
Chapter XVI

The Dimensional Order Property

We discuss in this chapter the main dividing line between superstable the-
ories with and without a good structure theory; this dividing line is called,
'the dimensional order property' or just DOR If a theory has the dimen-
sional order property then it is possible to interpret an arbitrary binary
relation into T by considering the dimensions of sets. This 'nonstructure'
result leads to the conclusion that T has 2λ models in every cardinality
A greater than 2lΓL The great significance of this concept stems from the
perhaps even more remarkable consequences of its negation. Essentially,
the negation of DOP (NDOP) is the assertion that the relation p H M is a
trivial dependence relation. This hypothesis allows one to decompose every
model as a tree of small models. There are a number of equivalent formula-
tions of DOP which are useful in various contexts. The name is suggested
by the following variant. If T has DOP then there exists a two parameter
family {p ̂ } of copies of a type p such that for any choice of infinite cardi-
nals λ-£, there is a model M with diπι(p-^M} = λ-^. This leads to the

construction of 2* models with cardinality K > 2'τl by constructing α ϊ ? bi
for i < K, and using dim(p-^) to encode an arbitrary binary relation on K.

In the first section of this chapter we discuss the notion of free amal-
gamation of models in a class K. This leads to the formalization of DOP
as an assertion about the triviality of H. We develop in Section 2 some
technical properties of trivial types which are extremely useful in Section
3 and Chapter XVII. In Section 3, we show that the DOP implies T has
many models. In the following chapter we will continue the discussion of
theories without the DOP.

1. Avatars of the Dimensional Order Property

We first formally define If-NDOP in a way that will be useful in Chapter
XVII and beyond. Then we show that the K in /f-NDOP was superfluous;
the dimensional order property does not, in fact, depend on the class K.
We show that NDOP can be described in terms of finitely generated models
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and we develop the form of the DOP which makes the name appear most
natural.

Throughout this chapter we assume that T is superstable. This is not
really necessary and Shelah develops much of the machinery for arbitrary
stable theories in [Shelah 1982]. We sacrifice the greater generality for the
convenience of a ready supply of regular types. The most immediate ad-
vantage of Shelah's added generality is the ability to prove such theorems
as, Ά stable but not superstable theory with the dimensional order prop-
erty has 2λ models which are λ-saturated and have power λ'. Despite this
restriction we often write κ(T) when by this convention we mean ω.

Most of the work in Chapter XIV and before was one-dimensional in the
sense that we could order our constructions linearly. We now want to con-
sider model constructions where the relations between the building blocks
are inherently of a higher dimension. In this book we extend primarily from
1-dimensional diagrams to 2-dimensional diagrams. The full development
of classification theory, particuarly the study of infinitary languages [Shelah
1983a], requires the study of ra-dimensional diagrams for all finite n.

Much of the work in the remainder of this book is concerned with par-
tially ordered families of sets or, more often, of models. We introduced in
Chapter II the notion of an independent system. We denoted the universe
of such a system by an upper case Roman letter and the elements with
lower case Roman letters, even though it was understood that the elements
of the independent system might be subsets of M. In some of the ensuing
definitions (specifically a normal family in Section XVII.2) we have to deal
with elements of the sets in an independent family. In these more compli-
cated situations we have adopted the convention of referring to the systems
as A, B, etc., the elements of the system as A, £, etc. and the elements of
the elements of the system as α, 6, etc. However, we retain the practice of
denoting the system by upper case Roman letters and the members (sub-
sets of models) by lower case Roman letters when their elements are not
required.

When discussing independent families of models we introduce the fol-
lowing systematic ambiguity.

1.1 Notation. Let (A, <) be a partial order. Let / C A be an ideal (i.e.
downward closed, cf. Definition II.2.24). Then we denote |J/ C Λt by /.

It should be clear from context when I denotes a set of subsets of M and
when it denotes the union of that set. Similarly, we use A ambiguously to
denote \JA. For example, we will frequently speak of a model M which is
prime over (the system) A. This really means M is prime over UA

This notation seems to be less cumbersome than that of [Shelah 1982]
and [Harrington & Makkai 1985]. They let {/,<) be a partially ordered
set and let (Ai : i G I) be a collection of subsets (of the monster model)
indexed by I. For / C I, AI denotes \J^€lAj. Letting subsets of M act as
their own indices allows us to reduce the number of levels of notation by
one.
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We begin by considering the simplest kind of nonlinear diagram, an
independent triangle.

1.2 Definition, i) A triple M = (No,Nι,N2) with NI INO N2, N0 con-
tained in NI Π AΓ2, and each Ni G K is called a free K-amalgam.

ii) A quadruple M = (N0,Nι,N2,N3) such that (N0,Nι,N2) is a free
amalgam, and TVs is K-prime over NI U N2 is called a full (free)
K-amalgam.

Since we deal only with free amalgams we will often omit the adjective
free. We say that ΛΓ3 completes the amalgam M. If the only restriction on
the Ni is that they be subsets of the monster model we refer to M as a
set-amalgam.

1.3 Definition. The theory T does not have the K-dimensional order prop-
erty, written T satisfies ίί-NDOP, if for any full amalgam (ΛΓ0, JV l 5 JV2,7V3)
of ίί-models and type p, if p H NI and p H N2 then p H 7V3.

If this condition fails we say T has the K-ΌOP. We show in Theorem
1.7 that we can drop the K and speak just of the DO P.

The simplest example of a theory with the dimensional order property is
the theory of two crosscutting equivalence relations. (Fig. 1). A model, M,
of this theory is easily visualized as a checkerboard. Suppose M is extended
to MI and M2 by adding to M a new row for MI and a new column for
M2, thus producing a checkerboard with one corner missing. Then the type

/I/I/I/I/I/I/

Fig. 1. The dimensional order property (DOP)

of a point in the missing corner square is orthogonal to each of MI and M2

but is realized in every model containing both of them.
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The next result sharpens the conditions on DOP and provides a version
which is more useful for proving nonstructure results. The three parts of
the theorem successively strengthen the result.

1.4 Theorem. // the full free S-amalgam M and the type p witness the
S-DOP then we may assume

i) p E S(NS) and p is regular.

ii) NI and N% are finitely generated over NQ.

iii) For i = 1, 2, Ni = No[ai] where α^ realizes a regular type over NQ.

Proof, i) Since p / TVs, there is a regular q G S(N3) with q / p. Write p
as ®rj where each TJ is regular. Then, for some y, TJ / q. Now, by the
transitivity of nonorthogonality on regular types, if q / Ni then r3 / Ni
and, a fortiori, p / ΛΓt . Thus we can take q as the desired p.

ii) We assume p satisfies condition i). There is a finite B C 7V3 with
\B\ < κ(T) such that p is strongly based on B. Then t(B]Nι U N2) is
S-isolated by a finite A C NI U N2 . Let άj = A Π (TV, - 7V0) for i = 1, 2. Now,
(TVo, 7Vo[θι], ΛΓo[θ2],.ΛΓo [01,02]) and p|7V"o [01,02] meet the requirements.

iii) We show that if S-NDOP holds for models generated by one element
realizing a regular type then it holds for all finitely generated models. Let
M be a free S-amalgam with NI and 7V2 finitely generated over 7V0. Let Xι
and XΊ be bases for R(Ni', NQ). The proof is by induction on the sum of the
cardinalities of the Xi. Choose Xi G Xi for i = 1, 2 and let X( = Xi — {xi}.
Since X\ U X<2 is independent over 7V0,

], NQ(X[ U X2], 7V0[Xι U X£], ΛΓ0[Xι U

is a full S-amalgam. Thus, NDOP implies either p -fl N0[Xι U X'2}, or p yί
A^o[^i U Xz]. Without loss of generality, we may assume the first case
occurs. But now, note that (7V0,7V0[^ι],A^o[^2]^o[^ι U X'2]) is a full
S-amalgam so by induction p / ΛΓo[-XΊ] or p -fi N^X1^}. In either case we
finish, either directly or by applying upward monotonicity for yί.

The next lemma helps to explain the name dimensional order property.
It shows that in the presence of DOP, if 7V3 is S-prime over N\ U A^2 then N%
contains an infinite set of indiscernibles over NI U N2. The dimension of this
set of indiscernibles can be fixed arbitrarily to code binary relations into
models of T. In particular, consider again the theory of two crosscutting
equivalence relations; we are free to place any infinite number of points on
each square of the checkerboard.

1.5 Lemma. Suppose the full amalgam M witnesses that T possesses the
S-DOP. Then N$ contains an infinite set of indiscernibles over NI U N%.

Proof. (Fig. 2). Let peS(N3) witness the S-DOP. Choose B C N3 with p
strongly based on B and \B\ < /c(Γ). We will show the following

1.6 Claim. For any C containing B with \C\ < /c(T) there is a D O C
with \D\ < /c(Γ) such that p\D \- p\(Nι \JN2UD).
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With this fact in mind it is easy to construct the set of indiscernibles.
Namely, choose βi for i < ω so that eι realizes p\(Ei U NI U Λ^). We can
choose the ez £ N$ since the claim entails that pi is implied by a type over
a set with cardinality < κ(T).

We now prove the claim. Using the definition of κ(T) and monotonicity,
we can extend C to D with \D\ < κ(T) so that, letting Dl: = D Π Ni for

and

Fig. 2. Lemma XVI. 1.5: Simplifying DOP

D I

D
1? and£> | 7V2.

By the definition of a free amalgam we have

I N2.
NO

(1)

(2)

(3)

Now, from (1) and the monotonicity properties of forking we can deduce
^2 iwiUDa NI UD. Similarly, (3) implies 7V2 lN0uD2 Nι\jD2. Now, tran-
sitivity of independence yields N2 lN0uD2 NI U D. By monotonicity again,
we conclude NI INO\JD N%. The downward preservation of H in the sec-
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ond coordinate implies p H NQ U DI and p H NQ U D2. Now, using (2)
we have t(Nι\NQ U £>) _L p\(N0 U D) and *(7V2;7V0 U £>) _L p|(7V0 U D).
From the strong triviality of orthogonality (Theorem VI.1.19) we con-
clude P\(NQ U D) _L t(Nι U N2',N0 U £>). Applying a similar argument to
7V0 and A) we have p\D J_ t(NQ;D). Since p|£) and p\(N0 U £>) are sta-
tionary _L implies weak orthogonality (cf. Exercise VI.1.23) so we have
p\D \- p\(N0 \JD)\- p\(Nι U 7V2 U £>) as required.

In the light of Theorem X.4.9, Lemma 1.5 asserts that in the presence of
DOP prime models over free amalgams are not minimal. The next lemma
provides a converse to this result by showing that NDOP implies S-prime
models over free amalgams are AT minimal.

1.7 Lemma. Let T be a countable ω-stable theory. IfT satisfies S-NDOP
and M is a full S-amalgam then 7V3 is AΎ-minimal over NI U N2. In
particular, N% is AT-prime over NI U 7V2.

Proof. (Fig. 3). Suppose for contradiction that there is a proper submodel
NS with NI U N2 C N!$ C N3. Then some strongly regular p G S(N^) is
realized in N$ — N%. By NDOP, p is not orthogonal to one of ΛΓ l 5 7V2, say
p -^ NI. Applying a consequence of the Three Model Theorem, Theorem
XIΠ.4.3, to TVs, TVg, and 7Vι, there is a strongly regular type q G S(N^)
with q / p such that q does not fork over NI. Since N% = Λ/Ί[7V2], for any

Fig. 3. Lemma XVI.1.7.

a € N3 a lNl N2 and a fortiori α XNo N^. By Lemma XΠI.4.3,
and therefore q is orthogonal to N0. Since AT-strongly regular types are
AT-minimal some c£N3 realizes q. The choice of q yields c |jv0 ^3- Thus,
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by the definition of H, 7VΊ [NO 7V2 implies c lπl N%. But as N% >NI N3, this
is impossible and we conclude the theorem.

Corollary XVΠ.2.4 and the exercise following it give a more satisfying
proof of the last result.

The next theorem provides the most intuitive description of the negation
of the dimensional order property, the assertion that H is a trivial depen-
dence relation. The proof of the equivalence of this characterization with
the original definition is from [Lascar 1985]. One consequence of this result
is that we can refer to just the DOP rather than the K-ΌOP. We discuss
another approach to this result in Theorem XVII. 1.21.

1.8 Definition. We say H is trivial if for any three sets A, B, and C with
B I A C and any type p, if p H B and p H C then p H B U C.

The following exercises make the equivalence between NDOP and trivi-
ality of H more plausible.

1.9 Exercise, i) Show that H is trivial if and only if for every regular p,
if p H B and p H C then p H B U C.

ii) Suppose p H M U A implies p H M[A]. Show that for any K, the
/f-NDOP is equivalent to the assertion that H is trivial.

The hypothesis of Exercise 1.9 ii) does not hold in general. The following
more complicated argument of Lascar shows that the conclusion does. We
employ the following notation in the proof.

1.10 Notation. Let M =(N0,Nι,N<2) be a free /f-amalgam. We call the
fΓ'-amalgam .V' =(N^N[^N2) a parallel amalgam to M if the following
diagram (Fig. 4) is independent with respect to the partial order indicated

by the arrows.

N/

tfo'

Fig. 4. A parallel amalgam

1.11 Theorem. The following are equivalent.

i) Γ Λαs the S-NDOP.
ii) For some acceptable class K, T has the K-NDOP.

\\ι) -\ is trivial.
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Proof. That i) implies ii) is obvious. To see that ii) implies iii), fix a
set-amalgam .λ/={7Vo,ΛΓι,7V2) and assume p / NI U N%. Without loss of
generality, we may assume p is regular. Extend Λ/ to a parallel amalgam
(Mo,MI,M2) of .ίί-models and let M3 be /f-prime over MI U M2. Since
p / ΛΓi U N2, p 7Ϊ M3. By Theorem XIΠ.3.3, there is a /f-strongly regular
</ E S(M^) with p Jί q. By the X-NDOP, </ is not orthogonal to one of MI
or M2, say q -fl M\. But MI |Λ/Ί î U AΓ2 implies by Lemma XIII.3.11 that
p -f( NI and we finish.

We now show that iii) implies i) (Fig. 5). Let .V = {^0,^1,^,^3} be
a full S-amalgam and suppose p € S(N3). We must show p - f l N \ or p / 7V2.
This would be immediate from the definition of triviality but we don't know
p τ ί Λ / 1 U7V 2.

Fig. 5. Theorem XVI.1.11: iii) -> i)

Let p be strongly based on the finite subset A of N%. The proof will be
by induction on the [/-rank of t(A\ N\ U Λfo). Without loss of generality, p
is regular.



324 XVI. The Dimensional Order Property

If U(A', NI U N2) = 0 then p does not fork over NI U N2 so p -fl NI U 7V2

and we finish by the triviality of H.

Suppose U(A\ NI U 7V2) = α and if (Mo, MI, M2, MS) is a full amalgam
and p G 5(Ms) with p strongly based on the finite subset B of M3 with
C/(B;Mι U M2) < α, then p -ft MI or p -fi M2. Choose 7V3 to be S-prime
over NI U N2 with A l^u^ N^. Let JV£ be ΛΓ£[A]. Let B be a basis for
the realizations of regular types over 7V3 in N$. Since A [NιUN2 ^3? f°r

each beB, ί(6; ΛΓ£) / ί(Λ; 7V£) which implies f (6; Λ^) -^N1(JN2. Since H
is trivial this implies each £(6;7V3) is nonorthogonal to one of 7Vι or N2.
By Theorem XIII.3.3 we may without loss of generality replace each b G B
such that t(b;Nβ 1 JVi (/ 7V2) by a V with f |Nl 7V£ (V |jv2 #£). Thus,
we can assume B is the disjoint union of B\ and B2 where the elements of
BI (B2) are independent from 7V3 over Λ/i (N2).

By Theorem X.I.28 we can choose copies N[ and N2 of N^[Bι] and
A^3[J52] such that N% = N[[B<2\ = N^Bi]. Moreover, we can choose copies
MI and M2 of Nι[Bι] and N2[B2] respectively so that N% = N[[M2] =
N^M,}.

Now let pf be a nonforking extension to S(Ng) of p\(A U NI U AΓ2).
Note i) U(A]Ml U ΛΓ^) < U(A Nl U 7V2) and ii) M1 [Nl N^. The first of
these assertions is obvious; the second is a routine application of the forking
calculus. Thus we may apply the induction hypothesis to conclude: p1 -f\ M\
orp'JNίi.

In the first case, recall that 7V3 = Nι[N2] and A C N$ so 7V2 lNl BI
implies successively that N2 INI MI, 7V3 j^i MI, and Al^ MI. But p -fl A
and p -ft MI implies by Theorem XIII.3.11 that p •/ NI as required.

In the second case we consider the representation of N% as ]V2[Mι] and
deduce first that p -fl M2 or p / N[. From the first of these alternatives we
deduce as in the previous paragraph that p -ft N2 and finish. If not, we have
p J N[ and p / N^. But 7V( [N>3 N^ implies, again by Theorem XIΠ.3.11,
that p -f( N%. But A lNι\jN2 ^3 yields p / (Nι U 7V2) and thus by triviality
of orthogonality p •/ NI or p -fl N2 and we finish.

1.12 Exercise. Deduce from the previous theorem that if T is a countable
cj-stable theory then T has S-NDOP if and only if T has the AT-NDOP.

We have shown that the dimensional order property depends only on T
and not on a class of models K. If we vary the definition by restricting the
type p which can witness the nontriviality of H, we do obtain a different no-
tion. The remainder of this section is a first step towards proving Vaught's
conjecture for ω-stable theories. To properly count countable models, just
as in Chapter XIV, we must distinguish eventually nonisolated types.

1.13 Definition. The theory T does not have the ENI-dimensional order
property, if for any free amalgam {ΛΓ0, A/ι,ΛΓ 2,ΛΓ 3) of S-models and ENI
type p, if p H NI and p H N2 then p H 7V3. We write T satisfies ENI-NDOP.
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Naturally, the negation of this property is referred to as the ENI-DOP.
Notice that the theory CER2 of two cross-cutting equivalence relations
is an No-categorical, ω-stable theory with DOP but which does not have
ENI-DOP.

1.14 Exercise. Give an example of an ω-stable but not No-categorical
theory with DOP but without ENI-DOP.

1.15 Exercise. Show that if T has the ENI-DOP then T has the DOP.

Since we showed in Section XV. 2 that nonorthogonality preserved ENI
types, the following result can be deduced immediately from Theorem 1.4.

1.16 Theorem. // the full S-amalgam M and the ENI-type p witness the
ENI-DOP then we may assume

ii) NI and N% are finitely generated over NQ.
iii) For i = 1,2, NΪ = N0[ai] where t(ai',N0) is strongly regular.

1.17 Historical Notes. The dimensional order property was first defined
and applied in [Shelah 1982]. Our treatment depends greatly on later ex-
positions by [Harrington & Makkai 1985] and [Lascar 1985]. In addition to
proving that NDOP is equivalent to the triviality of H, Lascar introduces
in that paper another interesting notion. He says a type p is bounded by
a set A if when writing p as ®rt , where each r» is regular, all of the r» are
not orthogonal to A. Lascar calls a theory without the dimensional order
property presentable. This terminology is justified by the decomposition
theorem in Chapter XVII.

2. Triviality of Forking

In this section we develop some technical consequences of the assumption
that forking is trivial on the realizations of a type p. In Section XV.3
we showed that if there exists a type p E S(α), p is orthogonal to the
empty set and £(α; 0) is a nontrivial weight one type then there exist many
non-isomorphic models. In this section we expound the properties of trivial
types. We will rely on the results here in the proof that DOP implies a
theory has the maximal number of models and in the proof of the Vaught
and Morley conjectures for α -stable countable theories.

Recall from Section XV.2 the definition of a trivial type.

2.1 Definition. The stationary type p G S(A) is trivial if for any nonfork-
ing extension p' of p, any three pairwise independent realizations of p' are
in fact independent.

We call a triple of points which form a counterexample to triviality a
triangle. Clearly, if p is trivial so is any nonforking extension of p. Given
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a triple (α,6,c) of realizations of p E S(A) and B D A, we can choose

(ά',6',c') realizing ί(α^6^c; A) with α'^b'^c' |Λ #• Since the first triple
is a triangle over A if and only if the second is a triangle over B we deduce
the invariance of triviality under nonforking extensions.

2.2 Proposition. If p' is a nonforking extension of the stationary type p,
then p is trivial if and only if p1 is trivial.

Using this fact, it is easy to prove the following proposition.

2.3 Proposition. If p is a trivial type and I is a set of pairwise indepen-
dent realizations of p then I is independent.

When p is regular we can extend the triviality property to sets which do
not realize p.

2.4 Lemma. Let p E S(A) be trivial and regular. If a realizes p and for

some B\,B<ι with B\ [A #2? α I A 1̂ U ^2 then a 1A B\ or a 1A β2

Proof. Without loss of generality we can replace A by a strongly κ(T)-
saturated model M. Thus, p denotes ί(α; M). For i = 1,2, let Dt = p(M[Bi\).
Then, p _L t(M[B<]; Af[A]) For, if not, p would be realized in M[Bi] -
M[Di] contradicting the choice of the Di. Now since M[Bι] |M A^[£2]5

Mfa] lM[Dl]uM{D,] Λf[B2], and for each ί t(M[Bi];M[Di] U M[D2]) ||
t(M[Bi}\ M[Di\). Since orthogonality is preserved by parallelism and is triv-
ial we have t(M[Bι] U M [B2]; M[Dι] \JM[D2]) ±p. Now, if α |M (£>ι U £>2),
then α JM M[Z>ι] U M [Z)2]. By the definition of orthogonality we conclude

ό i M[JBι]uM[JB2].
M[Dι]UM[jD2]

Thus, ά /M BI U β2 implies α /M £>ι U D^. So by triviality of p, ά /M £>ι
or α /M D2. But the first implies a 1M B\ and the second implies a /M 52

so we finish.

The following corollary is almost immediate.

2.5 Corollary. Suppose that I is a set of realizations of the trivial regular
type p E S(A) and that I is independent over A. If each a E / satisfies
a [A B then I is an independent set over B.

Proof. Since p is trivial, it suffices to show that / is pairwise independent
over B. Thus, it is more than enough to show that if α, b E / then α [A B U b.
But by Lemma 2.4, the last assertion follows from α i A B, b I A B, and α [A b,
which all hold.

We would like to extend Lemma 2.4 from trivial regular types to trivial
weight one types. In fact, we will have to strengthen the hypothesis on
B U C. Before proving the extension we must show that triviality is a
property of the nonorthogonality class of a weight one type.

2.6 Theorem. // p and q are nonorthogonal weight one stationary types
and q is trivial then p is trivial.
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Proof. Without loss of generality, assume that p and q are in S(M) for
some strongly /c(T)-saturated model M. Since p and q are nonorthogonal,
they are not almost orthogonal. Thus we can define a map / from p(M)
into q(M) such that a 1M f ( ά ) . Since q has weight one, if αi and α2 are
independent so are f ( a \ ) and a%. Now we can see that / preserves pairwise
independence. For if αi and a<2 were independent but /(αi) and 7(^2) were
not, the assumption that £(/(fl2); M) has weight one would be contradicted.
Now, suppose that A = {^1,02,03} are pairwise independent realizations
of p. Note that / is 1-1 on A. Then f~l satisfies the conditions of Theorem
XIII.2.9 so A is independent.

Another easy consequence of Lemma 2.4 strengthens the triviality of
forking to include all realizations of trivial regular types.

2.7 Corollary. // p and q are trivial regular types then forking is trivial
o n p ( M ) \ J q ( M ) .

Now we can obtain the promised extension of Lemma 2.4 to weight one
types. The following proof relies on superstability by assuming the existence
of regular types. I don't know whether this assumption can be avoided.

2.8 Theorem. If a /M c\^c^ with c\ [M ci, t(a\M) is trivial, and the
type of each of a,c\,c<2 over M has weight one then a 1M c\ or a 1M c^.

Proof. Without loss of generality, we assume that M is strongly /c(T)-
saturated. Since p Jί t(c\^c<2', M), p is realized by some a' G M[CI, c^]. Form
M[α'] -< M[GI, C2J and choose d G M[α'] to realize a regular type q over M.
Then p / q so by Lemma 2.6, q is trivial. Since d G Λf [ci, c2], d 1M c^c^.
Applying Lemma 2.4, we can assume without loss of generality that d
depends on c\ over M. Since q has weight one, d and c% are independent.
If d depends on α over M, transitivity of forking on weight one types yields
the result. But if a and d are independent, applying Lemma 2.4 again, we
have d [M Q-^c^. Thus, d iMuc2

 α But a IM Cι^c2 and α |M £2 implies
a /Muc2 cι Similarly, d 1M c^c2 and d[M ^2 implies d /Muc2

 cι τhe last

three assertions contradict the hypothesis that t(cι; M\Jc<z) has weight one
so we finish.

The following two exercises show the true strength of Theorem 2.8. The
first one shows that if an element a depends on an independent set / of
realizations of a type then over an appropriate base it depends on a sub-
set /o with l/oI < 2. Combining this observation with Theorem 2.8 yields
Exercise 2.10.

2.9 Exercise. Suppose p and q are nonalgebraic stationary types over A.
Show that if a realizes p and / is a minimal set of realizations of q such that
a 1A I and |/| > 2 then there is an 5-saturated model M and realizations
ci, C2 of q such that a /M c\^c<ι but α \M c\, a [M <?2

2.10 Exercise. Suppose / and J are independent sequences realizing triv-
ial weight one types p, q G S (A) such that each a G / satisfies α 1A J and
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each b £ J satisfies b 1A I. Show a 1A b establishes a 1-1 correspondence
between / and J.

Another version of this result continues the program of finding sufficient
conditions to make orthogonality and almost orthogonality equivalent. We
began by proving the equivalence if the two types are over a strongly sat-
urated model (Theorem VI. 1.40); later we extended the result to arbitrary
models of a countable ω-stable theory (Corollary XIII.3.8.) Here we move
in another direction by imposing no condition on the set but requiring that
the types be trivial. [Buechler 1986], extending [Cherlin, Harrington, &
Lachlan 1985], shows that trivial can be replaced by modular. We will rely
heavily on the next two results in Chapter XVIII.

2.11 Corollary, //p, gE S(A) are stationary trivial weight one types then
p JL q implies p Jίa q.

Proof. By Corollary VI.2.18, p / q implies there are finite independent se-
quences E, F of realizations of p, #, respectively, so that t(£?; A) /α t(F; A).
But since p and q are trivial, Theorem 2.9 yields that for some e E E, f G F,
e 1A f and we finish.

2.12 Lemma. Let p, q E S(A) be stationary trivial types with p jί q. Sup-
pose p is regular and for some φ, (q, φ) is strongly regular. Then for every
b realizing p and every M I> A U 6, there is a c £ M which realizes q and

ΠAc

Proof. By Theorem 2.11, p /α q. Let b realize p and choose d realizing q
with b 1A d. Then there is a formula ψ(x, y) such that for any e, \= ψ(b, e)
implies b 1A e. Fix M D A U b and choose c 6 M so that (= φ(c) Λ ̂ (ίr, c).
Since (g, φ) is strongly regular either c realizes q and we finish or £(c; A) _L q.
But t(c\ A) / p and p / q so, since p is regular, £(c; A) / q.

The important Theorems 2.9 and 2.11 require only that p and q have
weight one. The next attribute holds for regular trivial types but not for
general weight one trivial types.

2.13 Definition. The type p E S(A) is totally trivial if for any (α,6,c)
realizing p, if a 1A b^c then a 1A c or a 1A b.

Using the transitivity characterization of regularity, it is easy to see

2.14 Proposition. Every regular trivial type is totally trivial.

The next example shows the necessity of regularity for the last proposi-
tion.

2.15 Example. (Fig. 6). Let the language of T contain unary predicates
R (for regular) and W (for weight one), a binary relation E, and a ternary
relation S. For simplicity, in the following description we identify each rela-
tion symbol of L with its interpretation in a model of T. Roughly, a model
of T consists of two sets R and W. There is an equivalence relation with
infinitely many infinite classes on W. Each class is named by an element
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of R. There is a graph defined on the elements of W. Each component of
the graph lies in a single equivalence class. The graph is symmetric and
contains no cycles. Finally, each edge is labeled by an element of R. For
each element a of W and each element b of Λ, exactly one other element of
W is connected to a by an edge labeled by b.

E(a,M)

E(b,M)

E(c,M)

Fig. 6. Example XVI.2.15.

More formally, E C R x W] each element of R is connected via E with
infinitely many elements of W but each element of W is connected to ex-
actly one element of R. Moreover, S C R x W x W. If (r, MI, w<z) £ S then
(r,W2,Wι) G S and for some r1 both (r^wi) and (r1\w%) are in E. Thus,
the projection of S on W x VF defines a symmetric graph on VF which has
no cycles and connects only points in the same equivalence class defined by
R and E. The first coordinate of S determines a labeling of the edges of
this graph by elements of R. Namely, each point will be related to infinitely
many other points by the relation (3x)R(x) Λ S(x,y,z}. There is a 1 — 1
correspondence between the points in R and the points related to an ele-
ment α. That is, for each α e W, /α is a 1 — 1 map from R to the neighbors
of α in the graph given by fa(x) is the unique z such that 5(a;, α, z).

Now we claim, first, T is ω-stable. To verify this one must first check
that (after adding predicates which indicate the distance between pairs of
points in the graph and the possible equalities among the labels of the edges
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of a path connecting the pair) T admits elimination of quantifiers and then
count types. Second, each 1-type containing R(x) is regular and trivial.
Here are two key observations to support this claim. Any permutation of R
which preserves the number of components in the graph associated with a
point of R extends to an automorphism of the model. Any permutation of
an equivalence class which is a homomorphism for the expanded language
extends to an automorphism of the model.

But, some 1-types which contain W(x) have weight one and are trivial
but are not totally trivial. If W(x) E q E S(M) then the Morley rank (or
[/-rank) of q is determined by the 'distance' of a realization of q from M. It
is easy to check that the rank of q is at most ω + 1 and this rank is attained
by the type q which asserts that x is not related by E to any element of
M. Now, if α, b E W realize <?, they are independent over M if and only if
they are in distinct classes of the partition. Thus, forking is trivial on q.
But, suppose a and b are in the same class of the partition and there exists
a c E R with S(c, α, 6) and -J£(c, α). Then for any d E W with E(c, d), d is
independent from each of α and b but depends on a^b.

The following lemma connects the dimensional order property with the
existence of non-trivial types. For convenience, we say a type r has depth
at least one if there is a nonforking extension p of r with the following
properties. For some S-model M p E 5(M), and there is a realization c of
p, and a regular type q E S(M[c]) with q H M. This is a special case of the
definition of the depth of a type in Chapter XVII.

2.16 Lemma. I f T does not have the dimensional order property then T
has no nontrivial regular type p with depth one or more.

Proof. Without loss of generality assume p E S(M) and M is S-saturated.
Suppose (ά, 6, c) form a triangle which witnesses the nontriviality of p and
that p has depth at least one. Choose ACM with \A\ < κ(T) such that
ί(α^S^c M) is strongly based on A. Form Af[α,δ). Now ί(c; A UZΓ~"&) is
realized in M[ά,5] by some c'. If c' 1A M then £(c';M) _L p. But since α
and 6_are independent realizations of p, the only regular types realized in
M[o,5] are those which are not orthogonal to p. Thus, c' I A M. Suppose
for contradiction that c' /M α. Then £(c'; M U α) _L p. Hence c' JMuα ~b But,
since b [A M U α, transitivity of independence yields ~c' \ A b. This contradicts
the choice of c/. Now, since α |M c' and 6 |M c', p^/ is orthogonal to both
M [α] and M\b] which gives an example of the DOR

2.17 Historical Notes. This section appeared in [Baldwin & Harring-
ton]. Lemma 2.16 is from [Saffe 1983]. Many of the other results were
implicit in the main gap papers [Shelah 1982]. We mentioned after Lemma
V.2.6 and in Section X.4 the similarity between an infinite set of indis-
cernibles and a model. The same phenomenon occurs in [Shelah 1986c]
where Shelah proves a version of Lemma 2.12 replacing M by the algebraic
closure of an infinite set of indiscernibles.
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3. DOP Implies Many Nonisomorphic Models

In this section we prove any superstable theory with DOP has 2λ models
in every λ > 2lτ' and an u -stable countable theory with ENI-DOP has
2**° countable models. To obtain a precise common statement of these two
results, recall from Section XIV. 2 that a type p over a set A is (μ,K)-
tractable if there are fewer than μ realizations of p in a ίf-prime model
over A.

3.1 Theorem. Let T be a superstable theory with the DOP. Suppose the
(\,K) -tract able type p witnesses the DOP and X > λ0(I). If μ > λ0(I) then

Remember that for K = S, λ0(S) = 2lτl while for countable u -stable Γ,
λo(AT) = N0. Our argument follows that of [Harrington &; Makkai 1985].
Shelah's original proof [Shelah 1982] was more along the line discussed in
Section 1.5.

We begin by translating the DOP into a collection of data about a finite
set of finite sequences. We will use these finite sequences to code a family
of graphs into models of T with power λ and thus deduce the theorem.

The following reduction depends on several ideas. The first is that be-
cause of superstability, we can reduce the relations between the models
which witness DOP according to Definition 1.3 to relations between finite
sequences. The second is that because NI and 7V2 were ίί-minimal (The-
orem 1.4), we can demand that these finite sequences have weight one.
Finally, since NI and 7V2 were prime over /f-strongly regular types we can
demand either that (Nι _L 7V2; 7V0) or, invoking Corollary XΠ.1.15, that NI
is isomorphic to 7V2 over NQ.

To apply the following lemma to a countable u -stable theory recall that
for such a theory a nonprincipal type is (N0, AT)-tractable.

3.2 Reduction. Suppose T is superstable and a (λ, ίί)-tractable type wit-
nesses that T has DOP. Then, there exist finite sequences HQ, ni, ή2, and
n3 such that no C n\ C 713, no C ή2 C ή3,

ήi I n2,
no

and

Furthermore, there is a (λ, K)-tractable type p E ^(fϊs) with p H ή\ and
p H n2. Finally, if qι = ί(nr,ήo) and q2 = t(ή2; n0) we can guarantee that
qι and <?2 are stationary weight one types and either qι = <?2 or qι J_ ς2.

Proof. (Fig. 7). By Theorem 1.4 (or Theorem 1.16 for the u -stable case)
we can find a full amalgam of ίί-models, (ΛΓ0,ΛΓι, AΓ2,7V3) and a (λ,ίf)-
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tractable type r G S(N3) such that r H ΛΓi, r H Λfo. Moreover, we can
insist that for i — 1,2, Ni = N0[ai] where £(α^; 7V0) is /f-strongly regular. If
ί(αι; TVo) and £(α2;7V0) are not orthogonal, Corollary XII.1.15 implies that
we can find an isomorphism which fixes 7V0, takes αi to a<2 and N\ to N%.

Fig. 7. Reducing to finite sets

Choose n~3 C TVs so that r is strongly based on n^. Let p = r\n^. Then
choose n^, for ΐ = 1,2, so that £(ns; ΛΓ») is strongly based on n^. If t(a\; NQ) _L
£(<Ϊ2;TVo), clearly £(nι;TV0) _L £(rΪ2; TV0). If not, replace n<2 by rΪ2 union the
image of n\ under the isomorphism mapping NI to 7V2 and similarly for
HI. This replacement guarantees that qi = q%. Now choose no C 7V0 so that
ί(nι^fΪ2;-/Vo) is strongly based on no- Since for i = 1,2, NΪ = NQ\άi] and
ί(αi;7V0) is ίί-strongly regular, each i(n^;7Vo) has weight one. Since TVs is
If-prime over A/Ί U A^2, ni >n2 ns and rΪ2 >nι ^3- Similarly, HI \Jn<2 >n0 3̂

We can make the following simplifications in notation.

3.3 Notation. We will replace the vector notation by using individual
letters, α, 6, c to refer to finite tuples. Specifically we denote ΰi as Πi for
i=0,l,2,3. We will assume that the sequence no is named in the language.
In particular this means that </ι, q% are stationary types over the empty set.
For any model M we denote by Q(M) the set of all tuples which realize
either qι or #2

We are going to build many models by coding graphs on realizations of
qι and q^. The next result will simplify picking out the graph in the model.
It generalizes Corollary 2.7 (since the ^ are only weight one rather than
regular). We are able to prove the stronger result because of the additional
information that the ̂  are either equal or orthogonal.
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3.4 Proposition, i) q\ and q% are trivial types.
ii) Forking is trivial on Q(M).

Proof, i) We have that n\ >n2 n^. Since p H n\ and wt(i(n\\U'^j) = 1,
by Theorem XV.2.12, either we are finished or t(nι',n<2) is trivial. Since
nι In0

 n<2-> this implies q\ is trivial. The argument for q% is entirely sym-
metric.

ii) If qi = q<2 then ii) is just a restatement of i). So suppose q\ J_ q^ and
I C Q(M) is pairwise independent but not independent and |/| is minimal
among all such sets. Then we can write / as C U D U {6} where C C qι (M)
and D U {6} C Q2(M). By the triviality of </2? b j D and by orthogonality
of qι and q%, b j C. To get b I C U D, it suffices by Lemma Π.2.5 to show
6 ID C. This holds because ί(6; 0) _L f(C; 0), C 1 D, and by induction 6 j D.

To reduce eyestrain at the possible cost of straining the reader's short
term memory, we introduce a number of notions which are used only in
this proof. Here is the first set.

3.5 Notation. A germane pair (α, b) is a realization of £(raι,n2;0); a ger-
mane triple, (α,fr, eα&) is a realization of £(nι,n2,Π3;0). If (α,&,e ab) is a
germane triple, we denote by pα& a copy of p G S(eai,) which is orthogonal
to both a and b.

Note that if (α, b) is a germane pair then alb. Although we write eat>
and Pαb, there are many choices for this set and type for any given α, 6.

3.6 Exercise. If (α,6) is a germane pair and q\ — q^ then £(α""6;0) =
f(6~α;0).

The principal technical difficulty of this proof centers around the follow-
ing problem. Given pab and pcd with pα& / pc(j; show a / c and 6 / d. This
does not hold in general; the next few lemmas lay out special conditions
where it does hold. We will then arrange the construction so we can obtain
those conditions.

First suppose that b = d or α = c.

3.7 Proposition, i) 7/{α,6) and (α',6) are germane pairs andpab jLpa'b
then a ]i a1.

ii) // (α, b) and (α, b1) are germane pairs and pab / Pab1 then 6/6 ' .

Proof.

i) If α I αx, since forking is trivial on <9(Λ(), {α, α', b} is an independent
set. As α >& eab and a' >& e a/&, we can conclude eαδ [^ ea*b. Since
pαί, H 6, this implies pab ± pa

fb
ii) If <7ι = #2, ϋ) is a restatement of i). If not, it still follows by a sym-

metric proof.

To consider the case when α, 6, c, d are distinct we introduce some further
notation.

3.8 Notation. A 4-tuple (α, 6, c, d) is in normal position if (α, 6) and {c, d)
are germane pairs and a I d and b I c.
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Note that q\ J_ q% implies that any two germane pairs are in normal
position. The notion of normal position can be visualized by regarding
α, 6, c, d as the vertices of a square. We will connect two vertices of the
square to indicate the points are independent. The germane pairs guarantee
the top and bottom are independent (draw the top and bottom). (Fig. 8).
The additional requirement of normal position is that the diagonals are
independent (draw the diagonals). (Fig. 9). Thus, if (α, 6, c, d) is in normal

a

c d

Fig. 8. Germane pairs

a b

c d

Fig. 9. Normal position

position, α and c realize qι while b and d realize q^.

3.9 Exercise. If (α, 6, c, d) is in normal position and q\ = q<2 then d [ a^b.

The next proposition concerns whether we can draw the sides.

3.10 Proposition. // (α, 6, c, d) is in normal position with ale and bid
then pab _L pc^.

Proof. (Fig. 10). The hypotheses and the triviality of forking on Q(M)
yield that {α, 6, c, d} is an independent set and, in particular, ab I cd. Since
ab > eab and cd D> ecd, we deduce using Theorem VI.2.21 from pab H 0 that

Pab H ecd and thus pab -L Pcd-

Note that the argument for Proposition 3.10 depends only on the prop-
erties of the set {α, 6}, not the ordered pair {α, b). Thus, we have
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c d

Fig. 10. Proposition XVI.3.10.

3.11 Exercise. Assume (α,6, c, d) is in normal position. Then pt>a J_ pcd,

Pba -L Pdc, Pab -L Pcd, and pab J- Pdc

This shows if {α, 6, c, c?) is in normal position and pab / pcd then at least
one of α / c and b I d holds. We want them both to hold; this requires
some further hypotheses.

3.12 Proposition. (Fig. 11). Suppose (α, 6, c, d) is in normal position and

Pab -Jί-Pcd

or

implies pab 1 pcd implies Pab

Fig. 11. Proposition XVI.3.12.

i) // <7ι = </2 then a

ii)

c and b / d.
I d.

Proof, i) By Proposition 3.10, we know a I c or b / d. Suppose a / c and
6 I d. Since q\=qι, ί(α"6; 0) = ί(c^d; 0). Let α be an automorphism which

interchanges α and ft. Choose {c, d) to realize ί(α(c),α(d);α^6) and with

cd lab cd. We have pcd / Pα6 and pab / Pd^ so pcd / pd^. As germane pairs,

we have c | d and c | d. We chose dc [ab cd and were given d [ ab so d | d and
d I c. Now c I 6, 6 = α(α), and c realizes ί(α(c); 6) implies c | α. Similarly,
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d I a. But c / α so since q\ has weight one c [c and c [ d. By Exercise 3.11
we conclude pcd -L P^c an(^ this contradiction yields part i).

ii) Suppose for contradiction that b j d. By monotonicity from ac I bd
we conclude

elb (1)

and
aid. (2)

Prom ac j bd and bid, Corollary Π.2.10 yields

6 i d. (3)
ac

Since 6 t>α eα&, (1): and Lemma VI.3.12 imply:

b>ac eab- (4)

Similarly d>c ec^ (2), and Lemma VI.3.12 imply:

d>acecd. (5)

Now (3), (4), and (5) imply ecd lac eab Using b>a eab again, we conclude
from (1) that ac [a eab> From transitivity of independence, we deduce ecd la
eab. Now pcd H a implies pcd -L pαf>. This contradiction implies b / d.

Note that the roles of bd and αc are completely symmetric in this argu-
ment. Thus repeating the argument with reversed roles yields a / c.

Beyond the additional hypothesis there is a certain asymmetry between
the arguments for i) and ii). In i) we use the fact that one side of the square
is dependent in proving that the other is. In ii), with no hypothesis about
either side, we prove by contradiction that a given side is dependent.

If we were able to conclude that an arbitrary 4-tuple {α, 6, c, d) in normal
position, with pab / pcd satisfied α / c and b / d then we could code a graph
G inside a model M by requiring dΐm(pαf,,M) to be small iff (α, b) € G.
The necessity of the extra hypothesis in Proposition 3.12 ii) forces us to be
more subtle and replace a single link by an infinite set of links. Moreover, in
the case when q\ φ q% we must make a further reduction which follows from
Proposition 3.12 i) when q\ — q^. From Proposition 3.10 we know that if four
points are in normal position and the associated types are nonorthogonal
then either the left side or the right side must be dependent. We show now
that, in fact, this result holds uniformly.

3.13 Proposition. Either

i) for every (α, 6, c, d) in normal position with pab / pcd, a I c or
ii) for every (α, 6, c, d) in normal position with pab / pcd, b I d.

Proof. If qι = </2 this follows from Proposition 3.12 i). If q\ JL q<z let (α, ί>, c, d)
be in normal position with pab / pcd and suppose α / c. If i) fails we
can, by applying an automorphism, assume it fails for (a,b,c',d'} for some

choice of c',d'. That is, pab / pc>d> but α | c' and 6 I d1. Choose (c,d) to
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realize t(c',d'',ab] but with cd [ab cd. Since qι _L <?2 (c,d,c,d) is in normal
position. Triviality of forking yields c' j ab and so c j αδ. By transitivity of
independence c j c. Moreover d j d. For, if not, we have d / d and (by choice

of d1 and d) d I b. But then d / 6. Since pα& / pc(j and pαb / paj, transitivity
of nonorthogonality for regular types yields the required contradiction.

With the proposition in mind we can assume the following

3.14 Convention. Condition 3.13 ii) holds.

a

implies pab 1 pcd

Fig. 12. Convention XVI.3.14.

We will not appeal to this convention until the proof of the last propo-
sition in this section.

We next describe the family of graphs which we will be able to recover,
then the properties of the model erected on each graph, and finally the
recovery process.

3.15 Construction (The graph H). Let G be a connected symmetric

graph on a set B. Add to B a single element b and let A be an infinite
set with a distinguished element ά. Define a graph H on A U B U {b} as fol-
lows. Each element of B is connected to ά. Each element of A is connected
to b. If 6, b' £ B and (6, b1} £ G then each of 6, b1 is connected in H to every
member of a countable subset A^^ of A. The subsets of A associated with

distinct pairs from B are disjoint. Rename B U {6} as B.
Thus the main feature relating G and H is that two elements, 61,62? of

B are connected in G if and only if there is an infinite subset of A such
that each element of that subset is connected in H to both 61 and 62-

Take the set A C q ι ( M ) and the set B C <?2(.M) such that A U B is an
independent set. Now, by Lemma Π.2.26 extend A\JB to D = A(jB(jEby
choosing for each germane pair (α, b) from A x B an element eab such that
(α, 6, eab) is a germane triple and so that D is independent with respect to
the partial order whose only relations are a < eab and b < eα&. If q\ = q%,
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choose eab = et>a. Fix for (α, b) G A x B, a copy pab of p in S(eab)- If <7ι = <?2,
let pab — Pba-

3.16 Exercise. Show (άb) is a germane pair.

We will use the following abbreviation only in the next proposition. For
{α, b) E A x B, let Dab = {α, 6, eab}.

3.17 Proposition. For (α, 6} € A x B, pab -L £(£> - Dab', £>α6).

PTΌO/. By the choice of <, (D - Dab) lab Pab. But, (D - Dab) j ab so
(D - Dab) I (Dab)- Since pαb H 0 we finish.

With this in hand we can define from H (and thus from G) a model MG

such that MG « MG' implies G & G'.

3.18 Construction (The model MG). Let S = {pab : (α,fr> E #}. Form
by Theorem XIV.3.5 a model MG with \MG\ = X and containing D so that
dim(p, MG) < λ if p E S and dim(q, MG) = X if g is irrelevant to S.

We will recover H and thus G from MG by recovering the equivalence
classes under forking of the elements of A U B and then seeing which of
them are related by H.

3.19 Notation. We will refer to a pair {α, b) G A x B as a standard pair.
For any d E Q(MG) we denote the equivalence class of d (for the equivalence
relation of forking restricted to Q(MG)) by [d\. Since MG is fixed, we write
Q for Q(MG).

Note that if c G Q, [c] Π (A U B) has at most one element. The remainder
of the proof depends on the crucial observation that for any germane pair
(α,6), if dim(pab,MG) < λ then for some standard pair (a1,b'}, pab / Pα'6'

The first step is to recover the domain of the graph H from MG.

3.20 Proposition (Recover domain).

i) If c e Q then [c] = [a] for some a G A iff diπι(pc^MG) < X.
ii) IfceQ then [c] = [b] for some beB iffdim(pca,M

G) < X.

Proof, i) The construction guarantees that the condition is fulfilled when-
ever [c] = [α] for some α G A. If dim(pc^ MG) < X then for some standard

pair {α, 6), p^ / pab If b / ί) then b = b so by Proposition 3.7i) we finish.

Thus, b I b. If </ι / #2 ? Qi -L #2 and (c, 6, α, 6) are in normal position so by
Proposition 3.10, α / c. If q\ = q% then (6, α) is a germane pair. Suppose for

contradiction that a [c. Then (c, 6,6, α) is in normal position. By Proposi-

tion 3.12 i) c / b and b / α. But α G A and b £ B so this last condition is
impossible and we finish.

ii) The proof of ii) is entirely analogous.
It remains to recover the graph H. We must introduce one last bit of

notation.

3.21 Notation. For 6 G B and an infinite X C A, we write X7b if for all
but finitely many elements x of X, {x, b) E if.
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We now show that 7 can be recovered from MG'. It is clear that we can
recover G from this 7.

3.22 Proposition. For any X C A and any 6 G £, X7b if and only if

for some b G [b] and all but finitely many x G X, / x
there is an x' G [x] with dim(pχl^MG) < λ.

Note that we are able to choose a fixed b G [b]. This strengthens the
natural version which would make b depend on x.
Proof. Clearly X7b implies (*). Suppose (*) holds for X and b but X7b
fails. Then there is an infinite subset XQ C X such that for each x G XQ
there is an ax G [x] with dim(pa £,MG) < λ but dim(pxb,MG) = λ. The
first condition implies that for each x G XQ there is an x G A and a bx G B
such that pa g / pxbx. Since A\JB is independent, A Π B = 0, and forking is

transitive on Q(MG), the tuple (ax,b,x,bx) is in normal position for each
x G XQ. By Convention 3.14 for each x, b / 6X. Since each 6X G 5, this
implies all the bx are equal. Call the common value b.

Thus we have a single pair (6,6) and an infinite set of pairs (αx,i) such
that for each x, pa^ / p^.

Let XQ = {αx : x G XQ} and XQ = {i x Ξ -Xo} Clearly XQ is infinite.
To see that XQ is infinite we show the map x ι—>• x is 1 — 1. If not, for some
x φ y G XQ we have paχl JL pχl and pay~b JL pχl so pαχS / pay~b which implies

αx I αy, contrary to the hypothesis that z j t/. Now choose Xi C X'Q\J XQ

such that Xi is finite and 66 [χ1 X'0(J XQ. Then choose w G XQ such that
neither α^ nor w is in Jfi. Since A is independent, this implies aww j 66.
Since {#^,6, ώ,6) is in normal position and pa b JL pώ^, this contradicts
Proposition 3.12 ii) and completes the proof of the proposition.

Since there are 2λ nonisomorphic graphs of the requisite sort and we
have proved that MG ~ MQ implies G « G", we conclude Theorem 3.1.

3.23 Historical Notes. The proof presented in this section is based on
that in [Harrington & Makkai 1985]. This proof differs significantly from
Shelah's [Shelah 1982]. Here we use the forking technology to construct
an interpretation of the theory of graphs into models of T. Shelah makes
another application of the general method discussed in Section 1.5. That is,
he constructs generalized Ehrenfeucht-Mostowski models over the graphs
and argues on general grounds that they are not isomorphic. This gen-
eral argument requires a detailed combinatorial analysis in Chapter VIII
of [Shelah 1978]. We avoid that analysis. On the other hand, Shelah ap-
plies his method again to show that theories with the 'omitting types order
property' [Shelah 198?] have the maximal number of models in each un-
countable power. There is no known extension of the method here to that
case. Shelah's method will be expounded in [Hodges 198?]. Saffe [Saffe 1982]
also proved this result by a method similar to that used here. This result
leaves one lacuna in the general program. Let T be a countable superstable
theory which is not α -stable and suppose the continuum hypothesis fails.
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Then for an uncountable cardinal, AC, below the continuum we have not
proved that the dimensional order property implies that T has 2* models
of power AC. This problem is resolved by Theorem IX.1.20 of [Shelah 1978].




