
Chapter VI

Orthogonality

In this chapter we investigate two extensions of the nonforking notion in an
attempt to find the right notion of freeness. In the first section we discuss
triples (A, B, C) such that A and B are not only independent over C but
are persistently so. We say t(A-,C) is orthogonal to t(B\C}. In the second
section we discuss a way in which A can be even more independent from
B over C, namely t(A\ C) is orthogonal to every type over B. Our goal is
this chapter is to describe the principal properties of these relations so we
can use them as tools later. We first consider orthogonality of two types
as a freeness relation in the sense of Chapter II. It turns out that, while
regarding nonorthogonality of two types as a dependence relation is very
natural; viewing nonorthogonality of a type and a set as a dependence rela-
tion is somewhat forced. A more natural approach to this latter relation is
considered in Section 3 where we introduce an important partial (pre)order
on the types over a set: the dominance order.

1. Orthogonality Of Types

In this section we discuss an important extension of the notion of inde-
pendence: orthogonality. This concept has both a local and global form.
The local form describes the orthogonality of two types over subsets of the
monster model; the global form describes the orthogonality of two global
types (i.e. types over the monster model). The notion of parallelism bridges
the gap between these two forms of orthogonality. We begin by defining the
local form.

1.1 Definition. Let p and q be complete types over C. We say p is or-
thogonal to q (over C) and write p J_ qiί the following holds. For every E
containing_C and every a realizing p, b realizing q, if a [c E and b [c E
then a [E b.

To simplify notation, we may write (a _L &; C). The role of C turns out
to be unimportant; we usually just write p JL q.
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We can immediately extend this definition to types with different do-
mains by the following device which we will use for other concepts later.

1.2 Definition. Let p,q be types over C, D, respectively. Then p J_ q if for
any nonforking extension p1 of p to S(C U D) and any nonforking extension
q' of qto S(CUD),p' ±qf.

Definition 1.2 justifies speaking of the orthogonality of strong types.
That is, stp(c-,B) J_ q if and only if the unique nonforking extension of
stp(c-, B) to a complete type over B U c is orthogonal to q.

We will investigate orthogonality as a notion of freeness in the sense of
Chapter II. There we defined a relation 7 between a type p and a set C.
This was in fact a relation among a realization a of p, the domain B of
p and the set C. Much of our discussion focused on the triple (α, B, C)
but the relation was actually a property of t(a^B; C). Here our relation is
among a similar triple (ά, 6, C) but (and this is the jίssence of orthogonality)
the relation depends not on the entire type t(a^b', (7) but only on its two
projections ί(ά C') and t(b\C).

We observed after Axiom Π.1.15 that although we defined the notion of
freeness in terms of finite sequences it really was a property of the sets which
are the ranges of the relevant sequences. Accordingly, this same observation
applies to the derived relation, orthogonality, and we can write (A J_ B; C).
Similarly, as after Definition Π.1.17 we can remove the restriction that A
and B be finite because nonorthogonality inherits the finite character of
nonforking.

1.3 Proposition. I f ( A j L B ' , C ) then for some finite AQ and BQ contained
in A, B respectively, (A$ / BQ',C).

Exercises 1.4 and 1.6 just describe the translation of properties of or-
thogonality from set notation to type notation.

1.4 Exercise. If for each finite n G TV, p J_ £(n; 7V0) show p J_ t(N; N0).

This differs from the finite character discussed in Chapter II because we
have only the algebraic, as opposed to the logical, form. We have identified
finite sets but not specific formulas as a cause of nonorthogonality . We
give a more syntactic characterization in Exercise 2.19.

It is easy to see that orthogonality is strictly stronger that nonforking
since we can use the base set as the test in the definition of orthogonality.
Formally, we have

1.5 Lemma. (A _L B\C) implies (A[B;C}.

1.6 Exercise. Let p = £(ά; C) and q = t(b; D). Then p is orthogonal to q iff

for every a' realizing p, every b realizing q and every E containing C U D,

if α' lc E and δ' [D E then ά' IE &'.

1.7 Exercise. Show that if p G S(A) is algebraic then no consistent ex-
tension of p forks over A.
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1.8 Exercise. Conclude that if p £ S (A) is algebraic then every q is or-
thogonal to p.

There is an important simplification available when checking whether

two types are orthogonal. We can replace the quantifiers 'for all α', 6 , e'

by 'there exists an a' such that for all b and ef. This is easily established
by an automorphism argument.

1.9 Exercise. Show that t(A', C) _L t(B', C) iff there exists an A' realizing
t(A',C) such that for every E and every B1 realizing t(B',C], if A' lc E
and B' {c E then A' |c B'.

This illustrates an important principle which we will invoke repeatedly
in trying to parse our definitions. Because of the homogeneity of the mon-
ster model, One "for all" is "for free".' That is, in many definitions the
first occurrence of an assertion, 'for every element realizing a type p such
that ...' can be replaced by the assertion,'there is an element realizing a
type p such that ...'.

1.10 Examples, i) The simplest example of two orthogonal types occurs
in the theory with one unary predicate U such that both U and ->{7 are
infinite. Then for any model M, the type p(x), which asserts x £ M and
C/(x), and the type g(x), which asserts -JJ(x) and x £ M, are orthogo-
nal over M. Only slightly more complicated is the similar situation of an
equivalence relation with two infinite classes.

ii) The next level of complexity arises by considering an equivalence
relation with infinitely many infinite classes. Then the type, p, over a model
M which fixes an equivalence class but is not realized in M is orthogonal
over M to the type, q, which is realized by an element in a 'new' equivalence
class.

iii) A much more interesting example arises by considering the theory
of Zζ0 θ Z*°. Let M be a model of T and consider the types p, #, and r
defined as follows. Let p be the type of an element of order four satisfying
2x^m for each m E M. Let #, r be types which are not realized in M but
are satisfied by elements of order two. Let any realization of q be divisible
by two but (2m ^x)£q for each m E M. Let no realization of r be divisible
by two. Then, p J_ r, p / q (since twice some realization of p may realize
q), and q J_ r. Thus, orthogonality need not be transitive.

We now consider which of the other axioms for freeness hold of orthog-
onality. It is easy to see that orthogonality is symmetric. But the mono-
tonicity axioms are more problematical.

1.11 Lemma, i) // (A JL £; C) then (B _L A; C).
ii) Orthogonality satisfies the first monotonicity axiom. If (A JL B', C}

and AQ C A then (A0 _L £; C).
iii) The following stronger version of ii) is more useful. Suppose that

t(A-, B) _L t(C', D) and A0 C A. Then t(A^ B) _L £(C; D).
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Proof. Check i) immediately from the definition. For ii), fix A'Q, B1 and E so
that A'Q realizes ί(Λ0; C), 5' realizes t(B\ C), A{, |c #, and B' [c E. Let A"
be the image of A under an automorphism which takes AQ to ^Q while fixing
C. Apply the strong extension property (Exercise II.2.8) to choose A' so
that (A1 \,E; C) and t(A'\ A'Q U C) = f (A"; A& U C). By symmetry, applying
AQ lc E, we have (A _L B C) implies (A'lB E) so by monotonicity of
nonforking (A'^B-.E) as required.

To derive iii) from ii) let AQ, C' realize ί(Ao S), ί(C,D), respectively,
with Λ(, |β 5 U £> and C7 |D 5 U D. We must show ί (Λ(,; B U £>) JL *(C"; B U
D). Apply the strong extension principle to choose A1 D AQ with A' [&
B \J D. By the definition of orthogonality for types over different sets,
t(A, B U D) _L f (C'; JB U D). By part ii) ί(Λ(,; B(JD) ± t(C'\ B U L>). Since
this argument holds for any choice of C1 which does not depend on B U D
over D, we conclude ί(A0;5) J. t(C',D).

In this proof we have carefully traced the argument for each nonforking
extension of t(A;B). The second two sentences of the proof of ii) justify
the assertion 'without loss of generality AQ = AQ.' We will not hesitate to
make such assumptions later.

The following example shows that upward monotonicity in the third
coordinate fails, i.e. (A _L £?; C) does not imply (A _L B\ C') for arbitrary
C' containing C. In fact the remedy from Section III.3 (requiring C' to be
contained in B) does not work either since in the example t(C' — C; C) C
f(B C).

1.12 Example. Let T be the theory of Z$° Θ Z*°. Let r be the type over
the empty set asserting x has order four. Let q(y) be the type over the
empty set asserting y has order two and two does not divide y. Let M be
a countable model of T and let TV be M 0 Z% 0 Z±. Consider the following
three elements of N

M ZΊ Z±
a 0 0 1
6 0 1 0
V 0 1 2

Now a realizes the nonforking extension of r to M while B and b' realize
the nonforking extension of q to M. We have (α _L 6; M) but (a / 6; M U 6').
For, ί(α; M U 6,67) forks over M U V since 2α = b + 6'.

Using the transitivity of nonforking, it is easy to show the 'correct' form
of monotonicity in the third coordinate. Namely, orthogonality is preserved
by nonforking extensions. Hrushovski has made important applications
([Hrushovski 1986], [Hrushovski 198?]) of the concept of hereditary orthogo-
nality (p is hereditarily orthogonal to q if every extension of p is orthogonal
to q.).

1.13 Lemma. If p A. q and p1', q1 are nonforking extensions of p and q
then p' J- q'.

The following exercise translates this result into the set notation.
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1.14 Exercise. If (A _L J5; C) and C C C1 with A |c C1 and B |c C' then
(A_L£;C").

We show now that if we view nonorthogonality as a dependence relation
then a suitable modification of the transitivity of independence axiom holds
for orthogonality. The clearest argument for the next proposition relies on
Theorem 1.37 which asserts that if the nonforking extensions p',q' of the
stationary types p and q are orthogonal then so are p and q. Lemma 1.15
is not used in the proof of Theorem 1.37.

1.15 Lemma. // B C C C D and (A _L £>; C) and (A _L C; D) then (A J_
D β).

Proof. Let A! realize t(A\B\ D' realize t(D',B), and suppose (A'lE B)
and (D'[E',B] for some E containing B. By Exercise 1.9, we may choose
A1 to realize 8tp(A;B). We must show (A'lD' E). Choose C' C D1 with
t(C'; B) = t(C; B). By monotonicity, (C'[E] B). Now applying the orthog-
onality of A and C over B we have (A'[C'\ B U -B). By monotonicity and
the independence of A' from E over £, this implies (A'[C' U £"; B). </,From
D1 IB E we deduce by monotonicity and symmetry that D' [c1 E U C'.
Suppose for the moment that stp(D'; C1} _L stp(A'-, C1}. Then D' [C>UE A1.
Since A1 [B C1 U E, we deduce D' [B A! as required.

The argument that stp(Df',C') J_ stp(A';C'} is somewhat circuitous.
Since stp(D\ C) _L sfy(A; C) and A |β (7, Theorem 1.39 implies stp(D; C} J_
stp(A, B). There is an automorphism fixing B and mapping D to D' and
C to C". Thus, since orthogonality is preserved under automorphisms,
stp(D'',C'} _L stp(A;C). But stp(A,B] = stp(A';B) and A1 [B C". So by
Lemma 1.13 stp(D'-,C') _L stp(A';C').

We can drop the assumption that C C D.

1.16 Exercise. Show that if B is a subset of (7 and (A _L <?;£), and
(A _L P; C) then (A _L D; J5). (Hint: Note that £(£>; (7) J. ί(l? U C; C) and
then apply Lemma 1.15.

1.17 Example (Stationarity Fails). Let T be the theory of ah equiva-
lence relation with infinitely many infinite classes. Then the unique 1-type
over the empty set has an unbounded number of pairwise orthogonal non-
algebraic extensions.

We will discuss later theories in which each type has a bounded num-
ber of mutually orthogonal non-algebraic extensions (i.e. which satisfy for
orthogonality the intent of Axiom II.1.23) and will see that they form a
particuarly well behaved class. (Such theories are said to have bounded
width or be non-multidimensional).

There is one way in which orthogonality is a much stronger relation than
independence.

1.18 Definition. We call a notion of freeness 7 trivial when (A7B$',C},
C), and (BtfB^C] together imply
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For example, if T is any completion of the theory of a single 1-1 unary
function then nonforking is a trivial dependence relation. Intuitively, or-
thogonality should be trivial. For, if t(A\ C) _L t(B\ C) then A and C are
persistently independent. That is, they remain independent over any set
which is independent from each of them; in particular, they should be in-
dependent over any realization of a type which is orthogonal to each of
t(A',C) and t(B',C). More formally, we show that orthogonality is trivial
by showing an even stronger result which we call strong triviality.

1.19 Theorem. Orthogonality is a trivial dependence relation. In fact, let
E be an independent set over A. Suppose that for any 6 and each e E E,
(6±e;A) then (&_!_£; A).

Proof. Without loss of generality, by Proposition 1.3, we assume E is finite.
The proof is by induction on n = \E\ and the result is obvious if n = 0.
So assume the result for n = m and we will establish it for n = m + 1.
Fix any D with A C D such that b [A D and Em+ι [A D Since nonforking
preserves independence and since Em+ι is independent over A, em ID Em.
By induction (b ± Em A) so by the definition of orthogonality b j D Em . Now
since (b _L em; A), we have (6|em; D U Em). Thus b ID £m+ι as required.

The following exercise provides a useful rephrasing of Theorem 1.19.

1.20 Exercise. Show that if E = (βi :i < a) is independent over A and
for each i, p _L tfa', A) then p _L t(E\ A).

1.21 Exercise. Find a counterexample to the following assertion. If for
each e E E, p _L t(e\ A) then p ± t(E] A).

We now will discuss orthogonality from a more syntactic viewpoint, one
which relies heavily on model theory as opposed to the abstract theory of
dependence relations.

1.22 Definition, i) Let p ( x ) , q ( y ) E S(A). p is weakly orthogonal to </,
p λ.w </, if p(x) U q(y) is a complete type.

ii) Let p and q be types (almost) over A. p and q are almost orthogonal,
p J_α <7, if for any α, b realizing p, q, respectively, a [A b.

The following exercises will be applied repeatedly without reference.
They are all proved by permuting Definition 1.22.

1.23 Exercise. Show t(a^A) λ.w ί(δ2; A) iff ί(άι A) f- ί(άι;Au{ό2}) iff
t(μ<2',A) \- t(a%', A U {άi}). Hence if t(a^ A) ±w t (a<2 \A) we can conclude
αi IA^I.

1.24 Exercise. Show that p _L™ q implies p _Lα q.

1.25 Exercise. Show that p _L q implies p _Lα q.

1.26 Exercise. Show that if p is weakly orthogonal to q(x)^r(y) then p
is weakly orthogonal to each of q and r.

1.27 Exercise. If one of p and q is stationary, p JLα <? implies p _L™ q.
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1.28 Exercise, p _Lα q iff for some a realizing p and any b realizing q,
ί(6; A U {a}) does not fork over A.

1.29 Exercise. If for some model M, p, q G S (M) and p J_α <? then p _L™ <?.

We extend by convention the definition of weak orthogonality and almost
orthogonality to include types with different domains. Recall the notation
N(A U B, A) from Section III.3.

1.30 Definition. Let p G S(A) and q G S(B) and suppose p', q' extend p
and q respectively.

i) p λ.w q iff for each p1 G N(A U B, A) and ?' G N(A U 5,5), p' _LW ?'.
ii) p _Lα g iff for each p' G N(A U B, A) and q1 G 7V(A U B, S), p' _Lα ?'.

By the preceding exercises, for stationary p and q we have p _L™ # iff
p λ.a q. Thus _Lα is the weak version of orthogonality where instead of
extending p and q freely to an arbitrary extension of their domains, we
extend only to domp U domg.

The subtle difference between the following two exercises plays an impor-
tant role in problems relating to the axiomatizability of totally categorical
theories [Ahlbrandt 1984].

1.31 Exercise. Show that if t(a\ A) is algebraic then it is stationary if^and
only if α is in the definable closure of A. Conclude that if t(α; C) and t(5; C)
are both algebraic and stationary then t(ά; C) λ.w £(&; C).

1.32 Exercise. Show the previous result fails if the hypothesis that the
types are stationary is dropped.

The following two examples show that, strictly speaking, orthogonality
and weak orthogonality are incomparable concepts. Of course, we have
already noted that if one of p, q is stationary then p _L q implies p ±.w q.

1.33 Example (Weak orthogonality need not imply orthogonality), i) We
first show that two types over a set A can be weakly orthogonal but not
orthogonal.

Let T be the theory of the Z/(4) module Z$°. Denote by p the type
over the empty set of an element of order 2. Fix a set A of realizations of
p, α G A and q the type of an element of order 4 which satisfies 2x = a.
Letting p' be the nonforking extension of p to A, we will show p1 λ.w q but

pfϊq
To see that p' λ.w <?, note that if 6 / c G M (the monster model) satisfy

q there is an automorphism of Λt which fixes p(λl) pointwise and maps 6
to c. Exercise 1.23 implies this is more than enough. (For this, regard Λt
as a free Z/(4)-module with basis (bi :i<κ). The basis can be chosen so
that b = 60 and c = 60 + 2&ι. Then, {6,c} \J {bi : 1 < i < K} is another
basis for Λt. Interchanging b and c and fixing the rest of the basis yields an
automorphism of M which fixes p(M) pointwise.)

To see that p1 / q, fix a realization c of q and let q' (p") be the nonforking
extensions q (p7) to A U c. Now, p' / q since if c' realizes q' and a1 realizes
p" we may or may not have c' — c -I- a'.
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This counterexample is intrinsic to the situation. That is, Z%° is the
prototype of an NI-categorical theory which is not almost strongly minimal.
Tsuboi showed that if T is such a theory, A is an infinite dimensional subset
of a strongly minimal set Z?, and p is the unique nonalgebraic type over
A which contains D(x) then for some nonalgebraic q G S(A), q -Lw p. The
Ni-categoricity of T guarantees that q / p.

ii) We now show that there are examples of types over models which
are weakly orthogonal but not orthogonal. Lascar has proved (cf. [Lascar
1982a] and XIΠ.3.7) that this is impossible in an ω-stable theory.

Let T be the theory CEF+ (IΠ.4.9) of the structure (2ω, E{, +). Let M be
the model whose universe is the collection of eventually constant functions,
and let σ, τ be two sequences which do not differ by an eventually constant
function. We claim that p = ί(σ; M) and q = £(τ; M) are weakly orthogonal
but not orthogonal. To see p λ.w q, we need only show that all formulas
about σ, r, and σ + τ with parameters from M are implied by p U q. This is
straightforward using the quantifier eliminability of T. To see that p / </,
note that r [M T + σ and σ [M T + σ but (σ / r; M U σ + r).

Note that in this example forking reduces to algebraic dependence.

1.34 Exercise. Why are the equivalence relations Ei necessary for the
preceding example?

Example 1.33U) arose from the following more complicated, but less
contrived, example due to Mike Prest.

1.35 Exercise. Let Z^) denote the additive group of those rational num-
bers whose denominators are not divisible by two (the integers localized at
two). Show there are two types over Z(2) which are weakly orthogonal but
not orthogonal.

A more abstract, and so perhaps more believable explanation of the
phenomenon in Paragraphs 1.33 through 1.35 is given on page 504 of [Poizat
1985].

1.36 Example (For nonstationary types orthogonality does not imply
weak orthogonality). Let T be the theory of two unary predicates P and Q
which partition the universe and an equivalence relation with two classes
each of which intersects both P and Q infinitely. Then if p G 5(0) is gener-
ated by P(x) and q G S(0) is generated by Q(y) it is easy to see that p J_ q
but p lw q.

The following theorem gives the relationship between orthogonality and
weak orthogonality.

1.37 Theorem. Let p G S(A) and q G S(B), then p J_ q if and only if for
any nonforking extensions of p and q to global types p and q, p ±.w q.

Proof. If p J- q then, by the definition of orthogonality, for any α' realizing

p and any b realizing q, of [^h . Since p and q are stationary, Exercise
1.27 shows p Lw q. For the converse, suppose there exist ά,6 realizing p,q
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respectively and a set D such that a [A D and b IB D but α 1D b. Let a'^b
realize an extension of £(α^6; D) to the monster model which does not fork

over D. Then by Corollary II.2.10, a! /M b . Since types over models are

stationary this contradicts the weak orthogonality of t(a!; M) and t(b Λ().
(Clearly, these types do not fork over A, 5, respectively.)

This argument violates at least the spirit of the monster model idea by

appealing to a1 and 6 . This appeal can be avoided by a somewhat more
complicated formulation.

1.38 Theorem. Let p G S(A) and q G S(B) with \A U B\ < X, then p A. q
if and only if for any nonforking extensions of p and q to types p1 and qf
in S(M), where M is a X-saturated model containing A U B, p' λ.w q'.

—b
D

b" —

Fig. 1. Theorem VI. 1.38

Proof. (Fig. 1). If p / q then there exists D containing A U B with α [A D and
b IB D but α 1D b for some α and b realizing p, q respectively. Without loss
of generality, we may assume D — (A U B) is a sequence d with \d\ < ω. Now,

by the saturation of M, choose α'^6 ^α E M realizing t(α^b^d',A U B).

Then α' |̂  d! and δ' |B d'. Choose άf'^T*' realizing t(α'^b'', A\JB\Jd!) so

that t(α"^b"-,M) does not fork over A\JB\J~o? . Now (α' /ft'; A U B U r f 7 ) so
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by Corollary II.2.10 α" 1M b . But ά" [A M and b [B M so this contradicts
the hypothesis.

We next prove that parallelism repects orthogonality. Using this obser-
vation we are able to improve the formulation of Theorem 1.38. We noted
in Lemma 1.13 the routine observation that orthogonality is preserved by
nonforking extensions (orthogonality goes up). The fact that orthogonality
also goes down is the content of the current lemma.

1.39 Lemma. Let p,q, and r be arbitrary stationary types. If p \\ r then
p±qiffr±q.

Proof. It suffices to show p _L q implies q JL r. Since p \\ r there exists a
global type p which is a common nonforking extension of p and r. If q is
any nonforking extension of q to a global type then p _L q and Theorem 1.37
imply p ±.w q. Applying Theorem 1.37 in the other direction, we conclude
r _L q.

1.40 Theorem. If p,q G S(M) and M is strongly κ(T)-saturated then
p _L™ q implies p _L q.

Proof. Since M is strongly /c(T)-saturated, by Corollary IV.2.8 there are
subsets A and B of M with cardinality less than κ(T) such that p is strongly
based on A and q is strongly based on B. By Theorem 1.38, p\A _L q\B.
But p\A || p and q\B \\ q so p _L q by Lemma 1.39.

Some conditions on the domain of p and q are necessary to have weak
orthogonality imply orthogonality. Example 1.33 showed that we must at
least assume the domain is a model. Lascar [Lascar 1982a] has shown that
for ω-stable theories this suffices.

There are two parts to the proof of Theorem 1.40. We need to know
that the model M is good in the sense of Section IV.2. This part of course
transfers immediately to any model of an α -stable theory. Secondly, we
need to know that the nonorthogonality of p and q can be passed to the
nonorthogonality of p\A and q\B. The above proof accomplishes this by
appealing to the /c(T)-saturation of M. Lascar's argument [Lascar 1982a]
substitutes an analysis of regular types.

Although p J_ q was defined without assuming p or q was stationary many
of the results in this section depended on the hypothesis that a type was
stationary. The natural way to convert a type p = t(c;A) to a stationary
type is to consider stp(c-, A). The relation between orthogonality to p and
the various strong types extending p is stated in the following corollary
which follows easily from Theorem 1.39.

1.41 Corollary. If p £ S(A) and q G S(B) then p J_ q if and only if for
each c realizing p, stp(c; A) J_ q.

The following two exercises emphasize, first, the importance of assuming
that p and q are stationary in Theorem 1.39 and second the necessity of
assuming stp(c] A) _L q for each c realizing p in Corollary 1.41.
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1.42 Exercise. Let T be the theory of an equivalence relation with two
infinite classes. Show that the unique type over the empty set has a pair of
nonforking extensions which are orthogonal. Conclude that the hypothesis
that p and q are stationary is necessary for Theorem 1.39.

1.43 Exercise. Find an example of types p, q € 5(0) so that p / q but for
some c realizing p, stp(c-, 0) _L q.

1.44 Historical Notes. The notion of orthogonality was introduced in
Chapter V.I of [Shelah 1978]. Shelah begins with the model theoretic no-
tion of weak orthogonality. Then he defines orthogonality in terms of our
Theorem 1.37. Spurred by some observations of Saffe, we noted that or-
thogonality can be derived in purely algebraic terms from any dependence
relation satisfying the axioms of Chapter II. Thus we introduce weak or-
thogonality as a useful variant which arises in the context of first order
theories. The third variant, almost orthogonality, was suggested by Makkai
[Makkai 1984].

2. Orthogonality of a Type and a Set

The next two sections are devoted to the discussion of several closely related
but subtly different notions: orthogonality of a type to a set, dominance,
eventual dominance, and several minor variants of these. All of these no-
tions can be derived from an arbitrary freeness relation. That is, just as
in Definition 1.1, the extended property is defined from the nonforking
relation without the intervention of any other stability theoretic concept.
We will explore their full significance in Chapter X when we consider their
relations with various notions of isolation.

We first consider the notion 'p is orthogonal to 5' as meaning p is
orthogonal to every type over B. If p = t(A\ C) we can think of this relation
as meaning 1A is free from B over C" and so we are studying the kind of
relation discussed in Chapter II.

2.1 Definition, i) Let p £ S(C) and B be a set. Then p is orthogonal to
B (written p H B) iff p ± q for each qζS(B).

ii) If p H 0 and p is not algebraic, p is said to be unbounded.

Note that t(A; C) H B is actually an assertion about t(A; C) and t(B\ C).

2.2 Examples, i) Let T be the theory of an equivalence relation with
infinitely many infinite classes and let M \= T. Suppose M ^ N and a G TV
is in an equivalence class which is not represented in M. Then, a type p over
TV which asserts E(x, a) is orthogonal to M. The only difficulty in seeing
this is to observe that as well as being orthogonal to any type which fixes
an equivalence class different from [α], p is orthogonal to the type which
asserts of an element that it is not in any class which is represented in M.
(Fig. 2).
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ii) A similar situation arises if we consider the third example from Ex-
ample 1.10. Any type which specifies a new coset of a subgroup with infinite
index will be orthogonal to the ground model.

M N

Fig. 2. p -\M

The following easy exercises will provide some familiarity with the no-
tion.

2.3 Exercise. Show that p H A implies p J_ stp(c;A) for every c. But, if
p € S(B], p -\ A if and only if for each c realizing p, stp(c\ B) H A.

2.4 Exercise. Show that if p-\ A then p H cl(Λ).

It is an easy exercise to show that if t(A, C) H B this relation continues to
hold if we shrink A or B. The situation is more complicated if we increase
C. A third monotonicity result, replacing B by a B' with B' [B C, requires
much more work and appears as Theorem 2.21.

2.5 Proposition, i) If t(A] C) H B, A! C A and B1 C B, it follows that
t(A'-,C)-\B'.

ii) If t(A; C) H B and C C C" with C" |c A then ί(A; C") H B.
iii) If ί(A C) / £ then there is a B1 C B with |β'| < /c(Γ) such that

Part ii) of Proposition 2.5 just says that p H A is preserved by taking a
nonforking extension of p.

2.6 Exercise. Show that for any A and B if there is a C with t(A\ B) H C
then f (A; B) H 0.

The following three exercises illustrate some arguments involving trees
of types orthogonal to sets. These arguments play an important role in
Chapter XVI. The second exercise will usually be applied to C C A0 C BQ
andCC Ai C Bl.

2.7 Exercise. Show that if A [c B and t(D\ A) H C then D |c #•
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2.8 Exercise. Let AQ lc A\ and suppose that, for i = 1,2, t(B^Ai) H C
and t(Dϊ, B<) H A*. Conclude B0 [c BI and ί(D0; BQ) J. ί(Z?ι; J3ι).

2.9 Exercise. Let Z> C A C (B Π C) and B U C. Show that if t(B\ A)-\D
and f (C; A) -\ D then ί(β U C; A) H £>.

At this point the analysis in terms of a freeness relation stops making
much sense. The relation does not seem to satisfy the symmetry axiom
in general. A literal translation of the transitivity axiom produces non-
sense. We will prove a stronger version of monotonicity and then introduce
another viewpoint on orthogonality which is more fruitful.

We want to prove that if ί(A C) H B and C IB D then t(A\C) H D.
In some sense we ought to be able to derive this result on the basis of the
properties of orthogonality and freeness which we already have in hand.
However, such a proof is unknown. Rather, we must introduce here several
more complicated notions in order to obtain the result.

The following concept specializes the idea of a product of types which is
described in Chapter XIII. 2.

2.10 Notation. If p G S (A) is a stationary type and α is an ordinal, we
denote by pa the type t(I',A) where / is a strongly independent sequence
of length α based on p.

2.11 Exercise. Since p is stationary, pa is well defined.

2.12 Exercise. Find a model ΛΓ, a submodel M and a q G S(N) such that
qω\M / (q\M)ω. (Hint: consider Example 2.2 i)).

2.13 Exercise. Show that since p is stationary, pa is stationary for every
a.

2.14 Exercise. Show that p J_ q if and only if pω J_ q.

The following technical result is notable in two ways. First, it reduces
the problem of deciding whether two types p and q are orthogonal to the
question of weak orthogonality of associated types. Second, these associated
types (pω\A and qω\A) need not even have the same domain as p and q but
are over an arbitrary subset of their common domain.

2.15 Lemma. Let p,q G S(B) be stationary types and suppose A C B. If
(pω\A)A.w (qω\A) thenp-Lq.

Proof. If p / q, there exist α, α', 6, b , and c such that a and a1 realize p,

b and b realize q, and each of α, α', 6, and b is independent from B U c

over B but f (α~6; £ U c) /J(α'^6'; B U c). Let a = sup(7c(T),_|£|+). Now
choose a sequence βi = a^fy for i < a such that α^ [3 Ai and bi IB BΪ but

t(βi\ Ei\jB\Jc) extends t (α^δ; EΪ U B U c) if i is even and t(ci^T); EiUBUc)
if i is odd. Now E realizes the type pa\A^qa\A. Since (pω\A) λ.w (qω\A),

there is only one type over A of a sequence (e^ :i<a) with e[ = 'ά!^bi which
projects to a realization of pa\A and to a realization of qa\A. Moreover,
such a sequence can be chosen with e( [B E^ and all the e^ realizing the



2. Orthogonality of a Type and a Set 151

same strong type over B. The resulting sequence, I?', is a sequence of
indiscernibles over B. Hence, E is a sequence of indiscernibles over B.
Since \E\ > \B\ + κ(T), by Corollary V.I. 19 there is a final subsequence of
E which is indiscernible over B U c. But this contradicts the choice of E,
so p _L q.

2.16 Exercise. Show the hypothesis of the last lemma can be replaced
by: for each n < ω, pn ±.w qn.

2.17 Exercise. Show that if p, q G S(A), p / <?, and A C B then

i) there exists a and b realizing p and q with ά [A B, b I A B and ά |β 6.

ii) For some n < ω there exists α',fe realizing pn and qn with α' j^ B,

b I A B and cί' lBb .

It is easy to deduce the following summary of the last few lemmas and
exercises.

2.18 Corollary. Let p, q G S(B) be stationary. The following are equiva-
lent.

i) p _L q.
ii) pω ,LW qω.

Hi) pω _Lα qω.
iv) For eαcfe natural number n, pn ±.w qn.

We noted, after Proposition 1.3, that the finite character we had estab-
lished for nonorthogonality lacked the syntactic character that the finite
character of forking has (Axiom II.1.15, Corollary IΠ.3.15). Of course, weak
orthogonality has this syntactic character. Thus, we can now give a syn-
tactic expression for p(x) JL q(y), but only by introducing more variables.

2.19 Exercise. Assume p and q are stationary. Show that if p, q G S(A)
and p / q then for some integer n and formula Φ ( X Q , . . . , zn_i yQ,..., |/n_ l)

and for any r G S(A), if (α0,... ,άn_ι) satisfies pn, (60, - - - , &n-ι) realizes
rn, and f= (/>(ά0,... ,αn_ι;6θ 5 ,6n-ι) then r /p.

2.20 Exercise. Show that a fifth equivalent to the conditions in Corollary
2.18 is: For some (any) a > ω pa λ.w qa.

Now we can obtain the promised strong monotonicity result.

2.21 Theorem. Let p e S(C). Suppose p H B and C \B D. Then p-\D.

Proof. First, we can assume that p is stationary. For, p H B implies that for
each_d realizing p, stp(d\ C] H B. Thus it suffices to prove the theorem for
stp(d', C) for an arbitrary d realizing p. Without loss of generality, invoking
Proposition 2.5, BCD and B C C. Since orthogonality is respected by
parallelism, we may also assume without loss of generality that C and D
(though not B) are universes of models. Thus if q G S(D), q is stationary.
Let E = C U D and let p7, q' be nonforking extensions of p, q respectively
to S(E). Then pω = (p'\C)ω = (p')ω\C. We establish p _L q by showing
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pω ±w (q'γ\c and invoking Lemma 2.15. For this, let / realize (q'}ω\C.
Since One for all is for free' we may assume / realizes (q')ω'. As for stationary
types _Lα implies λ.w (Exercises 1.9 and 1.27), it suffices to show that for
any J realizing pω, J [c I- But / ID E implies by monotonicity that / ID C.
By hypothesis, C IB D so transitivity yields I [B C. Now, p H B implies
pω H B so applying the definition of orthogonality to pω and t(I;B) we
have / lc J as required.

The following exercise is an easy application of Theorems 1.19, II.2.18,
and 1.40.

2.22 Exercise. Show that for any p there does not exist a sequence of
types (pi: i < κ(T)) with p / pi for each i.

As a corollary to Theorem 2.21 and Exercise 2.22 we obtain a convenient
test for p -\ B.

2.23 Corollary. Suppose B C C , domp = C and f is any elementary map
with domain C which fixes B pointwise. Suppose further that stp(C]B) =
stp(f(C)', B) and C [B f(C). Then, p H B if and only if pi. /(p).

C

Fig. 3. A test for p H B

Proof. (Fig. 3). If p H B then by Theorem 2.21, p H /(C) and, a for-
tiori, p I /(p). Conversely, suppose that p / B. For i < \(S(B)\ + |T|)+,
define elementary mappings fi such that s t p ( f i ( C ) , B ) = stp(C,B) and
ί(Λ(C');Uj<iΛ(C')) does not fork over B. Without loss, we may assume
/o = id\C and /i = /. If p JL /(p), then the fi(p) are a sequence of greater
than /c(T) pairwise orthogonal types. Since p / B, each pi •/ B. Thus, for
some d realizing p, stp(d\B] / fi(p) for each i. This contradicts Exercise
2.22 and yields the theorem.

It is essential for this argument that the strong types and not merely the
types of B and f ( B ) are equal. A simple counterexample can be found by
considering the theory of an equivalence relation with two infinite classes.
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2.24 Exercise. Let E be set of independent sequences and suppose that
for each e G E there is a p$ G S(e) with p$ H 0. Let Aτ be a set of independent
realizations of p^. Show A = {AΈ: e G E} is an independent set. Show that
if p'τ is the nonforking extension of p$ to A$ U e then ϊ) p$ ~\ A — Ae and ii)

2.25 Historical Notes. The notion of a type being orthogonal to a set
arises in [Shelah 1978]. Our treatment was influenced by that of Lascar
and Makkai. The important Corollary 2.18 first appears in [Shelah 1982].
We have tried to avoid arguments involving the construction of an infinite
set of independent realizations of a type in favor of arguments directly
about the type. They represent a technique which Shelah uses much more
often in developing this material and which seems essential for Theorem
2.21. Hrushovski ([Hrushovski 1986], [Hrushovski 198?d]) has proved the
remarkable result that in Corollary 2.18 iv) 'each natural number n' can be
replaced by 'n < 3'. More precisely, if m is minimal such that for some n
pn j_a qm then there js a fc < 3 such that pk /α q™.

3. The Dominance Order

In this section we consider a variant on the notion t(A',B) H C. Rather
than consider this variant as an independence relation, it is more useful to
regard it in Definition 3.2 as a partial ordering relation on types over C.

3.1 Definition. Let C C B and p G S(B). Then p is almost orthogonal to
C if for each q G S(C), p _Lα q. We write p -\a C.

The restriction that C C B can easily be seen to be superfluous. In fact
replacing B by B — C leads to another form of this definition which will
be used more frequently.

3.2 Definition, i) For any α, 6, and C we say_α dominates b_over_C and
write (α > 6; C) or a >c b if for every d, d [c Q> implies d [c b.

ii) For any p, q G S(C), we say p dominates q over C and we write
(p > g; C) or p >c Q or simply p > q if there exists an α realizing p
and 6 realizing q such that α D>c b.

iii) If p G S(A) and q G S(B), we make the standard extension and say
p dominates q and write p > q if for any nonforking extensions p'
and q' to A U B, p' >A\JB <?'•

iv) We say B and C are bidominant or domination equivalent and write
B QA C if B >A C and C >A B. Similarly if p > q and q > p we
write p π q.

bidominance

While p _Lα q means for each a realizing p and b realizing q α|6, p D> q
means for some a realizing p and b realizing q a > b.
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The following exercise shows that dominance is a strong negation to
orthogonality. In particular, if t(α; B U c) H B and t(α; B U c) is not algebraic
then c >B a.

3.3 Exercise. If a [A b and £(&; A) is not algebraic show (α p* 5; -4).

The following is proved by checking through the definitions.

3.4 Lemma. Let B, a, and c be arbitrary: £(α; B U c) Hα B if and only if
t(c',B)>t(ά^c',B).

3.5 Exercise. Show using the properties of independence developed in
Section II.2 that we can extend the notion ά>c b of domination of sequences
to a notion of domination of sets A >c B.

3.6 Exercise. Show that replacing 'there exists an ά_and a V by 'for every
6 there exists an α' or by 'for every a there exists a 6' in Definition 3.2 iii)
yields an equivalent definition of p dominates q.

3.7 Exercise. Show that the attempt to strengthen the notion of domi-
nation by replacing 'there exists an a and a 6' by 'for every a and for every
V yields a relation which is never satisfied, except possibly by algebraic
types.

3.8 Exercise. Let T be the theory of an equivalence relation with two in-
finite classes and let M be a model of T. Show that if a and c are equivalent
elements which are not in M then t(c\ M U α) H° M

3.9 Exercise. Show p > p.

The next lemma shows that dominance determines a preorder on the
types over a set B. Moreover, we get a useful strong form of transitivity of
dominance with varying base sets. The proofs are entirely routine.

3.10 Lemma, i) The relation p>p q on types in S(B) is reflexive and
transitive.

ii) IfACBCC,B >A C, and C >B D then B >A D. In particular, if
B>AC and C\>AD then B >A D.

The following exercise provides a useful reformulation of Lemma 3.10 ii).

3.11 Exercise. Show that if A C B C C, t(C\ B) Hα A, and t(D\ C) -\a B
then t(D-, B) Hα A.

So far the relation of domination is entirely local. We next explore how
it behaves under parallelism so we can extend to a relation on global types.
The next lemma is a routine consequence of Corollary II.2.11. It provides
the independence conditions necessary to show dominance is preserved
when 'going up' and when 'going down'.

3.12 Lemma. Suppose AQ C A and B [Ao A.

i) (B > C; AQ) implies (B >C; A).
ii) (B~C|A;A0) implies if (B > C\A) then (B > C;A0).
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Proof, i) Let D [A B. By monotonicity, D^A I A B and thence by transitiv-
ity of independence, D^A IAO B. The hypothesis yields D^A [AQ C and
monotonicity of independence again gives D [A C.

ii) Let D [AQ B. We must show D [AQ C. Choose A' realizing stp(A, AQ)
and with (A'lAuBuCuD Av). Note t(A'',AQ\jB\JC) =t(A',A0\jB(jC).
Thus (B 0 <7; A1). Now by Corollary Π.2.10 D [A> B; whence by hypothesis
D IAf C and so by Corollary Π.2.10 again D j^o C.

We easily deduce the following corollary.

3.13 Corollary. Let p1', q1 € S(B) be nonforking extensions of types p, q
which are in S(A). If p> q then p' > q'.

However, we can not conclude from p1 > q1 that p > q. Consider Exam-
ple 1.12. Using the notation from that example but renaming the types,
let p = ί(α M) , q = ί(6; Af), p' = t(a\M U &'), and q' = t(b;M U &').
Check that p' (q') is a nonforking extension of p (q). But (p\γ q M) while
(// > </'; M U 6') since b is in the prime model over M U {α, b'}. The last
assertion follows from X.1.21.

Thus, in order to obtain a parallelism invariant definition we must mod-
ify the definition of domination slightly. Since domination is a strong nega-
tion to orthogonality and the orthogonality of two types in determined by
considering all (appropriate) extensions, it suffices here to find one exten-
sion witnessing domination.

3.14 Definition. For p E S(A) and q £ S(B) we say p eventually domi-
nates q and write p >e q if for some C D A U B and some //, q1', nonforking
extensions of p and q to S(C), p' > q'.

In the natural way we obtain the notion of eventual domination equiva-
lence of p and g, written p Qe q.

Clearly >e is a property of global types and is preserved by parallelism of
stationary types. Thus we have established a preorder on the global types.
This notion will be exploited extensively later in the book.

The following exercise will be a small but important step in some proofs
in Part D.

3.15 Exercise. Let for i = 1,2, Xi C A/ϊ, and suppose Xi >MO Af» and
MI I MO M2. Show X1 U X2 >M0 MI U M2.

3.16 Historical Notes. The treatment of domination presented here fol-
lows that of [Makkai 1984]. His account was largely based on [Lascar 1984]
and [Lascar 1982a].




