
Chapter XVII

NDOP: Theories Without the Dimensional
Order Property

In this chapter we investigate theories without the dimensional order prop-
erty. As in the previous chapter, our main concerns will be with S-models
of superstable theories and arbitrary models of ω-stable theories. We will
show that for any acceptable class K, if T does not have the DOP, each
/f-model of T can be decomposed as a if-prime model over a skeleton which
is an independent tree of 'small' /f-models. If the model has cardinality λ,
this tree will be isomorphic to a subset of \<ω.

The following simple example is a good prototype for the kind of count-
ing done in this chapter. The theory in the example is deep in the sense
made precise in Section 2 and does not have the dimensional order property.
Thus by Theorem 4.8, it has 2λ models of power λ for each uncountable λ.
We sketch here how this result can be seen directly.

Let T be the theory with a single function symbol / such that there is
a unique point which is mapped to itself by / and all points have infinitely
many preimages. T admits elimination of quantifiers. The models of T are
best regarded as unions of components where two elements a and b are in
the same component if for some ra and n, fm(a) = fn(b). There are, in
fact, 2λ possibilities for the unique component which has a base point so
the others can be ignored in calculating the number of models of power λ.
The component with a base point can be thought of as a subset of the tree
χ<ω which is closed under predecessor. Thus our task reduces to showing
there are 2λ such trees. To see this, we will show that each ordinal a < λ
can be coded by a tree, Ta C λ<ω. The Ta are constructed similarly to the
coding of an arbitary countable ordinal by a subtree of ω<ω. The difference
is that rather than placing a single copy of T/?, for each β < α, on the first
level to code α, we place λ copies of each such Tβ. This allows each point to
have infinitely many preimages without disturbing the effect of the coding.
There is a series of exercises at the end of Section 3 which explores the
meaning of the notions defined in this chapter for this example.

Section 1 contains some preliminary results on the type of tree we use for
a skeleton. In Section 2 we discuss representations of models and prove the
decomposition theorem. In Section 3 we define the depth of a theory and
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use the decompostion theory to produce an upper bound on I(#β,K) in
terms of β and the depth of T. This requires that we calculate the number
of (labeled) trees of each depth contained in X<ω. In Section 4, we begin
the proofs of the lower bounds on the spectrum function. We are able to
complete the computation for theories with high depth and when N/? > Nω.
The remaining cases are considered in the next chapter.

Since we only defined the dimensional order property for superstable
theories, there is a de facto assumption in this section that the theory is
superstable. In fact, this hypothesis is irrelevant to the discussion in Section
1 of normal trees. It becomes important when we assume the existence of
S-prime models and in Section 2 where we show the existence of a decom-
position. Shelah [Shelah 1982] discusses the dimensional order property for
arbitrary stable theories.

1. Normal Trees

This section contains technical results on a generalization of an independent
tree, namely a normal tree. We also introduce the notion of a stable system
and prove some preliminary results about such systems. They play a small
role in this book and a much larger role in Shelah's study of superstable
but not ω-stable theories. We assume familiarity with the properties of
independent systems which were discussed at the end of Section II.2.

We begin by establishing some notation for the trees that will form the
skeletons of the decomposition. Informally, a tree is a partially ordered set
which is isomorphic to a subset of (λ<ω,C) for some infinite λ. We give
a more formal definition below, but these are the structures to remember.
In the following notations for the 'cone above an element' or 'set of pre-
decessors of an element' note that we form a union in our definition. This
simplifies the notation when these concepts are applied.

1.1 Notation, i) Recall that in a discrete partial order, we denote by a~
the predecessor of a. If b~ = a we say 'α precedes V or C6 succeeds
α'.

ii) We now define by induction the cone above a. Let α> = {b : b~ = a}
and for each n, α>+1 = (J{^> : b~ = a}. The cone (strictly) above a is
a> = \Jn<ω α>. Finally α> = α> U {a}. Similarly we can define α< =
\J{b :b<a}. Recall that α# denotes the set of elements incomparable
to a.

iii) A partial order (A, <) is a tree if no pair of incomparable elements
has a common upper bound. Thus in a tree the set of predecessors
of each element is linearly ordered by the induced ordering.

iv) A well-founded tree is a tree (A, <) such that for each α G A, α< is
wellordered. The ordinal of this wellordering is called the height of
α, and denoted ht(α). If each element has at most λ successors we
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call λ the width of the tree. Note that the cardinality of the tree is
\<ω =± λ as λ is always infinite. A node with no successor is called
a leaf.

1.2 Exercise. Show α> = \J{b :b > a}

The next definition specifies the form we want the skeleton of a model
to have.

1.3 Definition. (Fig. 1). (A, <, A( >) is a normal tree if

i) The partial order (A, <) is isomorphic to a downward closed subset
of the tree (λ<ω, C) for some cardinal λ.

ii) a < b implies α C b.
iii) A ( ) denotes the element mapped to the empty node.
iv) For every α E A, α> is an independent set over α.
v) For every α G A with a~ ̂  A( > , ί(α;α~) H α .

Fig. 1. A normal tree

Note that ii) implies that for each α € A, a~ = a<. Condition v) implies
that the partial order < on A is the same as the partial order <' defined
by α <' b if α dominates b over A().

Our first task is to verify that any normal tree is independent with
respect to <. We could, of course, have added that property to the definition
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but the version used reflects more clearly the way in which normal trees
are constructed. The proof proceeds via two claims.

1.4 Claim 1. For every n, £(α>;α) H a~. Hence, £(α>;α) H a~.

Proof. If n = 1, the result follows from the triviality of orthogonality.
Specifically, this is Exercise VI.2.5. Suppose we have this result for ra and
n = m + 1. Then, by induction, for each b e α>, we have t(Wg\ b) H α. We
also have t(b\ά) H a~. Thus, by the transitivity of H, (compare Lemma
VI.3.10 and Exercise VI.3.11), £(6>;α) H α~. Since a^ is an independent

set, by Theorem VI.2.21 {b% : 6 € α>} is an independent set. Now as in the
case n = 1, £(α>;α) H α~.

The following remark is actually contained in the proof of Claim 1.

1.5 Exercise. Show that for any α in a normal tree, {b> : b~ = α} is an
independent set.

1.6 Claim 2. For every a in a normal tree, a |α< α#.

Proof. We induct on the height of α. If ht(α) = 0, there is nothing to
prove. Suppose α~ — b and we have shown by induction that b lb< &#. To
show a la< α#, note that a# = b# U X where X = {c : c > b Λ α j£ c}.
Since A is normal, b — α< and b~ = 6<. By Claim 1, ί(6>;6) H 6~; we
conclude £(&>;&) J_ t(b#;b~). Since b> = α> UX, we have, in particular,
that bφ lb (α> U X). By monotonicity, this yields (b# U X) |χu& α> But,
the last exercise shows (X U b) lb a> so by transitivity (&# U X) |b α>. That
is, α^t |α< α> which is more than is required.

1.7 Claim 3. // (A, <, A < } ) is a normal tree then for any α, b E A with
neither equal to A() and a~ φ b~, t(a;a~) λ. t(b',b~}.

Proof. As a~ Π b~ is a proper subset of α Π 6, £(α;α~) H (α~ Π 6~) and,
since a~ |α-Π6- b~ by Theorem VI.2.21, the result follows easily.

One of the major tasks in the remainder of this text is the reduction
of problems about the class of all models to the consideration of prob-
lems about S-saturated models. Relative I-saturation (Section X.I) is an
important tool for this purpose. To apply it we need Theorem 1.8.

In some of the ensuing definitions we have to deal with elements of the
sets in an independent family. Recall that in Chapter XVI we adopted the
convention of referring in such situations to the systems as A, B, etc.,the
elements of the system as A, B etc. and the elements of the elements of
the system as α, 6, etc. We often identify a system A or an ideal J with its
union and depend on the context to indicate which is meant. Sometimes
for emphasis we insert the union sign.

The proof of the following theorem contains an important idea mas-
querading as a technical device. Let A be a partially ordered set of sets
and α G UA Then α can be partitioned as_ (άo,..., άk} for some k so that
there is a set (A 0,..., Ak) of elements of A such that the Ai are incompa-
rable with respect to the partial order and a Π A» = α^. The crucial point
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is that when (A, <) is an independent partial order, this partition breaks a
down into smaller independent pieces. This reduction permits one to carry
out an induction on the length of α. This idea also shows up in, e.g. [Shelah
1975a] and [Baldwin & Shelah 1985].

We prove the following result in the context of an admissible class K.
Thus the sequence α may be infinite (e.g. K = S#1 .) However, for the major
applications in this book lg(α) and so 7 are finite.

1.8 Theorem. Let (A, <) be an independent family of models from a class
K and J an ideal in A such that

for every A G A there is a maximal element , ^
B of J which is less than A.

Then J </ A.

Proof. Suppose ^(x;6) is an /-formula with parameters b G J. Suppose for
α G A,\= <j(α; b). Partition a as (α; : i < 7) where each α^ = Ai Π a for some
Ai G A and the Ai for i < 7 are incomparable with respect to the partial
ordering. For each i < μ, choose using (*) Bi to be a maximal member of
J which is contained in Ai.

Now we show by induction on i < 7 that there exists a function / from
(cii : i < 7) into J such that for each i

Suppose we have defined /(ά/) for / < i. Let J\ = {A G A : A < Ai} and
let J2 be the ideal generated by J and the Aj for j / i. Since (A, <) is
an independent partial order, J\ j^n^ «^2 By monotonicity ά^ JB- a'^b
where a' is the sequence containing f ( ά ι ) for / < i, and the α/ for / > i.
Since Bi is strongly /-saturated there is an α^ = /(a») G Bi such that

)> , a{, άi+i, 6).

The condition (*) imposed on / in Theorem 1.8 seems to be the abstract
content (at least in this context) imposed on a partial order by Shelah's
concrete representation of a stable system as a family of sets indexed by
finite subsets of some other set. For more information see [Shelah 198?].

1.9 Exercise. Show that if (A, <) is a normal tree and J is an ideal in A,
then J satisfies (*).

We deduce the following immediately from Corollary X.I. 18.

1.10 Theorem. Suppose λ(/) is regular, J is an ideal in a normal tree
and Mj is I -prime over J. Then Mj [ j A.

The following result which is applied in Section XVII. 4 also follows easily
from Corollary X.I. 18. If J is an ideal in a normal tree A of /-models Mj
denotes the /-prime model over J .

1.11 Corollary. // JQ C Jι are a pair of ideals in a normal tree A then
MJQ IJQ Ji so MJl is constructible over MJO . If ( Jn : n < ω) is an increasing
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sequence of ideals and Mn is I-prime over Jn then \jMn is I-prime over

LUn

Recall that the notion of parallel free amalgams was introduced in Nota-
tion XVI. 1.10. Since two parallel amalgams are one of the simplest examples
of an independent partial order we can immediately conclude

1.12 Corollary. Let the AΎ-amalgam M = (NQ,Nι,N2) be parallel to the
set-amalgam A = (A0,Aι,A2). Then NI U N2 <AT ^i U A2.

1.13 Exercise. Show that if A is a set-amalgam, there is a parallel amal-
gam of S-models.

Using Theorem 1.8 we can construct a full amalgam of S-models, N',
parallel to a given full amalgam of models, M. We will use this result to
give another proof that the dimensional order property depends on T rather
than on a particular acceptable class K.

1.14 Theorem. If M = (NQ,Nι,N2,Nz) is a full AT-amalgam then there
is a full S-amalgam parallel to it.

Proof. Choose 7V0, an S-model containing 7V0 and independent from 7VΊ U
N2 over NQ. Extend NI U NQ to an S-model N[ with N[ [N^UNI N2 and
hence by transitivity with N[ [N' N2. Then extend N2 U NQ to an S-model
N2 with N2 lN^\jN2 N[ and hence by transitivity with N2 [N^ N[. By
Theorem 1.8, NI U N2 <^T N[ U ΛΓ^. Let (α^ : i < a) be a construction of
JV3 over NI U N2. By Lemma X.I. 18 ii), for each i,

NI U N2 U Ai <AT N[ U N2 U Ai.

Invoking Theorem X.I.17 this implies t(a^ N[\JN2^J Ai) is isolated. Thus,
A^3 is constructible over N( U N2. So N% can be embedded in any S-prime
model over N[ U 7V2 which completes the theorem.

Now we give a second argument that the notion of DOP does not really
depend upon a class of models but is a property of a theory. For simplicity,
we show only the equivalence for the two most important cases.

1.15 Theorem. Let T be a countable ω-stable theory. Then T has the
S-NDOP if and only ifT has the AΎ-NDOP.

Proof. It is immediate that the AT-NDOP implies the S-NDOP. Suppose
T has the S-NDOP. If M is a full AT-amalgam we can by Theorem 1.14
extend M to a parallel full S-amalgam. Now let p be an arbitrary type in
S(N3) and p' a nonforking extension to S(Nβ. By the S-NDOP, p' and
hence p is not orthogonal to, say N[. By the choice of a parallel amalgam,
N( JΛΓi N2. As 7V3 is AT-prime over Nι\JN%, we deduce from Corollary
X.1.20 that N[ lNl N3. Since pjN[, Corollary VI.2.22 yields pJNi. Thus
T satisfies AT-NDOP.

1.16 Historical Notes. Shelah introduced the notion of a normal tree in
[Shelah 1982]. The treatment here relies both on the account in [Makkai
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1984] and [Harrington & Makkai 1985] and on [Shelah 198?]. The proof of
Theorem 1.8 given here is based on that in [Shelah 198?] which is consider-
ably simpler than that in [Shelah 1982] which was reproduced in [Makkai
1984].

2. Decompositions of Models

In this section we show that if T is a countable superstable theory without
the dimensional order property then every S-model of T admits a decom-
position into models of power the continuum. Moreover, if T is ω-stable we
can require the constituent models to be countable.

The difficult extension of this result to get countable models in the de-
composition of a model of an arbitrary superstable theory has been ob-
tained by both Hart and Saffe [Hart 1986].

2.1 Definition. By a K -representation of a model M we mean a normal
tree (A, <, A ( ) ) of subsets of M such that:

i) For each AeΆ, AeK.
ii) For every A G A except A( > , there is an a A £ A such that £(0,4; A~)

is /f-strongly regular and A = A~[(IA]
iii) M is K -prime over |J A.

We write PA for t(A\A~) and abbreviate (A, <,A()) by A. Note that for
each A, PA is a stationary type.

Note that each PA is a weight one type so / is an equivalence relation
on the set of PA for A G A. Moreover, by 1.7 (Claim 3), each equiva-
lence class consists entirely of successors of a single node. There may be
several equivalence classes above any particular node. We often refer to a
/f -representation of M as ^-decomposition of M. The difference is approx-
imately that between an internal and external direct sum.

Before showing that under favorable conditions each X-model has a
/f -decomposition we deduce a few properties which are implied by the
existence of such a decomposition. The first extends the triviality of H in
a theory without DOP by replacing the pair of independent sets by an
independent tree.

2.2 Lemma. Let T be a superstable theory which satisfies NDOP. If A is
a K -decomposition of the model M and p-fiM then for some A E A, p -fl A.

Proof. First, we show that we can assume A is finite. Let q E S(M) with
p / q. Since M G K, there is a finite subset B C M with q strongly based
on B. Thus, p / q\B and p~fiB. For some finite AQ C A, B is I-atomic over
AQ = iMo and so we can choose MQ which contains B, is contained in M
and is if -prime over AQ. Renaming MQ as M and AQ as A, we have the
required reduction.
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Now, we work by induction on the finite cardinality of A. If A is linearly
ordered the result is evident. If not, A = AI U A2 where the A; are ideals
and AI Π A2 is linearly ordered and has a maximal element A. Since A is
an independent tree, AI I A A2. Moreover if, for i = 1,2, we choose Ni to
be K-prime over UAZ, NI I A N2. If M3 is K-prime over 7Vι U 7V2, there is,
as M is prime over UA, an embedding of M into Mβ. Thus p •/ M$. But
then by NDOP, p / one of 7Vι, 7V2, say NI. By induction, p / A7 for some
A' G AI and we finish.

From this result we can deduce that M is tied even more tightly to an
A which represents it.

2.3 Definition. The K-model M is K-minimal over A if UA C M and
there does not exist a K-model N with UA C N C M and N ^ M.

2.4 Corollary. Let T be a superstable theory which satisfies NDOP. If A
is a K-representation of M then M is K-minimal over A.

Proof. Let TV X M be K-prime over UA. If N is a proper subset of M,
there is a p G S(N) which is realized in M — N and is ίί-strongly regular.
By Lemma 2.2, p -fl A for some A G A. Thus, there is a ίί-strongly regular
q G S (A) such that the nonforking extension qN of q to S(N) satisfies
qN / p. So qN is realized in M — N by some 6. But Ά\>A M implies
b I A M and this contradiction yields the theorem.

2.5 Exercise. Show that if T is ω-stable and A is an S-decomposition of
the S-model M then, in fact, M is AT-minimal over A.

The next two results are further technical properties of a decomposition
which we will need in the next section. To simplify the statements of these
results we fix some more notation. Recall that A+ = {B : B~ = A}. In a
/^-representation we define A+ as {ap '• B~ = A}. Now we describe A+.

2.6 Corollary. If A is a K-representation of M then for each A G A, A+
is a maximal independent set of realizations in M of strongly regular types
over A.

Proof. Note that A+ DM A. If t(c\ A) is if-strongly regular and c [A A+
then c IA A. But we can choose c G M = A[A] so this is impossible.

We want to extend the descriptions of the successors of a point in a
normal tree to a description of the successors of an ideal. Thus, we write
/+ for {A : A~ G /} and /+ for {a A : A~ G /}. As usual we systematically
confuse /+ with \JI+. In order to study /+ it is important that we find a
common domain for the types in I+. The natural candidate is M/.

2.7 Lemma. /// is an ideal in the K representation, A, of M then /+ is
a maximal independent set of realizations in M of K-strongly regular types
over MI.

Proof. Let α G M realize p, a K-strongly regular type over M/ and suppose
ά |M/ I+- Since T satisfies NDOP, p -fl A for some A G /. Thus, for some
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regular q £ S(A), q / p. But then, p / qMl so qMl is realized by some
c £ M/[α]. Since α>M/ M/[α],_α |M/ ^+ implies c JM/ J+ By transitivity of
independence, c |Λ J+ But, ^4 j/ M/ implies A+ C /+ so this contradicts
the previous corollary.

This result implies that /+ is a set of models each of which is K-pήme
over one of a maximal independent set of realizations in M of /iί-strongly
regular types over M/. Note that A+ (/+) and A+ (/+) dominate each
other over A (M/). Now we obtain the most important consequence of the
NDOP.

2.8 Theorem. IfT is super stable and does not have the dimensional order
property, then every K-model ofT has a K-representation.

Proof. (Fig. 2). Let M E K and suppose |M| = λ. We define a partial
isomorphism, / : η H-» Mη from \<ω into the set of If-submodels of M
such that the image of / is the required /^-representation. Let M< > be any

Fig. 2. Theorem XVΠ.2.8: The Decomposition Lemma

copy of the K -prime model of T in M. If η e λ<ω and f ( η ) is defined, let
{ba : a < μ < λ} be a maximal subset of M such that:

i) {ba : a < μ} is independent over Mη.
ii) For each α, t(ba',Mη) is K-stroτίg\y regular.

Hi) If η / ( > , for each α, t(ba; Mη) H Mη-.

Now, for a < μ, define /(τy~α) = Mη[ba]. We must show that if A is the
range of / and < is C then (A, <, M()) is a If-representation of M. Clearly
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conditions i)-ii) of the definition are satisfied. We must show M is K-prime
over A. Suppose N -< M is K-pήme over A. If N ± M then, as in the
proof of Lemma 2.2, there is an Mη E A and a q £ S(Mη) such that some
b E M — N realizes qN. Moreover, we can choose η minimal so that q H Mv

for any v C η or η = (). In particular, b [M^ N. Thus if {ba : a < μ} U {b}
is the set of independent elements associated with Mη in the construction,
{ba : a < μ} U {b} is independent. If η = (>, we clearly contradict the
maximality of the ba. If η Φ (>, we must also check that t(b;Mη) H Mη-.
But this follows by the minimal choice of η.

2.9 Historical Notes. Most of this material is from [Shelah 1982] and
[Harrington & Makkai 1985]. The proof of Theorem 2.8 is from [Harring-
ton & Makkai 1985] and greatly simplifies Shelah's construction (which
applies in more general situations). Shelah's argument for the existence of
a representation requires an approximation from both above and below.
The simplest form of this argument which has no need for prime models
appears in [Baldwin & Shelah 1985]. Construction of A~[a^] in the general
setting but without appealing to prime models is explained in [Hart 1986]
and [Shelah 1982], [Shelah 198?]. Lemmas 2.6 and 2.7 which simplify the
arguments in Section XVII.4 are taken from [Baldwin &; Harrington].

3. Trees, Labeled Trees and Upper Bounds

The major goal of this section is to compute upper bounds on the number
of models of various theories which do not have the /f-dimensional order
property. In the last section we saw that each K-model of such a theory
could be represented by a tree. Thus estimating the number of such trees
will give this upper bound. In fact, we will be able to refine our estimates by
assigning another invariant to the theory, its depth. We begin by discussing
the notion of depth and counting the number of trees with a given depth
in a purely combinatorial context. Then we will show how to extend the
definitions and apply the results in a more general model theoretic context.

3.1 Definition. Let (A, <,^4<)) be a tree.

i) We define by induction the K-depth of a G A, denoted dp/c(α).
For every a G A, dpκ(α) > 0.
For any /?, dpκ(α) > β if for every a < β there exists at least K
successors, c, of b with dpK(c) > α.

ii) The /c-depth of (A, <, A{ >) = dpκ(A{ >).

We may omit the subscript K, if the value is clear from context. Note
that when K = 1 we are dealing with the usual foundation rank of the tree.

Our next step is to calculate the number of trees of width λ and depth
a. Of course, the calculation of dpκ actually also depends on /c. We deal
here with the case /c = 1; other K, are treated in Lemma 4.11. The function
which enumerates such trees has a curious discontinuity at depth ω.
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3.2 Definition, i) Let £(7, a) denote the following function.

ii) Let T(7, α) = min(ί(7, α),

The proof of the following lemma is a straightforward induction based
on the following observation. For each α, the number of trees of depth α
and width N/? is the same as the number of functions from the set of trees
with depth less than α into the number of cardinals less than N/j. The most
delicate point is to notice that this observation forces the jump at a = ω.
We include the proof because several variants of it are discussed later.

3.3 Lemma. For any a and β, the number of trees (A, <,A()) Q Kgω

with depth at most a is T(β + ω, α).

Proof. Let g(β, a) denote the number of trees (A, <, { >) C N<ω with depth
at most a. As an aid to showing T(β + ω, a) = g(β, α), let T*(β, a) denote
ΣΊ<Q

τ(β> 7) and g*(β, a) denote ^Ί<ag(β, 7)- Now for fixed /?, we prove
the result by induction on α.

If a = 1, the number of trees of power at most N0 is the number of
cardinals less than N/?, that is, β + ω = T(β + ω, 1). For α > 1, each tree,
A, of power at most N/? with depth at most α is determined by a function,
/, from the set of trees of depth < a into the set of cardinals < N/j. Namely,
if B is a tree with depth < α, /(#) = AC if and only if there are AC elements
a G A with height 1 such that (α)> « β. There are |/3 + ω|0*^'0ί) such
functions.

Now if a < ω, g*(β,ά) = g(β,a - 1) so g(β,ot] = |/3 -h ω^^"-1) =
|/? + u;|Γ(0+ω'α-1) =Γ(^ + ω,α). While if α > ω, g*()9,α) =T*(^,α) so
g(β, a) = \β + ω\τ*(P^ =T(β + ω,a + 1).

In order to generalize this remark to calculate an upper bound on the
number of /f-models of a theory without the DOP, we apply the decompo-
sition theorem to extend the notion of depth from trees to models of such
theories. We must study a slightly more complicated combinatorial object,
a labeled tree.

If we decompose a model of a theory without the dimensional order
property by the procedure in Theorem 2.8 we can assign a depth to each
element of the model according to its position in the representing tree. In
order to make the discussion uniform over the various models of T we define
the depth of a type by induction. There are several minor variations of the
definition of depth in the literature. The definition here agrees with that
in [Shelah 1982] and [Saffe 1983] but disagrees with [Harrington & Makkai
1985] and [Lascar 1985].

3.4 Definition. Suppose T is a theory without the dimensional order
property. Let M be an S-model and p = ί(α M) be regular and let N
be S-prime over M U a.
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i) We define the depth of p by induction as follows:

• dp(p) > 0 for all such p.
• If a is zero or a successor ordinal, dp(p) > a + 1 if there is some

q e S(N), q H M and dp(ςr) > a.
• If /? is a limit ordinal, dp(p) > /? + 1 if for every α < /?, dp(p) > α.

Finally, dp(p) is the least β such that dp(p) £ /? -f 1 or oo if there is
no such β.

ii) If p G 5(A) is stationary and regular, let M be S-prime over A and
set dp(p) = dp(pM).

iii) dp(Γ) is one more than the supremum of the dp(p) for all regular p
if this supremum exists. If the supremum exists we say T is shallow.
If not, T is deep.

If q has weight one, let dp(q) — dp(r) where r is a strongly K-regular
type which is not orthogonal to q. We deduce from Theorem XIII.2.22 and
Theorem 3.14 (below) that this assignment does not depend on the choice
ofr .

We define the eni-depth of a type or a theory by a similar induction but
with the added condition that the type p has eni-depth > 1 if and only if
there is an eni type q E S(M[a\) with q -\ M.

Note that a theory has depth 1 just if it is bounded. Observe that neither
a type nor a theory can have limit depth. When computing the depth of a
theory remember the type p in clause i) of the definition of depth cannot
be algebraic.

3.5 Exercise. Show that the theory of an infinite set has depth 1.

3.6 Exercise. Let p G S(M) and suppose that a realization a of p occurs
in the S-decomposition (A, <) of a model N. Show that dp(α) in A is at
most dp(p). Show there is a model N and a S-decomposition (A, <) where
equality holds.

The last exercise showed the relation between the depth of a type and
the depth of a tree which decomposes a model. Ostensibly, there should
be a different notion of depth for each acceptable class K. However, using
Lemma XV.1.7 it is possible to prove (cf. [Harrington &; Makkai 1985])
that for a countable ω-stable theory computing depth with respect to
S-decompositions or with respect to AT-decompositions gives the same
result. Thus, for our purposes the only distinguished case is the eni-depth.

3.7 Exercise. Show that for any shallow theory, Γ, eni-dp(T) < dp(T)
and the inequality may be strict.

3.8 Examples. Recall from Section XV.3 that there were essentially four
types of nonconstant spectra for bounded ω-stable countable theories. The
four spectrum functions assigned to /* (Nα, AT) one of a +1, α -f ω, (α -f l)ω,
and (α + ω)ω. By choosing a + 1 to represent the spectra in the finite
dimensional case, we are exploiting the group action discussed in Section
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XV. 3 to simplify the function. We now give four examples of depth two
theories with simple spectrum functions. They arise by placing a model of
one of the depth one theories in each equivalence class of an equivalence
relation with infinitely many classes.

i) Let TO be the theory of an equivalence relation with infinitely many
infinite classes.

ii) Let TI be the theory of an equivalence relation with infinitely many
infinite classes, each of which is a model of Th(Z, 5).

iii) Let T^ be the theory of an equivalence relation with infinitely many
infinite classes, each of which contains a model of the theory of
infinitely many disjoint unary predicates.

iv) Let TS be the theory of an equivalence relation with infinitely many
infinite classes, each of which contains a model of the theory of
infinitely many disjoint unary predicates where each of the unary
predicates contains a model of Th(Z, S).

These theories are the simplest examples of the following four kinds of
theory. TO has a finite number of independent isolated depth 0 1-types. TI
has a finite number of independent depth 0 1-types and at least one is not
isolated. T% has infinitely many independent depth 0 1-types which are all
isolated. T% has infinitely many independent nonisolated depth 0 1-types.

The following table indicates the spectrum functions of these four theo-
ries. The second column shows the function directly as it is computed from
α. The third and fourth columns show that under particular assumptions
on a. some of the functions coincide.

Theory /(Nα,AT) finite a infinite a

TO lα + u;^*1! |ω|
TI \a + ω\\a+ω\ 2lω|

T2 |α + ω|l t t+1lM 22M

T3 |α + u;|l«+"lM 22'"1

There is one other fundamental example. It is described in detail in Section
XVIII.4. The following example shows there are theories without NDOP
with each depth up to |T|+.

3.9 Example. Let EER^ denote the theory of β expanding equivalence
relations. That is, the language contains binary relations EΊ for 7 < β and
EER0 asserts that each EΊ is an equivalence relation with infinitely many
infinite classes and each EΊ+\ class contains infinitely many EΊ classes.
Then EER/j is an ω-stable theory without the dimensional order property.
Moreover, dpίEER^) = β + 1 if β < ω and dp(EER^) = β + 2 if β > ω.

3.10 Exercise. Let T be EER/j and suppose β < ω. Show that

/*(«β,AT)= 3/j-ι((α + w)
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3.11 Exercise. Let T be EER/? and suppose β > ω. Show that

J*(Nβ,AT)=

The divergence of results between these two exercises shows the necessity
for the peculiar cases in Definition 3.2.

3.12 Exercise. Consider the effect of using the other three cases of Ex-
ample 3.8 as the 'ground' step of a theory of depth β.

3.13 Exercise. Find an example of a theory with depth ω + 1. (Hint:
Consider the disjoint union of theories with finite depth.)

We now show the notion of depth is truly well defined by showing the
depth of a strongly regular type p depends only on the parallelism class,
indeed, only on the nonorthogonality class of p.

3.14 Theorem. Let p e S(M) and p' G S(N) be regular types where M
and N are S-models. If i) p' is a nonforking extension of p or ii) p1 / p
then dp(p) = dp(p').

Proof. We prove simultaneously by induction on a that supposing either
i) or ii), dp(p) > α if and only if dp(p') > a. Suppose we have proved
the result for all β less than α. For i), we first show dp(p) > a implies
dp(p') > <*. Choose a realization c of p'. Then M [c] |M N. Let q G S(M[c])
be orthogonal to M. Then by Theorem _VI.2.21, q H N. If dp(q) < α, then
by induction dp(q) = dp(qN^) and qN^ H N so dp(p') > dp(q). Since we
can pick q with each depth < a (< β if a = β + 1 and β is a limit ordinal),
dp(p') > α To see dp(p') > α implies dp(p) > α, fix q £ S(N[c]) with
dp(</) < α and q~\ N. Now N\c] can be viewed as 7V[M[c]] and M [c] |M N
so by NDOP, q -ft M[c] and thus q / go for some regular g0 Ξ S(M\c\). By
induction,dp(<7) = dp(ςr0) so dp(p) > α.

For part ii), we can invoke i) to assume that M -< N. Then if c realizes p',
we can find by XII. 1.15, using the nonorthogonality and regularity of p and
p7, a ~d realizing pN with N[c] « N\d\. But then dp(p7) = dp(p^) whence
by part i) dp(p) > α if and only if dp(pN) > a if and only if dp(p') > a
and we finish.

The following theorem is an immediate corollary of Definition 3.4 and
Theorem 2.8.

3.15 Theorem. I f T has the NDOP then every model ofT has a normal
K -decomposition (A, <,A()) with dp(A) < dp(T).

We would like to obtain an upper bound on the number of /^-models of
T by saying that Theorem 3.15 defined a function from the set of trees with
width at most λ and depth dp(T) onto the .fΓ-models of T with cardinality
at most λ. Unfortunately, this isn't quite true. While every X-model of T is
K-prime over a normal tree, the model is determined not just by the shape
of the tree but by the types that are realized. Thus we have a relation on
the class of ordered pairs of trees and models which is not a function. By
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adding additional structure on the trees we can make this relation into a
function.

By the uniqueness of fί-prime models, we see that two normal trees
(A, <, Ά( )) and (B, <', B( }) represent isomorphic /Γ-models M and N if i)
the partial orderings (Ά, <, Ά( )) and (β, <',B( >) are isomorphic by some
isomorphism a and ii) for each A € A and each strongly regular type
p G S (A) such that a successor of A has the form A[a] for some a realizing
p, the number of successors of A that are prime over a realization of p is the
same as the number of successors of a(A) that are prime over a realization
of a(p). We reflect this property in the tree structure by labeling each node
A[a] by a unary predicate representing £(α; A).

3.16 Definition, i) A ^-labeled tree is a tree (A, <, A( >) such that for
each a G A, there is a family {Ua^ : i < AC} of unary predicates and
each successor of α satisfies one of these predicates.

ii) A κ-partially labeled tree is a tree (A, <, A^) such that for each α G A
with dpp(a) = 1 there is a family {t/α?ι : i < K} of unary predicates
and each successor of a satisfies one of these predicates.

Thus, in a partially labeled tree we label only the 'leaves' or top nodes.
Usually the trees can be pruned without loss of generality so that the p in
this definition can be taken to be 1. Thus, we did not clutter the notation
by recording the dependence on p.

We will show that it suffices to study partially labeled trees. The follow-
ing notations make the statement of the result simpler.

iii) Let £/?,«,« denote the number of Ac-labeled trees of depth at most a
and power at most N^.

iv) Let P/3,α,κ denote the number of K- partially labeled trees of depth
at most a and power at most N/?.

Note that since all models in, for example, an S-representation of a
model of a countable theory have cardinality at most 2**° , we will always
be able to find a AC (depending on K ) such that every /^-representation
corresponds to a /c-labeled tree.

Now an induction like that to prove Lemma 3.3 shows that whether we
label all the nodes or just those on the top has no effect on the number of
trees. That is,

3.17 Lemma. For any AC, £/?,<*,* = Pβ,<*,κ = T(\β + ω\κ, a).

We tie up the results of this section with the following theorem.

3.18 Theorem. Let T be a super stable theory without the OOP and with
dp(T) = a, then for any β with Kβ > A0(I)

Proof. We decompose each model by a depth a tree of models, each with
cardinality at most λo(/) Thus we have a function from the collection of
labeled trees with depth a and width at most N0 onto the models with
cardinality at most N/?.
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3.19 Corollary. IfT is a countable ω-stable theory with infinite depth a

Proof. Since A0(/) = NO, the theorem implies: /*(N/j, AT) < T(\β + ω\ω, a).
But if a > ω, T(\β + ω\ω, a) = T(\β + ω|, a).

The following exercises refer to the example discussed in the introduction
to Chapter XVII. The theory T has a single unary function symbol /; there
is a unique point which is mapped to itself by /; all others have infinitely
many preimages.

3.20 Exercise. Show that T is ω-stable. (Hint: Show that for any A C M
and any m € M the orbit of m under Aut^(M) is determined by a pair
(n, α) where (n, α) G ω U {00} x A U {*} and {n, α) ({oo, *)) is assigned to
m if fn(m) = a (there is no such n and α).)

3.21 Exercise. Let A C B and α G M (= T. If cl(α) Π (cl(β) - cl(A)) = 0
show α j A -B

3.22 Exercise. Suppose /(αo) = f(aι) and /(αι) — α2 Show ί(αo αι) H
α2.

3.23 Exercise. Let α be the unique element in Λί with /(α) = α. Let go
denote t(a; 0). For each n find types pi . . .pn which witness that

3.24 Exercise. Repeat Exercise 3.23 for qι = ί(6; α) where /(fe) = a and
/(α) = α. Conclude that T is deep.

3.25 Exercise. Show the [/-rank of the type go from Exercise 3.23 is ω.
Prove no type has higher [/-rank.

3.26 Exercise. Show the Morley rank of x = x is ω.

3.27 Exercise. What is the effect on the last four exercises of adding to
T the axiom f7(x) = /6(x)?

3.28 Historical Notes. These results were first proved in [Shelah 1982].
Our presentation was greatly influenced by [Harrington & Makkai 1985]
and .[Saffe 1981]. The function we have labeled T plays a similar major
role in [Baldwin & Shelah 1985]. The proof of Theorem 3.14 by a double
induction is due to Saffe [Saffe 1981].

4 Quasi-Isomorphisms and Lower Bounds

In this section we want to compute lower bounds on /*(N/?, K) for a theory
T which does not have the DOP and has depth δ. In fact, we will show
this function is eventually bounded below by the same function T(β,a)
which we saw was an upper bound in Section 3. The basic strategy behind
such a lower bound argument is simple. We would like to show that if
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both (Ά,<,Ά()) and (B, <',£?<)) are ^-representations of M then the
two trees are isomorphic. We do not need to worry about labeling the trees
as in Section 2 if we can achieve the desired lower bound with unlabeled
trees. It turns out that for small depths and cardinals less than Άω we must
take note of the labeling.

Unfortunately, we are unable to guarantee that the map from models
to skeletons is actually a function. There may be non-isomorphic normal
representations A and B of a model M. We show, however, that two trees
which represent the same model are quasi-isomorphic and that there are
sufficiently many non-quasi-isomorphic trees to calculate the spectrum. We
can not even attain this result for all models. But we will obtain it for a
large enough subset to calculate the number of models when N/? > #ω or
the depth of T is infinite. After some preliminary analysis, we defer to the
next chapter the exact computation of the lower part of the spectrum for
theories with finite depth.

A quasi-isomorphism is simply a correspondence between two trees which
is 1 — 1 and preserves order but is defined almost everywhere, rather than
everywhere. More formally, we say

4.1 Definition. Two trees A = (A,<,A{)) and B = (#,<,£()) are μ-
quasi-isomorphic, denoted A &q^ B, if there is a 1-1 relation h C A x B
such that:

i) If (α, b) and {α', 6'} are in h then α < a' if and only if 6 < 6'.
ii) For all α G ̂ 4, the number of successors of a which are not in dom h

is less than μ.
iii) For all b G £, the number of successors of b which are not in rng/i

is less than μ.
iv) If dp(α) = 1 and (α, b) G h then for each successor a1 (b1) of a (b)

there is a successor b1 (a1) of b (a) with (α', b1) G h.

We write A &q B if the μ-ample (see below) trees A and B are μ quasi-
isomorphic. In the relevant cases (μ-ample) we will be able to deduce from
condition i) that the b referred to in condition iv) also has depth 1.

First, we construct from two /^-representations of the same model a pair
of AO (/^-quasi-isomorphic trees. Then we turn to the question of finding
enough trees which are not quasi-isomorphic. We require several lemmas
for the first task.

For any tree Λ, we denote by A1 the subtree consisting of those nodes
with nonzero depth. Given representations A and B of a properly con-
structed model M, we will first define a bijection between between A1

and B1 by sending A to A if the type of some successor of A over A is
nonorthogonal to the type of some successor of A over A We will show that
for an appropriate choice of a model MA^ containing A and A, forking
determines the same bijection (between 'most' of the successors of A and
'most' of the successors of A.) To see that this bijection preserves order, we
first note that Theorem VI.2.21 shows that order is preserved on the two
levels immediately above A and A. Then we extend this result to the cones
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above A and A by induction on height above A or A and the properties of
normal representations established in Section 2.

The following notation allows us to define a tree 'tying above' an ideal
/. Note that the new tree AI is not a subtree of A but is obtained by
shrinking an intial segment of A to a point. Lemma 4.3 relies heavily on
the fact obtained in Theorem 1.10: M/ J,/ A.

4.2 Notation. Let / be an ideal in the normal tree A. We will define a new
(normal) tree A/. The base node in the new tree is M/. The other nodes
will be B' for B G A — I where B1 is defined by the following induction. If
B E /+, B' = M/[£]._If B E /n+1 (The n + 1st predecessor of B is in /)
then B' = (B~Y[B]. AI = {B/:BeA- I}.

4.3 Lemma. Aj is a normal tree.

Proof. The first three conditions of Definition 1.3 are clear. It is easy to
conclude iv) and v) by induction. We give only the first stage of the in-
duction since it contains all the ideas. For iv), note that if A E /+, then
J = {B : B~ = A~ = C} is independent over C and independent from /
over C. Thus, {M/[B] : B € J} is independent over M/.

For v), let A— G /. Then A U A~ |A— /. Thus A U A~ |A— M/ and so
A [A- MI[A~]. Now t(A;A~} H A— implies t(A\A~) H M/. Thus, since
orthogonality is preserved by nonforking extensions, ί(A;M/[A~]) H M/.
Since A>MI[A-] M f [ A - ] [ A ] , we conclude ί(M/[A-][A];M/[A-]) H M/.

In the following theorem we construct a quasi-isomorphism between the
nodes of positive depth in two /f-repesentations of a K-model M. [Har-
rington & Makkai 1985] constructs a quasi-isomorphism between the entire
representing tree. However, the argument here is much simpler and suffices
for much of the spectrum computation. For the remainder we must label
the leaves on the trees.

A quasi-isomorphism can fail to be an isomorphism in two ways. First,
it is not defined everywhere. Second, it does not preserve height. The first
of these problems can be circumvented by dealing with sufficiently bushy
trees. The second requires several special tricks. We begin with the first
problem. Recall from Definition 3.1 the concept of /c-depth (dp/c(α)) of a
node in a tree.

4.4 Definition. A tree (A, <) is called μ- ample if for every a £ A, dpl (a) —
dp».

The following easy result shows that there are the maximal number
of non-quasi-isomorphic μ-ample trees. To prove it, we can, for example,
specify the set of depths of elements of height 1 in each tree.

4.5 Lemma. For every λ > μ, there are 2λ non-isomorphic, μ-ample trees
of width λ.

4.6 Exercise. Show that if ft is a μ-quasi-isomorphism between the μ-
ample trees A and B with h(A) = B, the μ depth of A in A is the same as
the μ depth of B in B.
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We show now that by specifying some easily fulfilled conditions on the
representing trees we can guarantee that if two trees represent the same
model then the trees obtained by peeling off the leaves are quasi-isomorphic.
The key to applying this result is that if A has infinite depth, the derived
tree has the same depth. Another important idea in this proof is the fact
that for each A £ /+, A and a A are bidominant over M/. Thus, we can use
the triviality of t(a,A', M/) to deduce properties of A.

4.7 Theorem. Suppose μ>λ0(I)+ and that λ(I) is regular. Let the μ-
ample trees A and B be K-representations of the K-model M. Suppose
further that only one nonorthogonality class of K-strongly regular types
over A is represented in A, for each A E A (and similarly for B). Let
A1 (B1) denote the nodes in A (B) which have depth at least one. Then
A1 ~ R1
/i ~g D .

Proof. (Fig. 3). We first define a map A ι—» A which is a bijection between
A1 and B1 but may not preserve order. Then we show that by throwing
away from the domain (range) of the map less than μ successors of any
node, we can restrict our map to one which preserves order. Thus, the
restricted map is a quasi-isomorphism on the nodes of positive depth. Define
h: A h-> A if for some successor AI of A G A and some £?ι E B, with B± — Ά,
t(Aι',A) / t(B\-,A). By Lemma 2.8, the transitivity of nonorthogonality on
regular types, and the fact that only one nonorthogonality class over A (A)
is realized in M, this map is a bijection.

Fix A, A. Choose a model MAA with \MAA\<μ such that A, A £ MAA

and for some ideal / C A and some ideal J C £, MAA is prime over each of /
and J. This model can be chosen by a back and forth. First choose a model,
MO, prime over an ideal of A which contains A and then an M\ prime over
an ideal of B which contains A U M0 and so on. Since the property of
being an elementary submodel has finite character, this process terminates
in ω steps. By Corollary 1.11 the union of the resulting chain satisfies the
conditions.

Less than μ successors of either A or A are contained in MAA = M/.

Prune A1 and B1 by discarding for each A (A) with depth at least three
in A (B) its successors in MAA. To preserve symmetry discard ft (A) if A
is discarded and vice versa. In order to show that h preserves order on
the pruned trees it suffices to show the following condition. If AI was not
pruned where A\ — A and A<2 > AI then ft(A2) > ft(Aι).

By Theorem 1.10, A |/ M/. Since AI € A, AI j/ M/. As AI does not
depend on / over A, we have AI [A Mj. The analogous result holds for the
successors of A. Now by Lemma 2.7, J+ is a maximal independent subset of
realizations of /f-strongly regular types over Mj. Since Mj = MAA = M/
and J+ dominates M over Mj, each AI E /+ depends on J+ over MAA. By

triviality and weight one, there is a unique AI G J+ such that AI luAλ AI

Now for any other B G J+ we have B [B- MAA. By Lemma 4.3 we have
normal trees A/ and Bj each with initial node MAA. Let (Aι)> denote
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Fig. 3. Theorem XVΠ.4.7: The construction of quasi-isomorphisms

the cone above A\ in Aj and (B)> denote the cone above B in Aj. Since

AI {MAA ^» we ̂ ave a normal tree MA^ U (Aι)> U (B)>. By Lemma 1.7
we see that for any A2 > AI, and any C > J5, t(A^ AJ) _L £(<7; <7~). Thus,

Λ(Aι) = AI and ^1(^2) > A\. This shows that /ι preserves order almost
everywhere.

We must still verify condition iv) of Definition 4.1 by showing that if A2

has depth one in (A)1 and A<2 is in the restricted domain of h, then h is a
bijection between the successors of A<2 and the successors of h(A^). If A^
is in the restricted domain of Λ, neither A^ nor ^(^2) was pruned in the
construction. Then, for any successor A\ of A%, the argument in the last
paragraph shows h(A\) > h(A^). Note that for any A G A there is a chain
of length n above A £ A if and only if there is chain of length n above h(A)
in B. Thus, h(A%) has depth two in B. Since A(Aι) has depth at least one
in β, h(Aι) is an immediate successor of h(Aι).



4. Quasi-Isomorphisms and Lower Bounds 361

The fact that a quasi-isomorphism preserves depth is implicit in the ar-
gument for condition iv). In general, a quasi-isomorphism need not preserve
height.

Now we can obtain the first precise result on the spectrum problem of
NDOP theories.

4.8 Theorem. IfT is super stable and has the NDOP but is deep then for
every uncountable λ, I*(λ,K) = 2λ.

Proof. Since T has infinite depth, for any λo(/)-ample tree, A, of depth
less than λ~*~, we can construct a model M with cardinality λ which is
K-prime over a tree isomorphic to A. If two such trees represent the same
model they are quasi-isomorphic by a quasi-isomorphism constructed as in
Theorem 4.7. Without loss of generality we can assume that all height 1
types in A and B are based on a single finite set D. Naming D does not
affect the number of models of T in an uncountable cardinal. But since
the quasi-isomorphism is given by nonorthogonality and all types in A (B)
except those of elements with height 1 are orthogonal to D, we see h must
map elements of height 1 to elements of height 1. But since it is easy to
construct trees AX for X C λ so that for A G AX with height 1, dp(A)
in AX is η if and only if η £ X, we conclude there are 2λ nonisomorphic
models.

The next exercise generalizes one of the major ideas from the previ-
ous theorem, the importance of a quasi-isomorphism preserving height. Al-
though this result is crucial for the rest of the argument, its straightforward
but tedious proof is omitted.

4.9 Exercise. Show that if there is //-quasi-isomorphism between two μ-
ample trees which preserve height then they are isomorphic.

Thus, we need to find some trick to make quasi-isomorphisms preserve
height. We will use two different devices. In, e.g. the α -stable case, the first
works when computing the number of models of power K, for /c > Nω. If this
trick is not sufficient we will use the second trick and some further analysis.

For the first trick, we restrict the tree A by choosing for each n < ω a
set of cardinals, Xn, and requiring that the number of successors of a node
of height n and depth 1 be a cardinal in Xn. The next definition describes
the kind of trees we will map onto and the function which counts them. We
introduce the new parameter 7 here to handle the superstable and α -stable
cases simultaneously. We will need to choose 7 so that #Ί = AQ(/). Thus,
for a countable superstable theory, we need N7 = 2**° and for a countable
α -stable theory, 7 = 0.

4.10 Definition. Let X = (Xn : n < ω} be a family of sets of cardinal
numbers which lie between N7 and N/j such that the Xn are pairwise disjoint
{N7+ι,N0} C X1? and for each n \Xn\ > 2. The tree (A, <) is constrained
by X if for each a G A with ht(α) = n and dp(α) = 1, \{b: b~ = a}\ E Xn.
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The usual kind of induction allows us to count the number of constrained
trees of power N/?. In the ensuing lemma we fix N7 as λo(I). The constraint
on the ordinal β is satisfied by all infinite β when λo(I) = NO-

4.11 Lemma. // β ^ 7 + ω and a is infinite there are T(β,a) trees of
power N/? which are X -constrained and Mγ+i-αrap/e but have depth at most
Oί.

Proof. Although the statement of the theorem is for infinite α, the key to
the proof is the analysis for finite a. Since β > 7 + ω, we can find at least
two cardinals between #Ί and N/? to put in each Xn. Note, then, that there
are at least two of the desired trees with depth one, \β + ω\ of depth two,
and T(\β + ω|,n — 1) of depth n for each finite n > 2. Thus, there are
T(β,ω) of depth ω. The rest of the induction is routine.

The proof of Lemma 4.11 illustrates an important point in the actual
calculation of the number of models. While one may not be able to guaran-
tee that every cardinal less than N/? is possible as the number of successors
of an arbitrary node (either because of ampleness or some defect in cod-
ing), this problem can be surmounted if the tree has infinite depth. The
following two exercises emphasize this point.

4.12 Exercise. Complete the proof of Lemma 4.11. (Hint: Consider the
depth two case. Suppose {/c0, KI} CXi. Each function / from 2 to the set
of /c < N0 with #0 G rng / determines an appropriate tree by assigning for
i equal 0 or 1 /q successors to f ( i ) nodes of height one.)

4.13 Exercise. Show that for the case of an ω-stable theory, where 7 = 0,
the definition of constrained can be altered to require each \Xn\ = \β\. With
this alteration Lemma 4.11 holds for finite a but the change does not suffice
to prove Theorem 4.14 for finite a.

Now we can compute the spectrum when both β and α are sufficiently
large. Note that if T is a countable ω-stable theory, 7 in the following
theorem is 0 and so we are just requiring β and a to be infinite. The
arithmetic of the following argument depends on two observations. If α >

λp(I) then T(\β + ω\λ°^, a) = T(β, a). If a tree A has infinite depth then
A1 has the same depth.

4.14 Theorem. Let #Ί = λ0(I) Suppose β>^ + ω.IfTisa super stable
theory, the NDOP holds and dp(Γ) = a is infinite then Γ (N/?, K) = T(β, a) .

Proof. From Lemma XVΠ.3.17, we have the upper bound T(\β + w|N η r, a).
If two N7+i -ample trees A and B represent the same model and we denote
by A1, Bl the nodes with depth at least one then by Theorem 4.7 A1 and
B1 are quasi-isomorphic. If we insist the trees are constrained the quasi-
isomorphism preserves height. Applying the second observation before the
theorem we see that a lower bound is the number of X-constrained, N7+ι-
ample trees of power N/j and depth α. By Lemma 4.11, this number is
T(β, a). Since a > N7, this equals T(\β + ω|*S α) and we finish.
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It remains to compute the spectrum for powers N/? when β < 7 + ω. For
concreteness we restrict the theorems to counting all models of a countable
u -stable theory. We will not obtain the full solution until Section XVIII.5.
However, we can solve the problem for theories of infinite depth with the
methods we have now. We need the following sharper estimate on the num-
ber of ample trees.

4.15 Lemma. For any 1 < m < ω there are 2*m partially 2-labeled trees
of power Nm which are ^ι-ample and have depth less than m 4- 2.

Proof. For any k > 0, there are N0 partially 2-labeled trees of cardinality Nfc

and depth one. Namely, let the nth tree have n nodes of height one labeled
by C/o and N^ labeled by U\. Since any uncountable tree of depth one is
Ni-ample, each Tn is. By forming for any subset X C ω a tree MX such
that if a £ MX has height one then (α>) « Tn for some n £ X and such
that each such subtree occurs NI times, we create 3ι(No) partially 2-labeled
trees which are Ni-ample and have depth two. Continuing inductively, there
are 3m(N0) partially 2-labeled trees which are Ni-ample, have cardinality
Nfc and depth at most m + 1. Since Dm-l_2(^o) > 2**m this yields the lemma.

4.16 Theorem. If T is an ω-stable countable theory without the dimen-
sional order property and dp(T) > ω then for β <ω, J*(N/j, AT) = 2^^ .

Proof. Fix β = m with 1 < m < ω. Choose n = m + 2. For each partially
2-labeled NI -ample tree S of height n we build a normal tree AS of height
n + 1 with (As)1 isomorphic to S. Each A in AS will have only a single
type based on it (to guarantee the uniformity condition in the hypothesis of
Theorem 4.7). If the leaf A £ S is labeled by C/o, A will have NO successors
in AS', if the label is U\ the node will have N^ successors in ΆS We require
that if ht(A) = fc, then dp(ί(A; A~)) = n — k. Then the quasi-isomorphism
between two representations of the same model will preserve height. By
Theorem 4.7 if ASO and ASI both represent the same model, (AsJ1 ~q
(Asi)1- Thus, they are isomorphic as trees. To see that the isomorphism
preserves labels we need only note that if h(Ao) = BQ then there exist
AQ and BO with t(Ab', AQ) JL t(B'Q; BQ) . Since nonorthogonal types in an
u -stable theory have the same dimension modulo NO> ^o and BQ have the
same label. By Lemma 4.15 we obtain a lower bound of 2**m on the number
of models of power Nm. Since this is the crudest upper bound, we complete
the proof of the theorem.

4.17 Exercise. Let T be a superstable countable theory without the di-
mensional order property and dp(Γ) > ω. Show that if #Ί = λo(S) then
for 7 < β < 7 + ω, /* (fy , S) = 2*' .

There are two difficulties with the method of proof of the last theorem.
First, the requirement of considering trees of depth m + 2 makes it inher-
ently unsuitable if we are trying to find precise estimates for the number
of models of a theory with depth m. Secondly, the methods used fail if
we try to label finite dimensions. Both of these problems are resolved in
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the complete solution of the spectrum problem for finite depth theories in
Section XVIII.5. The key to the solution is to continue to build Ni-ample
trees but to preserve labels for finite dimensions. In addition to the meth-
ods described here, that proof relies on Bouscaren's analysis in [Bouscaren
1984].

4.18 Historical Notes. These results were originally proved by Shelah
in [Shelah 1982]. Our account owes a great deal to the expositions of [Har-
rington & Makkai 1985] and [Saffe 1983]. The present proof of Theorem 4.7
on the existence of a quasi-isomorphisms is from [Baldwin & Harrington].
The trees discussed in this section play an important role in [Baldwin &
Shelah 1985] and in that paper there are other applications of the count-
ing functions discussed here. The case treated in Theorem 4.16 was not
discussed explicitly in either [Harrington & Makkai 1985] or [Shelah 1982],
but was in [Saffe 1981].




