
Chapter X

Freeness and Isolation

In this chapter we investigate the relation between the notion of isolation
(analogous to dependence) and the notion of freeness (analogous to inde-
pendence) . Since in fact we study only one notion of freeness (nonforking)
but several notions of isolation, we could consider this study as the further
investigation of properties of isolation relations. In fact, one of the notions
of isolation, namely S-isolation, will be seen to play a rather privileged
role. Of the dependence relations we consider, it is the most natural coun-
terpart to the independence relation of nonforking. Unfortunately, study
of S-isolation gives direct information about only the S-saturated struc-
tures. By making more restrictive assumptions on the theory we are able
to widen the class of models treated. In particular, for ω-stable theories
ATN0 will be covered by our discussion. In Section 1 we develop a set of
axioms relating the notions of isolation and independence. Section 2 ex-
plores the notion of a 'powerful' isolation relation. In Section 3 we prove
the uniqueness of prime models. Section 4 discusses the posssible sizes of
indiscernible sequences over a set A which lie in prime models over A.

WARNING: While we have attempted to isolate in Chapter II all rele-
vant features of nonforking, in Chapter IX the relevant features of isolation
relations and here the properties which govern their interaction, attempts
to apply these results to other isolation relations should be undertaken
with caution. In particular, we have not carefully surveyed the situation
for F-isolation. Our major purpose in this axiomatization has been to sys-
tematize the exposition of the properties of ATλ, SETλ, and SA for regular
λ. We also include some material on L-isolation for countable languages.

1. Axioms Relating Freeness and Isolation

In this section we discuss four principles from which we derive all the in-
formation relating forking and the formation of prime models (subject to
the caveat in the introduction to this chapter). The first of these makes
the rather obvious assertion that a type which is isolated over a set A does
not fork over A. The second is a transfer principle which asserts that if an
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element is independent from a set then it is independent from all points
whose types are isolated over that set. This property has immediate alge-
braic consequences. The third principle is the topologically oriented open
mapping theorem while the fourth is a rather technical consequence of the
finite character of forking.

We also introduce in this section the notion of a relatively I-saturated
substructure. This concept clarifies some of the arguments here and ex-
tends to prove similar results for independent trees in Chapter XVII. The
following notations will simplify much of the discussion.

1.1 Notation. Let M be I-saturated and A a set; M[A] denotes a strictly
I-prime model over M U A. We also frequently write M [ά], ignoring the
distinction between the sequence α and its range. If p E S(M) then M[p]
denotes M[ά] for some ά realizing p.

There are several potential ambiguities in this notation. A minor ambi-
guity is that we suppress mention of I; the choice of I will always be clear
from context. A more serious ambiguity is the abuse of functional notation
to denote an operation which is unique only up to isomorphism. We use the
notation as a shorthand since in most cases it causes no problems. How-
ever, sometimes the specific structure which is strictly prime over M U A
is important. In such situations one must be very careful not to be misled
by the notation. This difficulty is discussed in detail in connection with
Theorem 1.28.

This problem becomes more serious if I is taken as L. For, as we observed
in Section IX.4, there is no uniqueness theorem for L-constructible models.
In general, we try to avoid the M[a] notation in this context. It occasionally
appears because theorems which are proved with the other I in mind apply
to L if M[α] is taken as a meaning, 'an arbitrary L-constructible model
containing M U α.'

A lesser problem is the distinction between M[p] and M [α] when α is a
realization of p. The next two exercises illustrate this distinction.

1.2 Exercise. Deduce from the uniqueness of strictly I-prime models that
i) M[α] is unique up to isomorphism over M U α, while ii) M[p] is unique
only up to isomorphism over M.

1.3 Exercise. Let T be Th(Z$°). Let M be a countable model of T and let
p, q be the nonforking extensions to M of the types of an element of order
four and an element of order two respectively. Let α realize p and b realize
q. Show that there are many copies of M [b] (all isomorphic over M U b) but
that within Λ(, M[α] is unique, period, not just up to isomorphism.

Recall that if p is a type over A then p does not fork over A. We
strengthen this requirement by demanding that if p is isolated over A then
p does not fork over A.

1.4 Axiom ΠQ. If A C B and p G S(B) is isolated by A then p does not
fork over A.
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For ATλ, L, and SETλ the verification of this axiom is immediate since
we have a type q C p such that q (— p and q is over A. But for SA, the result
is equally clear, noting only that if q is almost over A then q does not fork
over A.

Consider the following situation: (α|6; M) and £(c; M U b) is I-isolated
by D U b. What can be said about the relation of ά and c? Perhaps the
most intuitive idea is that if a is independent from b then α is independent
from any element whose type over b is I-isolated. Before stating the axiom
we introduce two further concepts which will simplify its verification. The
crucial relation between M U α and M U {α, 6} is crystalized in the following
definition.

1.5 Definition. The set A is relatively l-saturated in B if each I-formula
q over A which is satisfied in B is satisfied in A. We write A <j B.

Shelah has defined several special cases of this notion. When I is AT
we have Shelah's notion of the Tarski- Vaught property. This concept also
encompasses Shelah's strong elementary submodel [Shelah 198?]. Thus, his
notions of C^ and C/j correspond to relative SET^0 and SNO saturation
respectively.

1.6 Exercise. Show that <j is transitive.

1.7 Exercise. If M is an I-saturated model of T then for any A with
M C A, M <j A.

The next two exercises were suggested by Leo Harrington.

1.8 Exercise. Show that if A <AT B then any formula almost over A
which is satisfied in B is satisfied in A.

1.9 Exercise. Prove that if A < ̂ τ B and c[AB then t (5; A U c) is finitely
satisfiable in A. Find an example where £(c; B) is not finitely satisfied in
A. (Hint: For the proof use the fact that t(c\ B) is definable almost over A
and the previous exercise.)

The last exercise shows that although forking is symmetric when T is
stable, the motivating notion of finite satisfiability may not be.

We now extend the concept of strong saturation discussed in Section III.2
to a more general context. We will verify that I-saturation implies strong
I-saturation and derive several extremely useful corollaries from this result.

1.10 Definition. The structure M is strongly l-saturated if for any_set A
with \A\ < λ(I) and any I-formula, q, over M U A, if there is a b with

lg(6) < λ(I), realizing q such that b [M A, then there is a b G M which
realizes q.

1.11 Theorem. Let T be a stable theory. If I is ATλ, SA or L every
l-saturated model is strongly l-saturated. If λ > \T\, any SETλ-saturated
model is strongly SETλ -saturated.
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Proof. For the AT and L, the result follows immediately from the definition
of coheir. For S the result is obvious. For the other isolation notions slight
variations of the proof of Lemma IΠ.2.29 yield the result.

We can rephrase strong I-saturation in terms of relative I-saturation.

1.12 Lemma. // the strongly I-saturated model M is contained in A Π B
then A IM B if and only if A < j A U B.

Proof. Let q be an I-formula over A which is realized in B. Since the
conjunction of any finite subset of q is realized in M, strong I-saturation
guarantees that q is realized in M.

The following stronger version will be applied both here and in Chapter
XII (to aid the discussion of regular types). For L and AT the Corollary
does not really add anything to the theorem.

1.13 Corollary. Suppose the strongly I-saturated model M is contained
in A Π B and A IM B. Let the I-formula g(x,α,6) be consistent (where

lg(α),lg(6) < X(T)). Then, there is ab EM such thatq(x,a,b ) is consistent.

Proof. The type {(3x)[</>(αf,ά,|/)] : 0(x,ά,x) G q} is an I-formula. By the

definition of strong I-saturation it must be realized in M by some 6 . Now

the required type over a U 6 is easily seen to be consistent since we may
assume q is closed under finite conjunction.

1.14 Exercise. Show that if I contains AT^0 then any structure which is
algebraically closed and strongly I-saturated must be a model.

The following axiom establishes the relation between M [α] and b when
alMb.

1.15 Axiom FIj. Let M |= T be strongly I-saturated. If α |M b and
ί(c; M U 6) is I-isolated then ί(c; M U 6) |- f (c; M U {α, 5}).

This axiom clearly implies the following more precise formulation. Let
M |= T be I-saturated. If α |M 5 and ί(c; Af U 5) is_I-isolated by D U 5 with
D C M then t(c; M U {α, 6}) is I-isolated by D U 6.

It is easy to see that this axiom requires some hypothesis on the set M.

1.16 Exercise. Let T be the theory of an infinite set and let α, 6, c, be
elements of a model of T. Show £(c; α) is isolated by α and a |0 6, but
t(c-, {α, b}) is not isolated over a.

We derive Axiom FIi from a stronger result which will be applied in
Chapter XVII. The stronger result arises by generalizing the context, re-
placing M U α and M U {ά, b} by any A, B with A < j B. For our standard
isolation relations we can deduce the theorem from Corollary 1.13. Because
of the weakness of L-saturation, this proof does not suffice in the L case
but a minor variant does.

1.17 Theorem. Suppose A <j B and t(c',A) is I-isolated over A. Then
t(c;A)[-t(c',B).
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Proof. First, let I be any of the isolation relations except L and choose an
I formula q(χ-,a) such that q(x',a] \- t(cm

LA). Suppose there is a formula
φ(x\b) e F(B) with both q(x',a) U [φ(x\b)} and q(x\a) U {-u/>(z;5)} con-

sistent. Then, by Corollary 1.13 there is a b E A such that both g(x α) U

{φ(x',b)} and g(z ά) U {-ιφ(χ-,b )} are consistent. But this contradicts the
choice of q.

Now suppose I is L and let p denote t(c;A). Fix φ(x',T>) E F(B) so
that both p\J {φ(x;b}} and p\J {->φ(x',b)} are consistent. Now for </>(z;?/),
choose ψφ(χ-,a) such that ψφ(x;a) \- pφ. Then both ψφ(χ-,a) U {φ(χ-,b)}

and ψφ(x',~a) U {-ιφ(χ-,b)} are consistent. Since A <£, 5 there is a b £ A

with both ψφ(χ-,a) U {</>(z;6 )} and ψφ(x',a) U {-»^(x;6 )} consistent. This
contradicts the choice of ψφ.

From Lemma 1.12 and Theorem 1.17 we deduce that FIi holds for each
I. The following version of Theorem 1.17 is easier to apply. As in Theorem
1.17, for ii) the case I is L requires a slightly different proof which we omit
this time.

1.18 Corollary. If A <j B and C is I-atomic over A then

i ) C [ A B .
ii) A U C <ι B U C.

Proof. Statement i) is immediate from Theorem 1.17. For ii), suppose that
φ(a',b;c) holds and that the I-formula q(a'',x) implies ί(c A). By Lemma
1.14, and the completeness theorem there is a formula #(x;αι) (almost)
over A such that \= {\/x)θ(x\a\) —» 0(ft,6;z~). Since A <j B, there exists
__/ i

b G A such that |= (Vx)^(x αι) —> φ(a, fc x). Since |= 0(c;αι), we can

deduce |= 0(α;6 c) and finish.

1.19 Exercise. Prove Corollary 1.18 when I is L.

The following result is now immediate.

1.20 Corollary. Suppose Flo and FIi hold, M is strongly l-saturated and
λ(I) is regular. Then, Ϊ>\>M M\b}.

1.21 Exercise. Suppose FI0 and FIi hold, M is strongly I-saturated and
λ(I) is regular. Prove that for any b if c G M\b] — M then c /M b.

The following theorem is proved for the isolation relations other than L.
The proof for L is a minor variant but we don't rely on that case. The full
significance of this result will only become apparent with the discussion of
strongly regular types in Section XII. 1.

1.22 Corollary. If M is strongly I-saturated, a [M D but (b / α; D U M),
and N is any l-saturated model containing M U α. Then for any l-formula

q with dom*<7 contained in M such that (= q(b), there exists b such that
the following hold.

i) a 1M ϊ)
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ii) I' E q(N)

iii) &' £ M.

Proof. (Fig. 1). Let A denote dom* q. Without loss of generality (since we
assume λ(I) > /c(T)), a [A M. Thus (a /d~6; A). By thejocal character of
forking there is a formula θ(χ-,y^~z} such that |= 0(α; b^d) for some d G D

and for any 6 , d , if |= 0(α; 6 , d ) then (a %b ^d A). Now by Corollary

1.13, there exist 6 , d, with d G M such that [= 0(α; b , d ). Since a [A M,
/ / —/

this implies a /M b so b £ M. Since the requirements on 6 were expressed

by an I-formula over A U α, without loss of generality b G M[α].

D

Fig. 1. Corollary X.1.22

The following exercises provide further rephrasings of axiom FIi and
Corollary 1.20. In all cases M is to be assumed strongly I-saturated.

1.23 Exercise. Show that if p is realized in M[q] then q >M P>

1.24 Exercise. Show that if X is an independent set over M then X is a
maximal independent (over M) subset of M [X].

The following exercise emphasizes that dependence is not a simple nega-
tion of nonforking by showing 6 can depend on a over M without being in
M[α].

1.25 Exercise. Using the theory of a single equivalence relation with in-
finitely many infinite classes show the following assertion is false for
If b£M[a] then b IM M[a].
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This phenomenon can be made even sharper.

1.26 Exercise. Show using the theory of two refining equivalence relations
that there exist M, α, and b such that b £ M[a] but b /MUα M [α].

1.27 Exercise. Prove that p _L q implies M\p] [M M[q\. Indeed, p J_ q
implies ί(M[p]; Af) _L t(M[q\,M).

What is the relation between Mfαji] and M [α][6]? It is easy to see that
there are embeddings M[a] ι— > M[α,6] ι-» M[α][6J. There are several vari-
ations on the question of whether this last map has an inverse. These
variations depend on such subtleties as whether we are working in the cat-
egory of constructions or the category of models and embeddings. The next
theorem gives the strongest possible positive answer when a JM 6-

1.28 Theorem, i) Let M be strongly I-saturated and A = {ά0? . . . ,αn}
be an independent set over M. Suppose Mi+i = Λf t [α»]. Then Mn is
l-constructible over M U A.

ii) More precisely, if EI is an I- construction of NI over MUα, E is an
I-constructior^of N over NI U6, and a |M b then N is I- constructive
over MU {α,δ}

Proof. The proof of ii) is included in the proof of i). We show i) by induction
on \A\. Suppose A = B U α, \B\ = m and, by induction, that Mm is I-
constructible over M U B. Note that by FIi the construction of Mm over
M U B is, in fact, a construction of Mm over M U A. Now, appending the
construction of Mm+ι over Mm U α yields a construction of Mm+ι over
M U A as required.

1.29 Exercise. Extend Theorem 1.28 by induction to infinite indiscernible
sequences.

1.30 Exercise. Show that if λ(I) is regular, FI0 and FIi hold and a [M b
then ί(M(5|; Af U 5) (- *(M[6]; M U α U b).

One important fact about AT is the following variant of the open map-
ping theorem: If ί(α; A U 6) is AT-isolated and α [A b then £(α; A) is AT-
isolated. For the topological explanation of this nomenclature see Section
III. 3. We designate this property as the third basic relation between free-
dom and isolation. Both this property and FIs which follows are closely
related to the finite character of forking, so there may be some more ele-
gant way to unify these two notions.

1.31 Axiom FI2 (The Open Mapping Theorem). If both (άjδ A) and
ί(α; A U b) is I-isolated over A U b then £(α; A) is I-isolated.

We have already seen (IΠ.3.24) that FI2 holds for AT^0. We now verify
it for S-isolation.

1.32 Lemma. If a I A B and £(ά; B) is S-isolated then t(a\ A) is S-isolated.
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Proof. Choose C C B such that stp(a\ C] \- £(ά; £), and D C A such that
a ID A, \D\ < κ(T) and D contains C Π A. We claim that s£p(α; D) |- ί(ά; A).
This is a property of yl, D, and an arbitrary realization α' of s£p(ά;jD).
Thus, we are completely free to choose the type of B over A\Jά'. So
without loss of generality we may assume that A^a' [D B. Then since
stp(a-,D) is stationary, stp(a'-,C} = stp(ά\C}. But stp(a\C] \- t(μ\B] so
t (a'', B) = t(ά; B) which is more than is required.

An alternative exposition of this proof would involve a new copy B1 of B
rather than relying on 'without loss of generality'. Although we concluded
that t(a\ B) = t(a'-, 5), easy examples show that this phenomenon depended
on our auspicious choice of B.

1.33 Exercise. Verify that Fl2 holds for L-isolation. (Hint: This is easily
deduced from the original Open Mapping Theorem.)

There is a final axiom connecting isolation and nonforking which holds
in all the classes we consider. In order to describe this principle we need
some additional notation.

1.34 Notation. Let A C M and p G S(A). Suppose p is an n-type. We let
p*(Λt) denote {c G Λl : for some c realizing p, c G rng(c)}.

Thus p(M) denotes a set of n-tuples while p*(Λt) denotes a subset of Λl.

1.35 Axiom FLj (The Local Nature of Implication). Suppose that M is
I-saturated and p is an I- formula with dom* p = B C M. If q is any extension
of p to S(M) then q\(B\Jp*(M)) |- q.

1.36 Exercise. Deduce from FI3 that if p G S(A), (c / M; A) and c realizes
pthen(c /

If p G S(A), keeping in mind that if a^b G p(M) and q = t(a^b', A) then
<7*( M) ^ P*( M), we easily see

1.37 Proposition. Suppose FIs fto/ds. Let M be I-saturated. For α,5 re-
alizing p, if q = t(a^b-, M) then, letting B = dom* p, q\(B U p* (M)) |— </.

The following result, which easily yields that the set of models of an
ω-stable (indeed an arbitrary stable theory) satisfies FIs for both AT and
L-isolation, was first enunciated in this form by Lascar and Bouscaren in
[Bouscaren & Lascar 1983].

1.38 Theorem. LetM be a model of a stable theory, peS(M), 0(x,ά)ep
and set B = φ(M,a)\Ja. Then, p\B \- p.

Proof. Assume for contradiction that there are -0(x; m) G F(M) and c, c' in
M such that c realizes p and £(c; B) = £(c'; 5) but (= ̂ (c; 7n) Λ -«^(c'; m). Let
d definej( m; B). In particular, dφ(y) G F(B) and for any b G β, h= Φ/>(6)
iff ^= ^(6; m). Since ί(c; S) = ^(c;; B) and |= 0(c), we have |= φ(cf). Suppose
(= d^(c) and thus (= dψ(7?). (If |= -^dφ(c) we obtain a similar contradiction.)
Since M is an elementary submodel of Λί, there is a c" G M such that
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|= φ(c") Λ dψ(c") and \= -.t/>(c"; m). But then c" E 5 and this contradicts
the choice of d.

With a similar diagonal argument we extend this result to saturated
models. This imposes a stricter requirement on the model M but makes
the subset on which the type depends smaller. We can easily conclude that
FI3 holds for SETλ and Sλ.

1.39 Theorem. // T is stable, M is a λ-saturated model ofT,BCM
with \B\ < A, and p E S(M) with p\B = pG then p\(B Upo(Af)) \- p.

Proof. Let A = B \Jp$(M). For each n E M and each formula 0(x;n), the
definition d of t(ΰ\A) yields a dφ such that:

For all a E Λ,M |= 0(ό; n) iff M |= <ty(ά). (*)

But if p\B U d0(x) U ->0(z; rϊ) is consistent then it is realized by some a' E M
contradicting (*).

1.40 Exercise. Verify that for each i < 4 and each regular λ > /c(T) the
axiom FI; holds for SETλ and Sλ

1.41 Exercise. Suppose FIs holds and M is I-saturated. For α, b realizing
p, if aΓ*b 1A M then there exists an X C p*(M) such that <Γ"δ /^ X

1.42 Historical Notes. This section unifies various arguments scattered
in [Shelah 1978], [Lascar & Poizat 1979], [Bouscaren & Lascar 1983] and
[Makkai 1984]. The fact that Corollary 1.20 holds for local isolation is new
here. The weaker Exercise 1.21 was proved (for L) earlier by Pillay and
Steinhorn [Pillay &; Steinhorn 1985]. The origins of Theorem 1.33 are a
little murky. Although, first given explicitly in this form in [Bouscaren &
Lascar 1983],there are variations in both [Lascar & Poizat 1979] and [Shelah
1978] (V.I.11).

2. Powerful Isolation Relations

We introduce here an important strengthening of the isolation concept.
Most of the notions we have considered, but not AT, satisfy this additional
condition. These results show that under certain conditions the concepts
of isolation and domination are very closely related. Corollary 2.5 records
another crucial property of S-isolation.

2.1 Definition. The isolation relation I is powerful if for any finite se-
quence a and any set B with \B\ < A (I), £(α; -B) is I-isolated.

Of course, if £(ά; B) is an I-formula, it is I-isolated, so for any A, SETλ
and SA are powerful isolation relations. It is equally easy to see that even
for ω-stable T, AT^0 is not always a powerful isolation relation (see Exer-
cise 2.4).



226 X. Freeness and Isolation

2.2 Exercise. Show that if T is a countable, ω-stable, N0-categorical the-
ory then AT^o is a powerful isolation relation.

The following theorem is one of the main reasons for introducing this
notion.

2.3 Theorem. Let M be I-saturated for a powerful isolation relation I.
Suppose also that if M is I-saturated, then for any a, £(α;M) is strongly
based on a subset of M with fewer than λ(I) elements. Then for any a and
b, cί >M a^b if and only if there exists a structure N which is I-strictly
prime over M U a and contains b.

Proof. Suppose a >M cΓ^b\ let p_= ί(ά; M) and r = t(b',M U a). Choose
B CM such that |B| < λ(I), a^b [B M, and t(a^b', M) is strongly based

on B. Then, by Theorem VI.3.12, ί(α; B) >B t(a^t>; B) for any b' realizing
ΓQ = r\(B U α). Since I is powerful, ΓQ is I-isolated. We now show r0 I-

isolates t(b',M U α). If b realizes r0, a IB M implies ά^b [B M. Thus

t(a^b'; M) = ί(α^6; M) and, in particular, t(6; M U α) = £(&'; M U α) as
required. Thus, a strictly I-prime model can be constructed over M U α
beginning with 6. This is more than is required. The converse is an easy
consequence of Corollary 1.20.

2.4 Exercise. Show that Theorem 2.3 fails for ATκ0. (Hint: Consider the
theory of an equivalence relation with infinitely many infinite classes and
a model of Th(Z, S) in each class.)

Note that as phrased the result applies to SETλ for λ > |T|+. If T is a
countable ω-stable theory, Theorem 2.3 applies to SET^0 but not if T is
strictly superstable.

2.5 Corollary. Let M be I-saturated and good, I a powerful isolation re-
lation, and p, q G S(M). Then p t> q if and only if q is realized in M[p}.

Proof. Let α, 6 realize p and q and witness p > q. Choose B C M with

|£?| < λ(I), p, q strongly based on B, and ά^b IB M. Now, if b realizes
— —/ —/

t(b\B U α), Lemma VI.3.12 implies b [B M and thus b realizes q. But,
certainly £(5; (B\Ja) is realized in M [α]. The other implication is immediate
from Theorem 2.3.

2.6 Exercise. Show, using the same example as before, that Corollary 2.5
does not hold for AT.

2.7 Historical Notes. The notion of a powerful isolation relation arose
from a desire to unify some proofs from [Buechler 1984b] (only in the
preprint) and [Prest 1985]. Although Prest proves Theorem 2.3 for a notion
of isolation in modules, I have not succeeded in reducing his argument to
this rubric. Nevertheless, the notion seems to isolate one of the essential
distinctions between AT and S. The example in Exercise 2.4 was first
suggested to me by Shelah; it was also discovered by Pillay and Steinhorn.
Pillay corrected an error in the original proof of Theorem 2.3.
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3. Uniqueness of Prime Models

In this section we prove that if T is a countable stable theory which
has prime models over every set A then these models are unique up to
A-isomorphism. More generally, we show that for any reasonable notion of
isolation I, any subset of an I-constructible model is I-constructible. Intu-
itively, one could justify such a claim by asserting that if the order of a
construction was really essential it would be reflected by some ordering in
the theory; thus, the theory would be unstable. This intuition is made pre-
cise in [Shelah 1975] where Shelah proves the uniqueness of prime models
over a set of power KI using the techniques of stationary sets and relying
on stability theory only for the fact that no formula in a stable theory can
have the order property. Here, we adopt a more model theoretic course and
invoke the machinery of nonforking we have developed earlier.

3.1 Theorem. Let I be an isolation relation satisfying the axioms listed
in Sections IX.2, IX.8, and X.I. Suppose λ(I) is regular and /c(T) < λ(I)+.
// E is strictly I-prime over A and A C M C E for some M \= T then M
is strictly l-prime over A.

Proof. Fix A, B which is I-prime over A, and E which is strictly I-prime
over A. Without loss of generality A C B C E. By Theorem IX.4.12, it
suffices to show that B is I-constructible. The proof proceeds by induction
on \E — A\. If \E — A\ < λ(I) the result follows from Lemma IX.4.2. Suppose
\E — A\ = μ and E is given by the construction (&i :i < μ). The idea of
the induction is to partition the construction of E so that the conclusion
of the theorem can be applied to a sequence of smaller models C +i for
i < \E\. The main theorem is illustrated by the first diagram (Fig. 2) which
concerns E, B, and A. To perform the induction we partition E as in

B

Fig. 2. First Diagram for Theorem X.3.1

the second diagram and apply the hypothesis of induction to Ci+i U A,
Ci U A U (d+ι Π B)), Ci U A (Fig. 3). Formally we build (Ci :i < μ) to
satisfy the following five conditions.
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i) (Ci :i < μ) is an increasing continuous sequence of subsets of A U E

ϋ) \Ci\ < \i\ + λ(I), so |Ci+1 - Ci\ <\E- A\.
iii) For each c G Ci, c IBΠC^ B and c I And A.
iv) Ci is closed. (Recall Definition IX.4.8)
v) Ci+i is I-constructible over A\jCi.

c.
i+l

C.

C. .\JA
i+l

(C. .nβ)uC.
i+l i

C. uA

Fig. 3. Second diagram for Theorem X.3.1

The Ci are constructed by induction. Let C0 be empty. If we have Ci, we
define Cf for n < ω by induction and let d+i = \JnCf. Let Cf contain d
and a point from E -Ci. Suppose we have constructed C?n. For each c in
C?n, there exists aDΈCB with |£%| < κ(T) such that c ID- B. Similarly,

there exists an EC C A with c i^_ A. Let C?n+1 = \JΈecfnDc u Ucec,2-^-

Now for each βj 6 Cz

2n+1, there is an F* C ̂  U A with |Fj| < A (I) such that

i(ej; A U £,) is isolated by F j . Let C/n+2 = UCj.6ct?
n+lίJ' Now ̂ i is a

closed subset of J£ when a) E is regarded as constructed over A and when
b) E is regarded as constructed over A U Ci (cf. Theorem IX.4.11). Then
a) guarantees iv) and b) guarantees v). The choice of C»+ι guarantees iii)
and i); it is easy to verify ii).

Applying iv) and the induction hypothesis to A\jCi, AuCi U (C»+ι Π-B),
and A U Ci+1, we conclude A U d U (d+1Π B) is I-constructible over A U d.
Thus for some α, (B Π C^i) - (A U d) = (bj :j <a). Let Bj = {bk:k< j}.
For each j, QJ = t(bf, A U d U 5?) is I-isolated. If we can show qj does not
fork over (A U (B Π Ci) U Bj) for each j, we can conclude from the Open
Mapping Theorem that t(bf,A\J (B Π d) U Bj) is I-isolated. This yields
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that B Π (7t+ι is constructible over A U (B Π Ci). But if this holds for each
i < μ, B is constructible over A and we finish.

Consider any c € Ci. By iii) c lend B so by the monotonicity of non-
forking

c I A\J(BΓ\d+ι).
BΠd

By monotonicity again,

c I AU(SnCi)USj+i.
A\j(BΠCi)UBj

Then by symmetry

ΛU(BnCi)UByUc.

Since this holds for each c £ Ct , we have by the finite character of forking
that

fy I A u C j U B j
A\j(BΓ\Ci)\JBj

as required.

Note that this proof does not require the Existence Axiom IX. 2. 7. We
can state a less technical result if we assume it as well.

3.2 Corollary. Let I be one of the isolation relations defined in IX. 2.1.
Suppose λ(I) is regular, κ(T) < λ(I)+, and that for every set A C M there
is a strictly I-prime model over A. For any A C M, any two I-prime models
over A are isomorphic.

3.3 Historical Notes. Shelah first proved the uniqueness of prime models
for a countable ω-stable theory by induction on rank in [Shelah 1972]. He
gave an alternative proof using the machinery of stationary sets rather than
the technology of stability theory in [Shelah 1975]. The proof given here
is taken from [Shelah 1979]. That proof was inspired by the (unpublished)
proof by Ressayre, which we discussed in Section IX. 4, that strictly prime
models are unique. In [Shelah 1979] Shelah showed that both the hypotheses
of countability and stability are necessary for the theorem. First he shows
that the theory REF^ of NI refining equivalence relations has prime models
over all sets but does not have unique prime models. Then he notes that
replacing the equivalence relations by ternary relations such that a linear
order on one set indexes a collection of refining equivalence relations on
another produces a countable unstable example of the same phenomenon.

This line of argument produced the first proof of the uniqueness of "dif-
ferential closure". Blum [Blum 1968] showed the theory of differentially
closed fields of characteristic zero is ω-stable and deduced the uniqueness
from [Shelah 1972]. This result is extended to differentially closed fields of
characteristic p by the proof that the theory is stable ([Wood 1973], [Wood
1976], [Wood 1979]) and the application of Theorem X.3.1. These proofs
were later given more algebraic form in [Kolchin 1973].



230 X. Freeness and Isolation

4* Indiscernible Sets in Prime Models

Axiom FIi clearly implies that if X is an independent set over M, then X
is a maximal independent set in M[X]. We would like to improve this result
to: if X is an independent set of indiscernibles then dim(X, M, M[X]) = \X\.
(Recall Definition V.2.3.) In general, however, this assertion is false. In this
section we show that it is true if the cardinality of X is sufficiently large.
In Chapter XII we show that for regular types it is always true.

Let A be a set and suppose that M is I-constructible over A. We will
show that λ(I) provides an upper bound for the length of independent sets
over A in M. This upper bound will be a key to the construction of many
non-isomorphic models of T in Part D. It is easy to see from Exercise X.I.21
that this property holds if we start with a model.

For simplicity we assume in this section that λ(I) is regular. We could
strengthen the results to deal with singular λ(I) by replacing such hypothe-
ses as λ(I) > κ(T) by cf(λ(I)) > /c(T).

4.1 Exercise. Show that if λ(I) > κ(T), \A\ < /c(T) and M is I-saturated
then every subset of M[A] which is indiscernible over M U A has power at
most κ(T).

It is not so easy to see this when we do not start over a model. We
begin by describing a further property of the isolation relations introduced
in Chapter IX. It is unclear whether this property follows from the axioms
in Chapter IX but it is trivial to verify it for the isolation relations defined
in Section IX.2.

4.2 Lemma. // q is an I-formula with dom* q C A, E is a set of indis-
cernible over A realizations of q ande realizes Av(E,A) then \= q(e).

Proof. If I is SETλ or ATλ, the result follows immediately from the defi-
nition of average type. For SA, apply Lemma V.I.7.

4.3 Lemma. Suppose E C A is a set of indiscernibles over AQ C A with
\E\ > κ(T) and e realizes Av(E',A). Suppose also that for some I with
λ(I) > Ac(T) and some I-formula q with dom* q = AQ, q \- ί(c A). Then
q \-t(c;A\Je).

Proof. For any formula ψ(x, y\ α) such that |= ψ(c, ~e\ ~a) there is a set EaCE
with \EάI < /c(T) such that E — Ea is a set of indiscernibles over Ea U a U
c U AQ. Now \= V>(c, e; a) if and only if for one (and thus every) er € E — E^,
\= ^(^e' α). Since q \- t(c\A) there is a formula θ G <?, with |= θ(x) —>
ψ(x,e';a). Then the I-formula (Vz)0(z) -> ^(x,ex;ά) holds for all e'. By
Lemma 4.2, we conclude (Vz)0(x) —>• ^(x,e;α). Since this holds for any
formula ψ we have the lemma.

It is now fairly easy to show
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4.4 Corollary. // M is I-constructive over A and E C A is a set of in-
discernibles with \E\ > λ(I) then Av(E A) \- Av(£;M).

Proof. The proof is a straightforward induction on the length of the con-
struction. For the crucial successor stage we must show that if E C A',
t(c', A') is I-isolated by some q with dom* q C A!, e realizes A.v(E]A) and
t(e; A) \- t(e; A') then t(e\ A) \- t(e\ A'Uc). Since \E\ > λ(I) we may assume
E is indiscernible over dom* q. By Lemma 4.3 we know q \— £(c; A1 U e). By
the symmetry axiom for I-isolation (Axiom IX.3.3) we deduce t(e',A' Uc)
is I-isolated over A. If I is SETλ or ATλ the result is immediate. For SΛ
it follows from Lemma IV.3.12.

Now we can show one of the two components of the characterization
of I-prime models. We show here that if M is I-prime over A then M is
I-atomic over A and every set of indiscernibles in M has cardinality at
most λ(I). The necessity of the first condition is almost obvious and now
we deduce the necessity of the second. The converse to this theorem is
proved by induction on rank in Chapter IV of [Shelah 1978].

4.5 Theorem. Suppose A(I) > κ(T) is regular. Assume T admits l-prime
models. If M is strictly l-prime over A and E CM is a set of indiscernibles
over A then \E\ < λ(I).

Proof. Suppose \E\ > λ(I) > κ(T). By Theorem V.I.23 choose E0 C E with
\EQ\ < κ(T) such that Av(£"; M) is strongly based on A U EQ. Let p denote
the restriction of Av(E"; M) to A U EQ. Let F be an independent sequence of
λ(I) realizations of p and let M' be I-prime over B = A U EQ U F. Corollary
4.4 implies Av(F;£) |- Av(F M). Thus, dim(F, A U EQ,M') is λ(I). By
Lemma IX.4.1, M is I-prime over A U EQ. Let / imbed M into M1 fixing
A\J£Q. Now f ( E ) and F are equivalent indiscernible sets with at least κ(T)
elements. Thus, by Theorem V.2.4 they should have the same dimension
in M'. But, clearly dim(f(E),A UEQ,M'} > λ(I) and we finish.

The next result will play an important role in the construction of many
non-isomorphic models. It will be used in conjunction with Theorem 4.5
but is proved solely on the basis of the methods of Section 1.

4.6 Theorem. Let M be l-saturated and p, q G S(M) with p J_ q. If E is
an independent set of realizations of q and N is l-prime over M U E then
dim(p, N) = 0.

Proof. Clearly, if a G N - M realizes p, a 1M E. But then pω Jίw qω, whence
by Corollary VI.2.18 p / q.

4.7 Definition. The model M is I-minimal over A if M is I-saturated and
there is no I-saturated model TV containing A and properly contained in
M.

The following lemma allows us to characterize minimal models by the
cardinalities of maximal sets of indiscernibles. To apply it we must know
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every I-saturated model is good. We showed in Corollary IV.2.9 and Theo-
rem IV.3.22 that AT has that property if T is a countable ω-stable theory
and S has that property for every superstable theory.

4.8 Lemma. Fix I with λ(I) > κ(T) and such that every I-saturated model
is good. Let M be l-atomic over A and suppose N CM is I-saturated. Then
for any a £ M — N, there is an infinite set E C N of indiscernibles over
A such that t(a-,N) = Av(E,N).

Proof. Suppose there exists c E M — TV. Choose C C. N such that £(c; N) is
strongly based on A U C. Note that stp(c\ A U C) is I-isolated. Now choose
Ci E N for i < ω so that cn realizes stp(c-,A U Cn). The Ci are a strongly
independent sequence and therefore indiscernible by Lemma V.I.8 so we
have the lemma.

The next result characterizes minimal models.

4.9 Theorem. Let T be superstable and countable. M is I-minimal over
A if and only if every set E of indiscernibles over A in M is finite.

Proof. Suppose E is an infinite set of indiscernibles in M. Choose N C M
to be I-prime over A U (E — {e}, for some e E E. By Corollary 4.4, e & N
so M is not minimal.

The converse is immediate from the lemma.

4.8 Historical Notes. These results are scattered in [Shelah 1978] but
Section IV.4 especially Theorem IV.4.9 is most relevant.




