α).

c) All three have finite order. If they all have the same order condition
4.2 iv) implies that 7α?/? preserves the Pi and dιm(qβ) = dim(gα). If b and
c have different orders we proceed as in case b) or b') depending on which
order is larger. In either case 7α?/? is a 1 — 1 onto map from qa(M) onto
qβ(M}. Thus, dim(^) = dim(^α).

In all three cases conclusion i) holds. If dim(qa) = 0 or dim(^) = 0 it
is impossible (invoking Definition 4.2 ii) in the second case) to choose α to
realize qa. Thus, conclusion ii) holds. If dim(gα) > 1 and dim(^) > 1, we
can choose α, b and c to have infinite order. Applying the appropriate one
of the existence conditions (4.5) we conclude iii) and iv).

4.8 Exercise. Show that if dim(^) = 1 then for any β-predecessor α of
/?, dim(gα) = 1.

4.9 Theorem. Let T satisfy the axioms given in this section. Then T is
complete and has countably many countable models.

Proof. It is easy to conclude Claim 1 from Claim 2. The isomorphism class
of a component is determined by the category from Claim 1 in which it fits.
In fact, if a and a' are two equivalence classes with the same dimension
any 1 — 1 map between a and β which preserves the Pi can be extended
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to an isomorphism between the components which contain a. and a.1. This
isomorphism is constructed equivalence class by equivalence class using the
existence conditions 4.5 and inducting on the distance in M/R from α. But
then a countable model of T is determined by the number of components of
each of the three kinds it has. Thus T has only countably many countable
models.

It remains to show that there is a consistent theory satisfying the condi-
tions described above. For those with sufficient intuition, the prescription
in those conditions will lead directly to the model. This path is smoothed if
one thinks of M/R as a tree where any class is chosen as a base point and
whether an β-adjacent point is a successor or a predecessor is indicated by
coloring the edge connecting them.

For a more concrete representation, we will explicitly construct the prime
model of the theory. The first difficulty in such a construction is to explicitly
describe a partial order (A, R) which is isomorphic to the required structure
(M/E, R). The following notation will enable us to overcome this problem.
The structure we define here is the solution to the proportion

ω : Z = ω<ω : x.

4.10 Notation. Let Vω denote the set of all partial functions with domain
an initial segment of the integers and range contained in ω. Now (K,, C) is
the required partial order.

In the following definition we require several auxilliary functions. Let
δ be a map from ω x ω onto the direct product of ω5 with the set A of
subsets of ω with one or two elements. We require the following properties
o f δ .

For each n, (Xx)6(n,x) maps ω bijectively onto A x ω5

For each m, (Xx)6(x,m) maps ω bijectively onto A x ω5

If έ(m, n) picks out a two element subset of ω we write <5/(m, n) (respectively
£fc(ra, n) ) for the lesser (greater) of the two element subset. If £(m, n) picks
out a one element subset of ω we just let έ/(m,n) = ̂ (m, n). The 5-tuple
is denoted (δQ(mιn),δι(m,n),δ2(m,n),δ3(m,n),δ4(mιn)). The function δ
can easily be constructed by analogy with the enumeration of the rational
numbers.

We will define a structure M so that E and R are the equivalence relation
and graph described after Definition 4.1 and the Pi are the unary relations.
Suppose a. and β are properly linked by (α,6, c), the order of α is r, and
the order of c is s. Let g be the partial function whose graph is obtained
by fixing three elements and then projecting G on the last two coordinates.
Then ( X x ) g ( a , b , c , x ) is ̂ a^.

Let W = ω x ω. The universe of M is Vω x Vω x W. In the following we
let s, t range over elements of Vω and w = (m, n) range over W.

• E((s, t, w), (s1, t1, w')) iff s = s' Λ t = t'.
, £, w), (s7, £', w')) iff for some m, n € ω, s1 = s^m and t = t'^n.
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• Pi((s,t, (m,n))) iff m = i.

We say that the E class of (s, £, w) is indexed by (s, £).
Finally we define the partial function g which connects those equivalence

classes which are properly linked by (α, 6,c). Suppose that the two classes
are indexed by (s, t) and (s', t'). Let s' = s^m and t = t'^n. The elements
α,6, c, d, and e = Ίa,β(d) have the following explicit representations.

a =

c = (s', £', <^(ra, n), <52(m, n))

e= / r a , n , < 4 r a , r a

The relation G will only hold when the first three coordinates are the
α, 6, c which properly link two successive ^-classes. Then, G(α, 6, c, x, t/)
holds exactly when x = {s,£,t/,v} and v = {s',£',iί,t>) with the following
exceptions.

i) There is no y so that G(α, 6, c,α,?/) holds.
ii) There is no x so that G(α, 6, c, x, 6) or G(α, 6, c, x, c) holds.

iii) For any i,j, k G ω let σij^ be a bijection between ω — {i} and
α; — {j,k}. Then if x has the form (s,£,£/(ra,n),ί;), G(α, 6, c, x, ι/)
holds if y = (5/,^,^(m,n),σ5o(m)n)5(5l(min)^4(m5n)(ί;)}.

iv) G(α, 6, c, d, e) holds.

Now checking that [a]E and [6JE1 are properly linked by α, 6, c and then that
M has the properties described in Paragraphs 4.1 through 4.5 completes
the formal proof that T is consistent.

To give a little more insight into the example consider the following
proposition.

4.11 Proposition. For any model MofT and any a, the realizations of
qa in M, denoted qa(M), form a set of indiscernibles.

This proposition can be deduced as a special case of the general argument
for extending maps which preserve the Pi from one equivalence class to the
entire component. The following alternative argument also displays some
of the structure of the automorphism group of M. For this we require some
further notation.

4.12 Notation. Let Ln denote the language containing E, β, G, and the
Pi for i < n.

4.13 Lemma. Fix n <ω. Let β be an E-class of M. Ifπ is a permutation
of β which fixes Pi(M) as a set for i<n then π extends to an automorphism
π ofM\Ln.
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Proof. We will define the extension of π to the Λ-predecessors of β. Suppose
a precedes β with a indexed by (s, t) and β indexed by ( s ' , t f ) . Suppose
sf = s^m and t = t'^n. Let

and
ττ(c) = ( s ' , t ' , k o , k ι ) .

Choose n1 so that
ίj(ra,n;) = min(/o, fco)

δh(m,ri) = max(/0, fco)

<$ι(ra,n') =/ι

δϊ(m,n'} = ki.

Now our strategy is to map α to the class oί indexed by (s,tf^n'). We
extend the domain of the partial automorphism π to a by defining

π(α) = (s,t^ri,δι(m,ri),δo(m,ri))

and
π((s, ί, w, v)) = (s, rV, 7α',/3~1 ° π o ηfα,0((s, ί, w, v))>.

There is no conflict between the two clauses of the definition since a is not
in the domain of 7α,/? There are in fact infinitely many possible choices for
n'.

We have seen how to extend π to the β-predecessors of β. The situation
for the β-successors is similar. An easy induction using the same procedure
extends π to an automorphism of M .

Lemma 4.13 shows that if we fix pointwise a finite number of the sets
Pi(M) ΓΊ /?, then the automorphism group of M acts transitively on the
remainder of β. This ensures that there are no definable relations on qa (N)
for any N \=T and any a and demonstrates Proposition 4.11.

To show that T is α -stable we require another observation about the
automorphism group of M.

If two elements, d and e, of M are in the same P^, say Pn, then there
is an automorphism taking one to the other. For, the structure of M/E
(ignoring G and the Pi) is the structure of a directed graph without cycles
such that each element has infinitely many predecessors and infinitely many
successors. It is easy to construct inductively automorphisms which guar-
antee that the automorphism group of such a structure acts transitively on
it. To find an automorphism of M taking d to e, choose an automorphism
TΓo of M/E taking the £-class of d to the £-class of e. Then π0 induces an
automorphism of M which we also denote by TΓQ. Let 7Γχ stabilize Pi(M) Π β
for i < n and map τro(d) to e. By Lemma 4.13 we extend πi to an auto-
morphism of M. Then ττι o TΓQ is the required automorphism of M mapping
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d to e. This yields that there are only countably many 1-types over the
empty set.

4.14 Theorem. The theory T = Th(Af) is ω -stable.

Proof. As we have just argued that there are only countably many one types
over the empty set, it suffices to show that each type over the empty set
has only countably many extensions over the countably saturated model
of T. There are, in fact, just three basic kinds of non-algebraic type. For
each of them, there are only countably many completions to an element
of S(M). To verify this in detail one must consider each of the α,6, c, d, e
associated with a particular realization.

i) P 2 q = {E(%, ^o) •' some mo G M} U {x φ mo : mo G M}.
ϋ) P 2 q = {-*E(x, m) : m G M} U {Λ(x, mo) : some mo G M}.

iii) p^q = {-*E(x, m) : m G M} U {->R(x, m) : m G M}.

This completes the description of the basic example. One other necessary
feature of the example follows from the proof by Bouscaren (Proposition 4
of [Bouscaren 1983]) that if U(t(ά', 0)) is finite then each q G S(ά) is normal.

4.15 Exercise. Complete the proof of Theorem 4.14.

4.16 Exercise. Verify directly that in this example any p G S(0) has infi-
nite U rank.

4.17 Exercise. Show that T has ENI-depth 2.

The example given does not show that the abnormal types affect the
computation of the spectrum in uncountable powers as T has 2**1 models
of power NI. Harrington suggested the following variation to solve this
difficulty. Add to the language unary functions which guarantee that all
the Pi have the same cardinality. Observe the following.

4.18 Theorem. If a theory T' is an expansion of theory satisfying condi-
tions 4-2) 4 $ and 4-5 and all the Pi have the same cardinality then T has
only countably many models of power NI .

Proof. There are now two categories of component: those in which each Pi
is countable and those in which each Pi is uncountable. The first category
divides into the four cases discussed in Claim 1. In the second category,
there is the additional case that all the qa have dimension NI.

4.19 Historical Notes. This example was discovered by Shelah in 1981.
Lascar and Bouscaren had solved the Vaught conjecture for countable
ω-stable T modulo the assumption that T admits no abnormal types. More-
over, they had given sufficient conditions, e.g., otτ is finite, for there to be
no abnormal types. In the summer of 1984 Harrington and Cherlin pre-
sented the example at the Forking Festival. This writeup differs from that
presentation primarily in the choice of description. The example was de-
scribed as the model completion of a theory satisfying certain conditions;
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we have specified the prime model. In addition to discussions with Buech-
ler, Hrushovsky, and Harrington, we owe a great debt to Alan Mekler for
correcting errors in the penultimate version.

5. The Morley Conjecture for ω-Stable Theories

We turn now to the proof of Morley's conjecture for countable ω-stable
T. In Chapter XVII we reduced to the case that Γ has NDOP and has
finite depth, say m. Thus, if M \= T, M can be decomposed by a normal
tree of countable models (Ά, <) with depth m. We can assume that T has
fewer than 2λ models of power λ for each λ. Thus, by Theorem XV.2.12
we can assume every type with positive depth is trivial. The analysis in
Chapter XVII showed that M was completely determined by the associated
ω-labeled tree where ί(α; A") labels A G A when A = A~[a\. The resulting
upper bound, 1m-ι(\β + ω\\ω\), on the number of models in power N0 is not
exact for some theories; it is computed on the worst case assumption that
there are infinitely many pairwise orthogonal ENI types over each relevant
A £ A and that all significant types are normal. A finer analysis must
consider the situation where there are only finitely many types over some
A and where some of the types may be isolated or abnormal. In Section 2
we computed lower bounds on the number of models if some type p of
height r and depth two has Rp, Sp, or some Qp,s infinite. In this section we
compute the upper bounds in each case. Moreover, we extend the analysis
to deal with abnormal types and with one further problem. Recall that the
strategy in Section 2 was to construct models from trees that were NI -ample
up to height r and to label the nodes of height r. Ideally, we would just
apply this strategy with r = m — 1. However, the nodes of height m — I
might create few models while the nodes of height m — 2 create many. This
problem is illustrated by the following two examples.

5.1 Example, i) The difficulty arises already at depth 2. Let the models
of T be a disjoint union of models of the theory T' which has infinitely
many disjoint unary predicates and a model of Th(Z, S) in each
predicate and the theory T" of a single equivalence relation with
infinitely many infinite classes. Then in power NI, T has 2**° models
given by the depth one theory T', not the NO models given by the
depth two theory T".

ii) The following, somewhat more complicated example, illustrates the
problem at depth 3. Let T be the theory of the disjoint union of
the theory T^ from Examples XVII.3.8 and REF%, the theory of two
refining equivalence relations. Then the depth of T is determined

by REF2 as 3. But T has \β + ω\\β+1\lωl models of power fy as
determined by the depth 2 theory T2, not the |/? + ω|l/?+1l models of

REF2. In particular, there are 22 ω models of power NI, not 2lωL
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Note, however, that while the fragment of the theory that has lower
depth may dominate the spectrum function for small values of β, for large
β the spectrum function is determined by the types of greater depth. This
partially explains why we were able to complete the analysis for large values
of \Hp with less effort in Chapter XVII.

In the light of the example in Section 4 and the analysis in Section 2 we
extend the list from Definition 2.9 of kinds of depth two types.

5.2 Definition, i) The depth two type p G S(X) has kind IV if Rp, Sp,
and Qp, are all finite but some s G S£ is normal.

ii) The depth two type p G S(X) has kind V if Rp, Sp, and Qp are all
finite and every s G Sρ is abnormal.

The next definition and the following two lemmas deal with the problem
of abnormal types. Suppose A and B represent M. By Section XVII.4
we establish a quasiisomorphism between A1 and B1. In fact, since the
depth is finite we can guarantee that this map is an isomorphism of trees.
We will label the top nodes of A and B by full configurations (see the
next definition). To see these labels are preserved by the isomorphism of
trees, recall that it is induced by nonorthogonality. Thus we would like to
show configurations are preserved by nonorthogonality. Lemma 5.5 almost
accomplishes that aim and comes close enough to permit us to make the
desired calculations. After establishing this preservation result, we finish
the computation of the spectrum paying attention to the problem described
in Example 5.1.

5.3 Definition. Let p G S(X) have depth two. Let a realize p. The full
configuration of a in a model M is

{kr : kr = dim(r, M), r G Ra} U
{b,s IT,S = \{b:be s(M) and v[b]tM = f}|,s G Sa}.

Here we need the ^-configurations from Definition 3.4 in order to de-
scribe models of power #β.

5.4 Definition. Let pι,p2 be depth 2 types. Then p\ and p2 are similar,
written p\ ~ p% if for arbitrary a\ realizing p\ and b\ realizing saι G Sβl,
there exist a^ realizing p% and 62 realizing sa2 G Sa2 ? such that nonorthog-
onality induces 1 — 1 correspondences between Raι and J?02, Saι and SΛ2,
and between QΛι,bι and Qα2,62 For simplicity we denote all these maps as
α.

We show that nonorthogonal depth two types are similar and have al-
most the same configuration.

5.5 Lemma. Let A be an AT-decomposition of M and suppose X G A.
Let pι,p2 G S(X) have depth two and Kind IV or V. If p\ / pi then

i) pi - p2

ii) For eachai realizing pi, there is ana^ realizing p% such thata\
and
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a) For each r G Raι, dim(r, M) = dim(α(r), M) mod NQ
b) For each s G Saι, dim(s,M) = dim(α(s),M) mod NQ
c) For eαcft s G 5αι, eαcΛ realization b\ of s, and eαc/i q G Qαι,6ι?

ίΛere zs an integer k and a b% realizing a(s) such that

dim(g, M) = dim(α(^), M) + k.

Proof. Just as we refined our picture of the frame of a model at the be-
ginning of Section 3, we can invoke the tools of Section 1 to clarify the
description of a frame at a realization of p\. Since p\ has kind IV or V,
SP1 is finite. Thus, we can find a type pi such that if αi realizes p\ there is
a finite sequence δι containing a\ and realizing pi such that a\ is atomic
over αi, a\ >χ δi, and every member of Saι is strongly based on a\ U X.

Since p\ and P2 are trivial we can find by Lemma XVI.2.12 a realization
«2 £ -X"[αι] of P2 with αi /x 02- Just as in the preceding paragraph we can
choose an a<ι on which all members of Sa2 are based. By Lemma 1.14 each
member of Saι needs ά^/X. Thus, since nonorthogonality is trivial we es-
tablish a 1 — 1 correspondence between Saι and Sa2. This correspondence
sends s to s with s / s. Applying Theorem XIV.2.8 we have condition b).
To establish the similarity of p\ and p2 we note now that since each sa has
depth one, Lemma 1.14 allows us to establish the required 1 — 1 correspon-
dence between QaιM and Qα2,62 Finally, we establish the correspondence
between Raι and Ra2. For if r is in Raι and not in Ra2 then r is nonorthogo-
nal to some member q of Qa2. But this is impossible. As, q is nonorthogonal
to some q G Qaι and q _L r. This proves i) and a) and b) of ii).

Condition c) follows from the next lemma. We already established the
correspondence between a\ and #2 and between s and a(s) = s. Since s
and s are both strongly based on subsets of X[αι], we can take them both
as types over X[αι]. To simplify our notation and since we don't use any
special properties of the construction of -X"[αι], we write N for X[aι].lt is
important for the following argument to remember that v^ is the collection
of ϋv, the vector of dimensions of types based on 6', for b' G [6].

5.6 Lemma. Let s, s G S(N) be nonorthogonal trivial depth one types.
There is a k = ks^§ such thatjor any c G s(M) there is a c realizing s with
c INC and v[£]ίM = v[c],M + k.

Proof. For ease of reading we find a kq for a particular q£Qs. The required k
is then the finite sequence of the fcg's. For isolated q€Qb there is nothing to
prove. For each b G s(M) and each <#, G Qe

b, we can choose by triviality and
Lemma XVI.2.12 a S G N[b] which realizes s(M) and as in Proposition 3.5
a gg such that b 1N b and q^ / q^. Let kq denote dim(^6, M) — dim(^, M).
We show the result first for c which depend on b over TV and then show
that the argument trivially extends to an arbitrary c realizing s. Since
£(6; N ( J b ) is principal, for any c G s(M) with c 1N 6, we choose c so that
t(b^b',N] — t(c^c',N). Thus, choosing N[c] to contain c, we have

dim(<7c, N[c}) - dimfe, N[c]) = dim(qb, N[b}) -
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But,

dim(qc, M) = dιm(qc, N[c}) + dimfa^M, M)

and
dimfe, M) = dimfe, N[c]) + dim^f [c], M).

Moreover, by Theorem XIV.2.7, dim(gf M,M) = dim(gf [c],M). So

dim(gc, N[c]) - dimfe, N[c]) = dim(gc, M) - dimfe, M).

Similarly,

dim(<7δ, 7V[6]) - dim(^, N[b]) = dim(<?b, M) - dim(ρg, M ) = fcg.

This implies dim(</c, M) — dim(ga, M ) = fcg for any c"~V realizing t(b^b'; N}
with 6 /N c. Thus, ΰ^ = vc + fc. But since c was an arbitrary member of [6],
we have v^ — ϋ[^ + A:.

Now suppose c realizes s and c IN b. To finish the lemma we must find
a c with U[£] = V[c] + fc. But this is immediate. For, N[b] and N[c] are

isomorphic by an isomorphism which fixes N taking c as the image of b
under that isomorphism and repeating the previous proof completes the
argument.

Let pi and p2 be nonorthogonal and suppose a\ and 0,3 are assigned as
in Lemma 5.5. Lemma 5.6 implies that the set of T which appear in the
full configuration of αi (i.e. If s φ 0 (cf. Definition 5.3)) is the translation

by a constant sequence fc of the S which appear in the full configuration
of 02- In particular, if si, 82 G S(N), Si / §2 then si is abnormal iff 8% is
abnormal.

In Section XVII. 4 we computed the spectrum of a countable α -stable T
if dp(T) is infinite and for cardinals #β where β is infinite. We now settle
the case for arbitrary uncountable β of T with finite depth m.

To construct models of T, we construct partially labeled trees of height
m — 2 with the top nodes labeled by the full configuration of the type at
that node. To demonstrate the lower bounds, we insist when defining the
tree that ht(Λ) = fc if and only if dp(ί(A; A~)) = m - fc. Thus, nonorthog-
onality preserves height. By constructing Ni-ample trees, we guarantee as
in Section XVII.2 that if Ά, B both represent a model M, then for each
A E A of height m — 2, there is an A G B also of height m — 2 such that
A 1A- A. The lower bounds follow since by Lemmas 5.5 and 5.6 the full
configuration at A differs from that at A by a constant function. We fill
out this sketch with

5.7 Theorem. Let T be an ω-stable countable theory with NDOP and sup-
pose dp(Γ) = m < ω. Consider those p E S(N), for some model N ofT,
which have height m — 2.

The spectrum function of T is determined by the following cases.

i) If some such p has kind I then



396 XVIII. Vaught and Morley Conjectures

ii) If no p of height m — 2 has kind I but there is one with kind II, kind
III, or kind IV then

ui) If every type of height ra — 2 has kind V then

Proof. Let M be a model of Γ with power ftp. Let (A, <) be a representation
of M and let A1 be the /c(/?)-labeled tree obtained by restricting (A, <) to
the nodes of height at most ra — 2 and labeling each node A~ [a] of height
m — 2 by the full configuration of a in M. Thus, κ(β) denotes the number
of possible labels for the representing tree of a model with power N/?; later,
we calculate the value of κ(β) in each case. Ideally, we would now construct
a 1 — 1 correspondence between the set of such labeled trees and the models
of power N/?. We can not quite do this. But, we have a map σ (for surjective)
from the class, T/?5/c, of such trees onto the class of models of power N^. To
obtain σ(Al), choose points to witness the configurations described by the
labels and take the model prime over the resulting tree. Thus, T@ιK is an
upper bound.

We will show, by a separate argument in each case, that 2^jlc, the number
of Ac-labeled Ni-ample trees of height ra — 2 provides a lower bound on the
number of models of power at most N^. For, if the NI -ample trees A1 and
Bl both represent a model M, Theorem XVII. 4. 7 implies the unlabeled
trees are isomorphic. By an ad hoc argument in each case, we will show
that this isomorphism preserves labels.

Writing K, for κ(β), Lemma XVII. 3. 17, yields the upper bound:

\TβtK\ = Pβ,m-s,κ = 3m-

By Theorem 2.8, we have the lower bound:

In every case

For, there is at least one type q of height ra which needs a type s. We
obtain \β + u;|l^+1l labels for realizations of p which are preserved by the
isomorphism of A1 and Bl. Namely for each / mapping \β + 1| into the set
of cardinals less than or equal N/? and each 7 < β + 1 let

Now (*) implies that the upper and lower bounds yield the same function of
AC(/?), namely, Hm_2 (ft (/?)). To complete the proof we just need to compute
κ(β) in each case and verify that Tβ κ is indeed the lower bound.

Case i). As noted in Exercise 2.12, the lower bound from Theorem 2.11
equals the upper bound from Theorem XVΠ.3.19 so we have nothing to
prove.
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Case ii). If p has kind II or kind III we obtain the following upper bound
on κ(β). Since Rp is countable the number of labels contributed by Rp is
at most \β + ω\ω and the number contributed by each s is at most \β +

W|(l0+w| ) (which is raised to the ω again in case III since there are infinitely
many s). In either case I*(Kβ,AT) < lm-3(\β + ω\«W) < :U_i(|/? + u;|).
For kind II this is the lower bound computed in Theorem 2.11 ii) and we
finish. However, if p has kind III the computation in Section 2 provides
only a lower bound of

But, we saw just before beginning the case analysis that there is always a
lower bound of

So there are Hm_2(sup(|/3+ 1|H, \β + ω\\β+l\)) = Πm_ι(|/3 + u;|) models of
power ftp as required.

If βp, Sp and each QpίS are finite κ(β) is bounded by the product \β + ω\k,

contributed by βp, times \β + ω\^+ω\ ) , contributed by each s, which again
yields: Γ(Kβ,AT) < *lm-*(\β + ω\«W) < 3m_ι(|/J + u;|). We note now that
in the case of kind IV this upper bound is attained while we show below
that for kind V it is not. If some p with depth m — 2 has kind IV, then
some s € Sp is a normal type. Thus there are |/? + u;| distinct configurations
for realizations of s. We can distinguish a realization α of p by the set of
^-configurations which occur β times in the full configuration of α. From
Lemma 5.6 we see that if {Ti :i<\β + ω\} appears in a label for M then the
set of partial configurations associated with a(s) in another representation
of M differs from the set of Ti by some constant k. Thus, there are 2^+ωl
possible labels for the depth m — 2 types and clearly, 2l/?"l"ωl of these differ by
nonconstant functions so there are 3m_2(2'/?~l~u;') = 3m_ι(|/? + ω|) models
as required.

iii) Since for each p, Sp is finite, we label each realization of p by the
number of realizations b of each s G Sp that have a given configuration for
Qb. Since each member of Sp is abnormal, there are only \β + l\ possible

configurations so for some finite fc , there are l/J + ωl^"1"*! labels. This upper
bound on κ(β) is the same as our general lower bound so in this case:

There are more kinds than there are distinct spectrum functions. This
illustrates the disadvantage of coding our structure results as simple enu-
meration problems. The following exercise shows that this kind of coding
can reflect some further structure.

5.8 Exercise. Let T be an α -stable theory of depth m. Show that if every
type of height m - 2 is of kind IV then /(fy, S) = Hm_2(|/3 + ω\&+l\) but
if T has a type of depth m - 2 with kind II, then /(fy, S) = Hm_ι (\β + ω\).
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5.9 Historical Notes. The conjectures considered in this chapter were
solved by Shelah in [Shelah, Harrington, & Makkai 1984] and [Shelah 198?]
(cf. [Harrington & Makkai 1985]). Neither of the 'main gap' papers deal
explicitly with the finite depth case. The first detailed discussion of this
case appears in Saffe [Saffe 1983]. Our proof here combines the techniques
of [Harrington & Makkai 1985] with the analysis by Bouscaren [Bouscaren
1984] of depth 2 theories. This proof and exposition rely on many conver-
sations with Harrington, Buechler, and Saffe. We have answered a question
of Saffe [Saffe 1983] by providing a single classification which explains the
behavior of the spectrum function both at NO and in uncountable cardinals.

The proof here still falls somewhat short of the assignment of invariants
discussed in Section I.I. That is, rather than assigning to each model a
tree of ordinals, we have only assigned a set of trees and then computed
the spectrum by a fluke of cardinal arithmetic. The only complete solution
of that problem so far requires the additional assumption that T is No-
categorical. Buechler accomplishes this in [Buechler 1985b] by interweaving
the geometrical ideas of Zilber and [Cherlin, Harrington, & Lachlan 1985]
with Shelah's analysis.




